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Abstract

We investigate the communication of supersymmetry breaking to the Standard Model in
theories of gauge mediated supersymmetry breaking with general weakly coupled messenger
sectors. We calculate the one loop gaugino and two loop soft scalar masses for nonvanishing
StrM2 of the messenger sector. The soft scalar masses are sensitive to physics at scales
higher than the messenger scale, in contrast to models with vanishing messenger supertrace.
We discuss the implications of this ultraviolet sensitivity in theories with renormalizable and
nonrenormalizable supersymmetry breaking sectors. We note that the standard relation, in
minimal gauge mediation, between soft scalar and gaugino masses is altered in models with
nonvanishing messenger supertrace.
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1 Introduction.

In the past couple of years, models where supersymmetry breaking is communicated to the

Standard Model by gauge interactions have received increasing attention [1]-[3]. This develop-

ment has been stimulated in part by the new advances in understanding the dynamics of N = 1

supersymmetric gauge theories [4] and, recently, by the observation of the e+e−γγ event at

Fermilab [5]. Gauge mediated supersymmetry breaking offers a predictive and testable alter-

native to the supergravity models and naturally suppresses flavor changing neutral currents.

To communicate supersymmetry breaking via gauge interactions one postulates the exis-

tence of heavy vectorlike multiplets of the Standard Model gauge group. These heavy “mes-

senger” fields acquire soft supersymmetry breaking mass splittings due to their interactions

with the supersymmetry breaking sector. Supersymmetry breaking is then transmitted to the

Standard Model gauginos, which acquire mass at one loop level, and the squarks, sleptons

and higgses, which acquire mass (squares) at the two loop level.

The interaction of the messenger fields (denoted by Q1 and Q2, transforming in conju-

gate representations of the Standard Model gauge groups) with the supersymmetry breaking

sector can be written in terms of a “spurion” field[s] S—which is a dynamical field of the su-

persymmetry breaking sector—that acquires a supersymmetry breaking vacuum expectation

value:

〈S〉 = s + θ2 Fs . (1.1)

The most general interaction1 between the spurion S and the messengers Qi, quadratic in the

messenger fields, can be written as [6]:

∫

d4θ
S†S

M2
fi Q†

i · Qi +
(
∫

d2θ S Q1 · Q2 + h.c.
)

. (1.2)

The scale M is a scale characteristic of the supersymmetry breaking sector. Inserting the

expectation value (1.1) of the spurion generates soft scalar masses for the messengers and

gives rise to the following general scalar mass matrix:

(Q†
1 Q2)

(

a2 c2

c2∗ b2

) (

Q1

Q†
2

)

, (1.3)

while the fermion Dirac mass is equal to s. The scalar mass matrix in eq. (1.3) is the most

general one can write for a single messenger multiplet. The elements a, b of the mass matrix

are real, while c is complex; these four real parameters can be related to the parameters in

eqs. (1.1, 1.2).

1For simplicity, in eq. (1.2) we impose a (discrete) R symmetry to forbid terms like S†Q1 · Q2, etc., in the
Kähler potential. This does not affect the generality of the resulting mass matrix.
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We note that if the coefficients fi in eq. (1.2) are not small and if the scale M is not

much larger than the vacuum expectation value 〈S〉 of the spurion, the nonholomorphic scalar

masses—the elements a2 and b2 in (1.3)—receive soft supersymmetry breaking contributions

from the D-terms, in addition to the (supersymmetric) contribution from the F-term. The

supertrace of the messenger mass matrix, StrM2
mess ≡ 2a2 + 2b2 − 4s2, is then nonvanishing.

In the models of Dine, Nelson, and Shirman (hereafter referred to as the “minimal gauge

mediation”, MGM models, see ref. [2]), the coefficients fi in eq. (1.2) are generated by loop ef-

fects2 (while M ≃ s), and are therefore suppressed—the supertrace of the messengers’ squared

mass matrix vanishes to a good accuracy. The models of ref. [2], however, require a rather

complicated structure in order to give both a supersymmetry preserving and a supersymme-

try breaking expectation value of the singlet field S. Moreover, since the messengers are not

part of the supersymmetry breaking sector, the minimum with the required supersymmetry

breaking expectation value of S is only local. Additional complications are needed in order to

avoid this problem [7].

It appears natural, therefore, to look for models where the messengers are an intrinsic part

of the supersymmetry breaking dynamics [8]. Recently several models of this type have been

constructed [9], [10], [12]. The supersymmetry breaking sectors of these models are based in

part on the SU(N) × SU(N − M) models, with M = 1, 2 [13]. At low energies, the gauge

dynamics in these models can be integrated out. The infrared dynamics of the supersymmetry

breaking sector is then described by a weakly coupled nonlinear supersymmetric sigma model,

which contains the messenger fields (i.e. the fields Qi above), as well as several gauge singlet

fields that are essential for supersymmetry breaking3. These Standard Model gauge singlets

play the role of the spurion S in eq. (1.2). The interaction between the “spurions” and the

messengers can be written as in (1.2), with the scale M being identified with the scale of

the vacuum expectation value, s, of S. The coefficients fi are not loop suppressed and the

supertrace of the messenger fields’ mass squared matrix is nonvanishing.

For most of the present investigation the detailed dynamics of these models is not impor-

tant; we will only use them as an “existence proof” of models with weakly coupled messenger

sectors with nonzero supertrace. It is natural to expect that in any dynamical model where

the messengers participate in the supersymmetry breaking, and the low energy dynamics can

be described by a weakly coupled nonlinear sigma model, Str M2
mess 6= 0. This can be seen by

considering the tree level supertrace mass squared sum rule [11] for a general nonlinear sigma

2For example, the same two-loop graphs that generate soft masses for the ordinary squarks and sleptons
also generate corrections to the messengers’ soft masses—the D-terms in eq. (1.2)

3In these models the Standard Model soft parameters receive contributions at energies higher than those
in the sigma model as well—we will have more to say about these contributions in Section 3.
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model:

Str M2 = − 2 Rij∗K
il∗Kmj∗WmW ∗

l∗ , (1.4)

where we use the notations of ref. [11]: Wm is the gradient of the superpotential, Kij∗ is the

inverse Kähler metric, and Rij∗ is the Ricci tensor of the Kähler manifold. In eq. (1.4) the

trace is taken over all states in the sigma model (including the messenger singlets), however—

and explicit examples confirm this—one does not expect a restriction of the supertrace on the

space of states charged under a global symmetry to vanish for a Kähler manifold with nonzero

curvature.

In the next section we consider in detail the effect of the nonvanishing supertrace on the

communication of supersymmetry breaking to the Standard Model fields. We find that the

two loop scalar soft masses are sensitive to physics at momenta higher than the messenger

scale, in contrast with the earlier models. This sensitivity can lead to an enhancement or

suppression of the scalar soft masses compared to the gaugino masses. In Section 3, we

consider the implications of this ultraviolet sensitivity on the calculability of the soft scalar

masses in renormalizable and nonrenormalizable models of supersymmetry breaking. We

point out the importance of possible threshold (matching) contributions of heavy states in the

supersymmetry breaking sector that carry Standard Model quantum numbers. Finally, we

point out the possibility of obtaining superparticle spectra with squarks and leptons lighter

than the gauginos in the “hybrid” models of supersymmetry breaking. Many of the results

reported in this letter have also been obtained by N. Arkani-Hamed, J. March-Russell, and

H. Murayama, and reported in [10]—we thank these authors for discussions.

2 The two loop soft scalar masses with Str M2
mess 6= 0.

In this section we will turn to a detailed calculation of the induced soft masses. Our starting

point is the messenger mass matrix of eq. (1.3) which when diagonalized is of the form:

M2

S =

(

a2 c2

c2∗ b2

)

= U ·
(

m2
1 0

0 m2
2

)

· U † , (2.1)

where the unitary matrix U is

U =

(

x
√

1 − x2 eiα

−
√

1 − x2 e−iα x

)

, (2.2)

with |x| ≤ 1. The Dirac mass of the messenger fermion will be denoted by mf .

We note once again that the mass matrix above—unlike the MGM case—allows for the

supertrace of the messengers to be nonvanishing4. This feature will in fact play a crucial role

4In case the messengers belong to several different representations the corresponding parameter is the
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Figure 1: One loop messenger contribution to Standard Model gaugino masses.

in the discussion below. It is also worth mentioning that even for vanishing supertrace the

above ansatz is more general than the one considered in refs. [17], [21].

The calculation of the radiatively induced gaugino and scalar masses is most easily per-

formed in components. Superfield techniques [14] in theories with broken supersymmetry are

generally useful for finding the infinite parts of Feynman diagrams—i.e. for calculating anoma-

lous dimensions and beta functions—or for calculating finite parts when the mass splittings

in the supermultiplets are small. It is in these cases only that the supersymmetry breaking

effects can be treated as insertions in the relevant Feynman graphs, see e.g. ref. [15]. We

are however interested in the more general case when the supersymmetry breaking splittings

are not small compared to the supersymmetric messenger mass. Treating supersymmetry

breaking effects simply as insertions is not appropriate in this case—one needs to use the

exact superfield propagators in the supersymmetry breaking background. Expressions for the

superfield propagators in a general supersymmetry breaking background have been given in

the literature [16]. To the best of our knowledge, only the chiral superfield propagators in

the supersymmetry breaking background have been obtained; even these are prohibitively

complicated to allow for (two-) loop calculations.

We first consider the contributions to the Standard Model gaugino masses. These arise at

one loop. The corresponding component graph, shown in Fig. 1, is finite and the calculation is

a straightforward extension of that in [17]. The result for the Standard Model gaugino masses

is:

ma = e−iα x
√

1 − x2
g2

a mf

4 π2
SQ

y1 logy1 − y2 logy2 − y1 y2 log(y1/y2)

(y1 − 1) (y2 − 1)
(2.3)

where y1 = m2
1/m

2
f , y2 = m2

2/m
2
f , ga is the corresponding Standard Model gauge coupling, and

SQ is the Dynkin index of the messenger representation (normalized to 1/2 for a fundamental

of SU(N), while for U(1)Y it is simply Y 2, where Y is the messenger hypercharge; we do not

use GUT normalization of hypercharge). ma above refers to the coefficient of the holomorphic

gaugino bilinear operator λαaλa
α in the Lagrangian.

We now turn to a consideration of the scalar masses. These arise at two loops5. As we

supertrace of the mass squared matrix weighted by the Dynkin index of the messenger representation. In the
subsequent discussion we will continue to refer to this loosely as the supertrace of the mass matrix.

5 We note that with the more general mass matrix (2.1) one loop contributions to the hypercharge D-term
are also possible. It is easy to see, however, that these are proportional to 2x2−1, and therefore negligible when
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Figure 2: Divergent one-loop messenger contributions to the mass of the epsilon-scalars (dash-
dotted lines), proportional to the supertrace of the messenger mass matrix.

will see below when the supertrace does not vanish the full contribution is in fact ultraviolet

divergent. Uncovering this divergence though is subtle and requires a careful regularization

of the theory.

We turn to this issue next. We will use dimensional reduction (DRED) [18] to regulate the

theory in this paper. DRED insures that the supersymmetry Ward identities are preserved—

at least to the two loop order of the calculation [19]. It also guarantees that the leading

divergences cancel when all two loop graphs contributing to the scalar masses are summed up

(if one uses conventional dimensional regularization instead, even for vanishing supertrace one

finds that the divergences do not cancel—clearly a result of the fact that continuation to an

arbitrary dimension does not preserve supersymmetry). Recall that in DRED one considers

the theory compactified to n = 4 − 2ǫ dimensions, with ǫ > 0. Now while the number of

spinor components does not change under compactification, a vector field decomposes as an

n-dimensional vector and 2ǫ scalar multiplets in the adjoint of the gauge group—the so-called

epsilon-scalars. These 2ǫ scalar adjoint multiplets need to be fully incorporated in DRED

for consistency (for a clear introduction and a discussion of the role of the epsilon-scalars see

ref. [19]).

Note that in the theory with broken supersymmetry a mass term for the epsilon scalars is

not forbidden by gauge invariance. In fact the epsilon scalars receive a divergent contribution

to their mass at one loop from the graphs shown in Fig. 2. This divergent contribution is

proportional to the supertrace of the messenger mass matrix [20] and is given by:

δm2

ǫ = −SQ

g2
a

16π2

Str M2
mess

ǫ
, (2.4)

where, as in (2.3), SQ is the Dynkin index of the messenger representation. Correspondingly

a one-loop counterterm needs to be added to fully renormalize the theory—we will choose the

x ≃ 1/
√

2. Alternatively, if the messengers fall in complete SU(5) multiplets, these contributions cancel for
any value of x. For a generic x 6= 1/

√
2, however, one has to also worry about the two-loop contributions to the

hypercharge D-term. Finally, the latter contributions can be controlled by imposing a discrete symmetry—one
could have two sets of SU(5) 5̄ + 5 messengers and a symmetry which exchanges the 5(5̄) from the first set
with 5̄(5) from the second set. In this case the D-term arises at three loops.
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Figure 3: One loop epsilon-scalar counterterm graph contributing to the two loop soft scalar
mass.

counterterm to correspond to minimal subtraction6.

Turning now to the soft scalar masses of the Standard Model fields, one finds that this

counterterm contributes to the two loop soft scalar masses via a one loop counterterm graph

shown in Fig. 3. This resulting graph is again logarithmically divergent (the factor ǫ−1 in

the counterterm corresponding to (2.4) is cancelled after summing over the 2ǫ adjoint scalar

multiplets running in the loop) and gives a contribution to the scalar mass of the form:

m2

a = − g4
a

128π4
SQ Ca Str M2

mess log
Λ2

UV

m2
IR

, (2.5)

where Ca is the quadratic Casimir ((N2 − 1)/2N for an SU(N) fundamental; for U(1)Y Ca is

Y 2, with Y being the hypercharge of the Standard Model field involved). ΛUV and mIR refer

to the ultraviolet and infrared cutoff respectively.

We now turn to considering the other graphs at two loops. These are identical to the

graphs considered in [17] and are shown in Fig. 4. The contributions of these graphs can

be calculated in a manner analogous to that in [17]. One finds that these graphs do not

give contributions that are ultraviolet divergent. They do however give infra-red divergent

contributions and these are cancelled by the infrared divergence in eq. (2.5). In fact it can

be argued on general grounds of gauge invariance that no infra-red divergences can arise in

the soft masses. The resulting cancellation between the different contributions is therefore a

useful check on the calculation. Putting the contributions from the graphs in Fig. 3 and Fig. 4

together gives finally for the soft scalar masses7:

m2

a =
g4

a

128π4
m2

f Ca SQ F (y1, y2, Λ
2

UV /m2

f), (2.6)

where Ca and SQ again refer to the Casimir and Dynkin indices respectively as in eq.(2.5).

The function F is given by:

F (y1, y2, Λ
2

UV /m2

f ) = − (2 y1 + 2 y2 − 4) log
Λ2

UV

m2
f

6We use the DR
′

[20] scheme where no “bare” mass for the epsilon scalars is introduced. We thank S.
Martin for related discussions.

7The divergent contribution in eq. (2.6) has previously been obtained in refs. [15], [20].
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Figure 4: Two-loop messenger contributions to Standard Model soft scalar masses (the wavy
lines denote both gauge bosons and epsilon-scalar propagators). The infrared divergence,
present when Str M2

mess 6= 0, is cancelled by the counterterm graph of Fig. 3.
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+ 2 (2 y1 + 2 y2 − 4) + 4 x2 (1 − x2) (y1 + y2) logy1 logy2

+ G(y1, y2) + G(y2, y1) , (2.7)

where

G(y1, y2) = 2 y1 logy1 + (1 + y1) log2y1 − 2 x2 (1 − x2) (y1 + y2) log2y1

+ 2 (1 − y1) Li2(1 − 1

y1

) + 2 (1 + y1) Li2(1 − y1) (2.8)

− 4y1 x2 (1 − x2) Li2(1 − y1

y2

) .

As in the discussion of the gaugino masses, y1 = m2
1/m

2
f and y2 = m2

2/m
2
f . Li2(x) above refers

to the dilogarithm function and is defined by Li2(x) ≡ − ∫ 1

0 dzz−1log(1 − xz). It is easy to

see that in the limit of vanishing supertrace and x = −1/
√

2 eqs. (2.3), (2.6) reproduce the

results of refs. [17], [21].

As the first term in eq. (2.7) shows, in general for a non-vanishing supertrace of the

messenger mass matrix, the soft scalar masses will depend on the ultraviolet cutoff. It is worth

noting again that this ultraviolet divergent contribution arises from the one loop counterterm,

eq. (2.5). Its presence indicates that in general the soft masses are sensitive to physics at

scales higher than the scale of the typical mass of messengers (”the messenger scale”). This

is to be contrasted with the case of vanishing weighted supertrace, when the typical momenta

contributing to the scalar and gaugino masses are of order the messenger scale.

What the relevant ultraviolet cutoff is, will of course depend on the particular model. We

will have more to say on this in the next section. Here we simply note that if there is a large

hierarchy of scales in the supersymmetry breaking sector leading to the cutoff being much

larger than the messenger scale, the term proportional to the supertrace in eq. (2.6) is the

leading contribution to the soft scalar masses8. Then the general pattern one observes from

eq. (2.6) is that the scalar mass squared is negative if the messenger supertrace is positive.

Alternatively, the soft scalar mass squared is positive if the supertrace is negative. A discussion

of the phenomenological relevance of this observation is also left for the following sections.

From the point of view of phenomenology, the main fact of importance is that the relation

between the scalar and gaugino soft masses, characteristic of the minimal models of gauge

mediated supersymmetry breaking [2], no longer holds in models with nonvanishing messenger

supertrace.

8 At next to leading order in this case the logarithmically enhanced contributions arising at three loops
could be comparable to the non-logarithmically enhanced contributions in eq. (2.6). We have not calculated
these three loop contributions.
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3 Ultraviolet sensitivity and phenomenological conse-

quences.

In this section we address two main issues. Section 3.1 investigates the effects that cutoff the

logarithmic divergence in the soft scalar masses, eq. (2.6), in the framework of both renor-

malizable and nonrenormalizable models of supersymmetry breaking. Section 3.2, addresses

some of the phenomenological consequences of models of supersymmetry breaking with non-

vanishing messenger supertrace.

3.1 What cuts off the logarithm?

3.1.1 Renormalizable models.

The ultraviolet divergence in the scalar soft masses indicates that these masses are sensitive

to short distance physics and cannot be fully calculated within the low-energy effective theory.

One needs to therefore go beyond the effective theory to the full underlying theory to estimate

them. Roughly speaking one expects that if in the full theory there are additional fields that

carry Standard Model quantum numbers and can play the role of heavy messengers, and if

these heavy fields restore the full supertrace to zero, then the logarithmic divergence would

be cut off by the scale of the heavy messengers (these heavy messenger fields could then also

contribute to the masses through threshold effects). Whether this happens or not depends

on the models under consideration and it is useful, in the discussion below, to distinguish

between the case when the underlying theory is a renormalizable theory and when it is a

nonrenormalizable theory. Examples of both types of theories of dynamical supersymmetry

breaking exist in the literature.

We first consider the case when the underlying theory is renormalizable. In this case one

can conclude that there must be extra heavy messenger fields in the full theory and, moreover,

that the full weighted supertrace, after including the heavy messenger fields, must cancel. This

follows from the following argument: If the full supertrace does not vanish the Standard Model

soft masses will continue to be logarithmically divergent in the full theory and there would

have to be a counterterm to absorb this divergence. Since the full theory is renormalizable

such a counterterm would have to be renormalizable as well and would have to respect all

the symmetries of the Lagrangian. Furthermore, this counterterm would involve a product

of the Standard Model matter fields and fields from the supersymmetry breaking sector (the

”spurion ” fields). However, it is easy to see that no such renormalizable term can exist—since

the soft masses are nonholomorphic, they must come from a term in the Kähler potential,

and so the counterterm must necessarily have dimension greater than 4 [6]. On adding the

contribution of the heavy messengers of mass mH , the log(Λ2
UV /m2

f) term in eq. (2.6) will be

9



replaced by log(m2
H/m2

f).

In addition there could be threshold effects coming from these heavy messengers as well.

These contributions to the soft scalar mass squares are proportional to (δm2
H/mH)2, where

δmH is the typical splitting of the heavy supermultiplets. Whenever the ratio of the mass

squared splitting, δm2
H , of the heavy supermultiplets to their mass, mH , is of the same order as

the corresponding ratio for the light messenger supermultiplets, the finite contributions of the

heavy messengers will be comparable to those of the light messengers (the finite contribution of

the heavy messengers can be additionally enhanced by their multiplicity [9], [10]). Whether or

not such contributions are present is a rather model dependent question9. Generally, however,

since the mass splitting of the heavy supermultiplets are not expected to be greater than the

supersymmetry breaking scale, δmH ≤ MSUSY , one expects that as the mass mH increases,

the finite contribution (δm2
H/mH)2 of the heavy messengers becomes negligible.

3.1.2 Nonrenormalizable models.

We now turn to discussing nonrenormalizable supersymmetry breaking sectors. These typi-

cally contain interactions suppressed by some scale MUV , and are themselves effective field

theories valid below that scale. For the nonrenormalizable model to be a useful starting

point in calculating the vacuum expectation values involved we need that both s and Fs are

<< MUV . Here s and Fs are the vevs of the spurion field eq. (1.1) and represent the typical

expectation values in the supersymmetry breaking sector.

Eqs. (1.1), (1.2), and (1.3) show that one expects the leading order contributions to the

supertrace to be ∼ (Fs/s)
2. In addition there could be subleading contributions which go

like (Fs/MUV )2. We now argue that the leading order contribution ∼ (Fs/s)
2 must vanish

when we include all the fields in the theory below the scale MUV . In the previous section we

used renormalizability to argue for the absence of a possible counterterm and therefore for the

vanishing of the supertrace. This argument is not directly applicable here, since we begin with

a nonrenormalizable model. Note though, that while nonrenormalizable counterterms might

be allowed, they must still be polynomial in momenta and masses (the latter in the present

context are dynamically generated). But a little thought shows that there is no polynomial

counterterm10 that can account for the log-divergent contribution to the soft masses of the

form (2.6) when Str M2 ∼ (Fs/s)
2. Hence, we conclude that in nonrenormalizable models,

the leading logarithmic divergence is cutoff by heavy messenger fields with a mass mH , Λ ≤
9These contributions are present e.g. in the SU(N)×SU(N−M) models (renormalizable for N = 4, M = 1

and N = 5, M = 2), where the mass squared splitting of the light messenger fields is much smaller than the
supersymmetry breaking scale, and the ratio (δm2/m)2, is the same for light and heavy messenger fields.

10Nonpolynomial counterterms can be written—e.g. the D-term Φ†Φ |logS|2, where Φ is a Standard Model
field and S a supersymmetry breaking sector “spurion” field with expectation value (1.1).

10



mH < M (Λ here is the scale above which the sigma model that describes the light messengers

breaks down).

Besides the leading contribution to the supertrace though there can be, as was mentioned

above, subleading contributions, proportional to (Fs/MUV )2. These do not have to vanish—

the corresponding polynomial counterterm is of the form Φ†ΦS†S/M2
UV . The importance of

these subleading contributions to the soft scalar mass in any model will depend on the ratio

of the scales s/MUV , the magnitude of the logarithmic enhancement, and the coefficients of

the counterterms mentioned above.

3.2 Phenomenological consequences.

As noted at the end of Section 2, the logarithmically enhanced term in eq. (2.6) changes

the relation between scalar and gaugino soft mass parameters, mgaugino ∼ mscalar, typical of

models with vanishing supertrace. The logarithmic contribution to the scalar soft masses is

expected to dominate over the finite contribution—the finite threshold corrections due to both

heavy and light messenger fields—in case there is a sufficiently large hierarchy of scales in the

supersymmetry breaking sector. As we now discuss, this in fact puts a significant constraint

on the class of viable models. For, as eq.(2.6) shows, when the supertrace for the light

messengers is positive the logarithmically enhanced term provides a negative contribution to

the scalar mass squares. Therefore when this term dominates the scalars are driven to acquire

vaccum expectation values and, in particular, SU(3)c×U(1) is broken—a clearly unacceptable

outcome11.

One obvious way to try and avoid this possibility would be to construct models where the

supertrace of the light messengers is negative. The models with supersymmetry breaking-

cum-messenger sectors that have been studied in detail so far, in particular the models of

[9], [10], have all yielded a positive supertrace of the light messengers12. This poses a serious

problem for these models. In [9], for example, obtaining positive scalar mass squares requires,

for 11 ≤ N ≤ 27, the scale mH to be 2.4− 2.5 times the light messenger scale. This is clearly

an unsatisfactory situation in which case the weak coupling analysis of the ground state is not

even valid. We are however not aware of any general argument that requires the positivity of

the light messenger supertrace13. This possibility might even be realized in a more exhaustive

11Similar observations were made in [10].
12We note that L. Randall has recently constructed some models that have a negative supertrace of the

messengers [12].
13It is easy to construct nonlinear sigma models that incorporate supersymmetry breaking and light

messengers, in which the sign and magnitude of the supertrace is a free parameter (for example, in the
SU(N) × SU(N − 2) models this can be achieved by adding additional terms, allowed by all symmetries, to
the Kähler potential of ref. [9]). However, we are not aware of any dynamical models to which these sigma
models are a consistent low-energy approximation.
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study of other vacua of known models. Finally, it is worth mentioning that even in models

with the required sign for the supertrace, the logarithmically enhanced term might still pose

a problem by driving the scalars much heavier and thus resulting in light gluinos.

In fact the logarthmic term in eq. (2.6) can be quite significant even when the ratio of

the heavy to light messenger scales is not very large. To illustrate this consider an example

consisting of two sets of messengers (both, say, in the fundamental representation of the

relevant group). Further let the light messenger fields have a non-vanishing supertrace which

is cancelled by the supertrace of the heavy fields thereby setting the full supertrace to zero.

On choosing the ratio of the heavy to the light messenger fermion masses to be ∼ 3 and

choosing the light supertrace to be positive ≃ the light fermion mass in magnitude, one finds

that the Standard Model scalar squared masses are generally negative. Further, if the sign

of the light supertrace is reversed to be negative, the Standard Model masses now become

generally positive. The logarithmic term can thus have a significant effect even for a small

separation of scales between the heavy and light messengers and obtaining positive soft scalar

masses in its presence is a significant constraint.

We conclude this section by briefly commenting on the ”hybrid” models of [9]. In these

models the soft scalar masses get comparable contributions from both gauge and gravitational

effects. The negative contributions to scalar masses (arising from a positive light supertrace)

from gauge mediation are then not necessarily a problem since they could be compensated

by positive supergravity contributions. In fact they could lead to squarks and sleptons being

lighter than gluinos—a novel and quite distinct spectroscopy14. For example, one can check

that in the SU(17)×SU(15) models the (positive) supergravity contribution to the soft masses

(due to the term that cancels the cosmological constant and to higher dimensional terms in

the Kähler potential) is comparable to the (negative) log-enhanced contribution of the light

messengers’ supertrace. A fortuitous cancellation between these two contributions could then

lead to squarks which are generically lighter than the gauginos. It would be interesting to

study the renormalization group effects in these models in some detail—superparticle spectra

with squarks much lighter than gauginos can not arise in (minimal) supergravity models.
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