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Abstract

We study Type I string theory compactified on a T6/ZZ3 orientifold. The low-energy dynamics

is most conveniently analyzed in terms of D3-branes. We show that a sector of the theory,

which corresponds to placing an odd number of D3-branes at orientifold fixed points, can give

rise to an SU(5) gauge theory with three generations of chiral matter fields. The resulting

model is not fully realistic, but the relative ease with which an adequate gauge group and

matter content can be obtained is promising. The model is also of interest from the point of

view of supersymmetry breaking. We show that, for fixed values of the closed string modes,

the model breaks supersymmetry due to a conflict between a non-perturbatively generated

superpotential and an anomalous U(1) D-term potential.
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1. Introduction and Summary

The past few years have seen remarkable progress in our understanding of the non-

perturbative behavior of string theory [1]. D-branes have played a vital role in these devel-

opments [2]. The consequences of this theoretical insight in string phenomenology are just

beginning to be explored. In this paper we attempt to take a few preliminary steps in this

direction. For related recent work see [3]–[8]. Perhaps the simplest idea to explore is that

we live on a three dimensional brane or somewhat more precisely, that the 3+1 dimensional

spacetime corresponds to the world volume of a set of D3 branes. This immediately gives rise

to a question: can a (grand unified) theory accommodating the standard model interactions

and matter content be obtained in this manner?

D-brane model building is of interest from another point of view as well. Most of the

model building so far has been carried out in the E8 × E8 heterotic string [9]. In this

context, there is a well known problem in reconciling, within the context of weakly coupled

string theory, the “observed” unification of gauge coupling constants in supersymmetric

extensions of the standard model [10] and the value of Newton’s constant. Witten [3] has

recently suggested working with the strongly coupled heterotic theory to avoid this problem.

Another possibility, also mentioned in [3], is to consider model building in the Type I theory.

We begin this paper by considering, in Section 2, the question of gauge and gravity uni-

fication in the Type I string theory. We show that both the gauge coupling unification and

the value of the Newton constant can be obtained within the context of Type I perturbation

theory. Moreover, the analysis indicates that in several cases the more appropriate descrip-

tion is a T-dual one with D3 branes. This provides additional motivation to enquire about

the standard model arising from D3 branes.

In Section 3, we turn to this issue by considering a compactification of the Type I theory

on a T6/ZZ3 orientifold. This compactification has been considered earlier by [11]. We point

out that, in addition to the sector considered in [11], the moduli space for this compactifi-

cation has additional disconnected branches, similar to the ones found in [12]. The different

branches correspond to distinct ways in which the branes can be placed at the various ori-

entifold fixed points. The additional branches of moduli space exhibit patterns of gauge

symmetry breaking that are not otherwise allowed. In particular, we show in Section 3.1,

that an SU(5) grand unified theory with three generations of matter fields in the 10 and 5̄

representations can arise in this manner. In Section 3.2, we show that some nonperturbative

consistency conditions [13], [12] leading to the existence of these additional branches are met.

The model obtained in this manner is not fully realistic: there are no Higgs fields present

and there are Yukawa couplings violating baryon and lepton number. Even so, we view the

relative ease with which an adequate gauge group and matter content can be obtained as

encouraging.
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Finally, in Section 4, we turn to another aspect of the SU(5) theory mentioned above. The

theory has an additional U(1) gauge symmetry, which is anomalous. We show that a conflict

between the non-perturbatively generated superpotential and the D-term of the anomalous

U(1) gives rise to supersymmetry breaking in this theory. Classically, the D-branes giving

rise to the gauge theory are stuck at the orientifold plane. In the supersymmetry breaking

vacuum, some of these branes are repelled by the orientifold and come to rest away from it. In

this discussion of supersymmetry breaking, we neglect the gravitational interactions and keep

the dilaton and a relevant orientifold blow-up mode fixed. We show that supersymmetry

breaking occurs for any fixed values of the dilaton and orientifold blow-up mode. Once

these modes are taken to be dynamical, there are, as usual, runaway directions along which

supersymmetry is restored. What happens when the relaxation of the closed string modes

and the gravitational interactions is included is an interesting question which we leave for

the future.

2. Gauge Coupling Unification on D3 Branes

In this section, we discuss the constraints imposed on string model building by the require-

ment of gauge coupling unification (taking the values αGUT and MGUT for supersymmetric

extensions of the standard model) and the observed value of Newton’s constant. For the

E8 × E8 heterotic string, these requirements lead to the conclusion that string theory must

be strongly coupled [3]. In contrast, as has been noted earlier in [3], we will see that in

the case of the Type I string theory these requirements can be met while still working at

weak string coupling. Moreover, the discussion below suggests that in several Type I models

the six compactified dimensions can have a length somewhat bigger than the inverse GUT

scale. In these cases, the gauge group and charged matter would arise from fields living on

D3-branes that fill the 3 + 1 dimensional flat spacetime.

The relation between the string scale α′, Type I string coupling gI , volume of compacti-

fication V6, gauge coupling at unification αGUT = g2/4π, and Newton’s constant GN is given

by [1]:

GN =
(2π)7

16π

α′4

V6
g2

I , (2.1)

and

αGUT =
(2π)7

4π

α′3

V6
gI . (2.2)

Here we will consider the situation where the six compactified dimensions have approximately

the same size R. The volume V6 is then roughly given by

V6 = (2πR)6 (2.3)

To proceed, we need to decide how to relate the unification scale MGUT ≃ 1016 GeV to α′

and R. In several string models the gauge couplings unify even in the absence of a grand
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unified group. In these cases, one expects the grand unification scale to correspond to the

masses of the lightest extra charged states present in the string theory. These extra states

can be of two kinds: Kaluza-Klein modes with a mass of order 1/R, or higher string modes

with a mass of order 1/
√

α′. If we assume that R >
√

α′, the lightest extra states have a

mass m ∼ 1/R, leading to the relation R ∼ 1/MGUT . From eqs. (2.1), (2.2), and (2.3) it

then follows that:
α′

R2
=

1√
2

αGUT R MP l, (2.4)

and

gI = 4
√

2
1

α2
GUT R3 M3

P l

. (2.5)

With the values αGUT = 0.04 and R ∼ 1/MGUT = (1016GeV)−1 for the supersymmetric

standard model [10], and MP l = G
−1/2
N = 1.2 × 1019 GeV, we get from eq. (2.5) that :

gI ∼ 10−6 . (2.6)

Thus, the gauge coupling is small, as mentioned above. However from eq. (2.4) we find that:

α′

R2
∼ 34 . (2.7)

This shows that our starting assumption (R >
√

α′) about the lightest extra charged states

coming from Kaluza-Klein modes is incorrect. A consistent solution is obtained by assuming

that R <
√

α′. The lightest extra states which enter at the GUT scale are then higher string

modes with mass M ∼ 1/
√

α′. In this case, the more appropriate geometrical picture is

obtained by T-dualizing along the six compactified directions. Doing so turns the D9 branes

into D3 branes. The T-dual radius and string coupling are given by:

R̃ =
α′

R
(2.8)

and

g̃I =

(

α′

R2

)3

gI . (2.9)

Eq. (2.2) then implies directly that

g̃I = 2 αGUT ≃ 0.08 . (2.10)

Furthermore, since the lightest excitations are higher string modes we now set α′ ∼ (MGUT )−2.

Eq. (2.1) then gives

R̃ =
√

α′
(

1

8
M2

P l α′ g̃2
I

)

1

6

∼ 3M−1
GUT . (2.11)

It is useful to describe the resulting picture in words. The gauge group and charged

matter arises from D3-branes. The six compactified dimensions have a length scale somewhat
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bigger than the inverse GUT scale. In particular, we note that since all the degrees of freedom

charged under the gauge groups arise from open strings that end on the three-branes, there

are no momentum modes with mass of order 1/R̃ charged under the gauge group. Instead,

there are winding modes with a mass of order R̃/α′ but these are somewhat heavier than

the higher string modes with mass ∼ 1/
√

α′.

We should emphasize that the above picture is meant to be suggestive. Whether it applies

or not will depend on the details of the compactification. It was noted in [3] that in the

E8 × E8 theory the large gauge coupling implies an extra dimension at a scale somewhat

below the GUT scale (for recent work and a list of references, see [4]). Here it is interesting

to note that the presence of extra large dimensions might be true in the Type I case as well,

and more generally, in attempts to build string models involving branes. We should also note

that the conclusion with regards to the smallness of the string coupling is secure regardless

of the exact relation between R and
√

α′.2

We end this section with a few comments. First, strictly speaking, the discussion above

applies to models where gauge coupling unification occurs in the absence of a grand unified

group. One can ask what happens if the low-energy field theory is a grand unified theory.

In this case the lightest extra string states need not occur at the GUT scale but could have

larger masses. Eq. (2.1) then shows that in these cases the compactification scale R̃ should

be comparable to α′. Even so, as we see in the next section it might be sometimes convenient

to analyze such a model in terms of D3-branes. Second, in our analysis we have taken all

the compact dimensions to have roughly the same size. This of course need not be true.

For recent discussions of large extra dimensions and weak scale strings see [5]. Finally, we

have assumed that the gauge group and matter content arises from the perturbative sector

of Type I theory. This, too, need not be true. One could have a situation where some of the

degrees of freedom arise from 9-branes while others arise from 5-branes; for model building

along these lines see [7], [8], [14].

3. A Three Generation Model on D3 Branes

In this section, we present a simple “three generation” model with D3 branes placed

at a T6/ZZ3 orientifold. The model is, admittedly, not a realistic one, but it will serve the

purpose of making several generic points quite explicit. In general, the moduli space of

the gauge theory which governs the low-energy dynamics can be quite complicated with

several disconnected sectors. The D3-brane picture allows for a geometric description of

these different branches of moduli space [12]. The different branches correspond to the

distinct ways in which the branes can be placed at the various orientifold fixed points.

The additional branches of moduli space can have multiple uses. We will see below that

2For example, setting
√

α′ = R in eq. (2.2) still gives (2.10) for the gauge coupling.
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they exhibit interesting patterns of gauge symmetry breaking that are not otherwise possi-

ble. In addition, branes placed at different orbifold fixed points can serve as “visible” and

“hidden” sectors; the latter can be responsible for supersymmetry breaking. The lightest

excitations of strings stretching between branes at different fixed points transform as funda-

mentals under both the “hidden” and “visible” gauge groups; these could be instrumental

in communicating supersymmetry breaking.

3.1 The T6/ZZ3 orientifold

We now turn to studying the Type I theory compactified on a T6/ZZ3 orientifold. This

theory has been analyzed by [11] and more recently by [14], where the low energy dynamics

was shown to correspond to an SU(12) × SO(8) gauge theory. Our main purpose here will

be to study some sectors of moduli space which are disconnected from the SU(12) × SO(8)

theory mentioned above. For this purpose it will be often convenient to T-dualize the

Type I theory along the six directions of T6. Doing so turns the 9-branes into 3-branes. The

disconnected sectors then correspond to placing an odd number of 3-branes at the orientifold

fixed planes and can be easily visualized. We show below how an SU(5) theory with three

generations of matter fields in the 10 and 5̄ representations can be obtained in this manner.

Let us describe the T6/ZZ3 orientifold in more detail. We work for the most part in the

T-dual description involving D3 branes. The D3 branes stretch along X1,2,3. We introduce

complex coordinates, z1 = X4 + iX5, z2 = X6 + iX7, z3 = X8 + iX9, in the compactified

six-dimensional space. Consider the two-torus obtained by identifying points under

z ≃ z + R ≃ z + R e
i2π

3 . (3.1)

The T6 is obtained by taking three copies of this two torus, corresponding to the three

complex coordinates z1, z2, z3. The orientifold group is given by:

G = { 1, α, α2, ΩR(−1)FL, ΩR(−1)FLα, ΩR(−1)FLα2 } . (3.2)

Here, α is a spacetime symmetry whose action is given by:

(z1, z2, z3) → (αz1, αz2, αz3) . (3.3)

Ω denotes world-sheet orientation reversal, and R is a reflection zi → −zi, i = 1, 2, 3. FL is

an operator that flips the sign of the left-moving Ramond states. The orientifold group G

has a ZZ2 subgroup

G
ZZ2

= {1, ΩR(−1)FL} (3.4)

and a ZZ3 subgroup

G
ZZ3

= {1, α, α2} . (3.5)
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These will play a useful role in the subsequent discussion.

In addition to acting on the spacetime indices, the orientifold group acts on the Chan-

Paton indices of the open string states stretching between D3 branes [2]. The action of the

group elements, ΩR(−1)FL and α, on the Chan-Paton factors λ is:

λ → γΩR(−1)FL λT γ−1
ΩR(−1)FL

, (3.6)

and

λ → γα λ γ−1
α . (3.7)

The matrices γα and γΩR(−1)FL must furnish a representation of the orientifold group. The

matrices γΩR(−1)FL , representing the action of the ZZ2 part of the orientifold group should

obey [2]:

γΩR(−1)FL =
(

γΩR(−1)FL

)T
. (3.8)

In the absence of the ZZ3 orbifold projection, the ΩR(−1)FL projection would lead to an SO

gauge group on the D3 brane world volume.

Tadpole cancellation conditions play an important role in ensuring the consistency of

the string compactification. For the T6/ZZ3 orientifold these were discussed in [11]. For the

sake of brevity we will not discuss a detailed derivation of these conditions here. Instead we

will content ourselves with stating them; as the reader will see these conditions give rise to

anomaly free gauge theories.

As expected, the untwisted Ramond-Ramond 4-form charge conservation conditions re-

quire the presence of 32 D3 branes to cancel the orientifold charge. In addition, there are

charge cancellation conditions for the twisted RR fields. Before stating these, it is useful

to consider the action of the G
ZZ3

and G
ZZ2

subgroups of the orientifold group on the T6.

Consider first a two torus shown in Fig. 1.

3

1/2

-1/2

30 o

1

e
i 2 Pi/3

Figure 1
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The origin, denoted by the triangle in Fig. 1, is the only fixed point with respect to the

full ZZ6 orientifold group. In addition the G
ZZ3

subgroup has two additional fixed points, at

z = 1√
3
e

iπ

6 and z = 1√
3
e

iπ

2 , respectively. These two fixed points are interchanged under the

action of the G
ZZ2

subgroup and are denoted by circles in Fig. 1. Similarly, the G
ZZ2

subgroup

has three additional fixed points at z = 1
2
, 1

2
e

i2π

6 , 1
2
e

i2π

3 , which are denoted by squares. These

are images of each other under the G
ZZ3

symmetry. The fixed points for the T6 can now

be deduced in a straightforward manner. There is only one fixed point under the full ZZ6

symmetry—the origin. In addition, as in the T2 case there are fixed points of the G
ZZ3

symmetry which are transformed into one another by the G
ZZ2

and vice-versa; these will be

referred to, in what follows, as G
ZZ3

and G
ZZ2

fixed points, respectively.

We can now return to the tadpole conditions for the twisted Ramond-Ramond fields. If

γα is the matrix which represents the action of G
ZZ3

on the branes at the origin, one finds

[11] that:

Tr γα = − 4 . (3.9)

In contrast, at a G
ZZ3

fixed point one finds that

Tr γα = 0. (3.10)

Finally, at each G
ZZ2

fixed point (and consistently at its ZZ3 image points) one can choose to

place an even or odd number of branes.

The simplest way to meet these conditions is to place all the 32 D3 branes at the origin.

This gives rise, from eq. (3.9), to a gauge theory with SU(12) × SO(8) gauge group with

three generations of ( , ) + ( , 1) fields which was discussed in [11].

The rank of the SU(12) × SO(8) gauge symmetry can be reduced by moving some of

the branes away from the origin in a continuous manner. To be consistent with the ZZ6

orientifold symmetry, however, these branes can only be moved away from the origin in sets

of six. From eq. (3.9) it then follows that the rank of the SU(N) factor must always be odd;

this precludes an SU(5) gauge symmetry which is attractive from a phenomenological point

of view.

3.2 The SU(5) theory

We turn now to exploring some branches of moduli space, which are disconnected from

the SU(12) × SO(8) theory mentioned above. We will see how some of these branches give

rise to an SU(5) gauge theory with three generations of fields in the 10 and 5̄ representations.

We discuss examples of such disconnected branches below, but before doing so it is worth

summarizing the essential features responsible for the grand unified theory.

In some sectors of moduli space, an odd number of branes can be removed from the

origin. In particular, a situation can arise where only 11 of the 32 D3 branes are left at

7



the origin. Eq. (3.9) then implies that one has an SU(5) gauge symmetry. In addition

there is an anomalous U(1) symmetry (which is broken at the string scale). The theory has

N = 1 supersymmetry with matter content corresponding to three generations of matter

fields which transform as:
SU(5) U(1)

Ai=1,2,3 2

Q̄i=1,2,3 −1

. (3.11)

The theory has a renormalizable tree-level superpotential given by

Wtree = ǫijkAiQ̄jQ̄k. (3.12)

The three generations arise because the ZZ3 action in eq. (3.3) does not distinguish between

the three (complex) transverse coordinates, thus one set of matter fields in eq. (3.11) arise

from each of them.

We now turn to discussing how these disconnected branches arise. As we saw in the

discussion above, if we start with all 32 branes at the origin and move some away in a

continuous manner, one is always left with an even number of branes at the origin. Thus

to get 11 branes some of them must be placed at fixed points of the G
ZZ3

of G
ZZ2

subgroups,

eqs. (3.4), (3.5). Now eq. (3.10) implies that the number of branes at a G
ZZ3

fixed point must

be a multiple of three. In addition, as we saw above, each G
ZZ3

fixed point has a G
ZZ2

image.

Thus, one finds that all the branes at a G
ZZ3

fixed point can be moved continuously away in

a ZZ6 symmetric manner back to the origin. Disconnected branches of moduli space can be

obtained, however, by placing an odd number of branes at a G
ZZ2

fixed point (and its two

images under G
ZZ3

). Since there are a large number of G
ZZ2

fixed points in T6 this gives rise

to a large number of possibilities. We will not analyze all of them in detail here. Rather,

as an illustrative example, we focus on a case that gives rise to the SU(5) “grand unified

theory” mentioned above.

For this purpose, the simplest possibility is to consider a situation where all the branes

are at the origin as far as the third T2 (corresponding to the z3 coordinate) is concerned, but

not as far as the other two tori are concerned. Consider placing one D3 brane at a G
ZZ2

fixed

point in the first T2 and at a G
ZZ2

fixed point in the second T2—this brane has two images

under the ZZ3 symmetry. Next, place one D3 brane at the origin of the first two-torus, but

at a G
ZZ2

fixed point of the second T2—this brane has two images as well. Finally, place a

D3 brane at a G
ZZ2

fixed point of the first torus, but at the origin of the second. This brane

has two images as well. Altogether, counting images, this gives us 9 D3 branes—an odd

number—which are stuck to orientifold planes away from the origin (note, however, that the

number of D3 branes at the G
ZZ2

fixed points in each of the three two-tori is even; this is

required by the consistency conditions discussed in the following section). The remaining
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23 branes at the origin give rise to an SU(9) × SO(5) gauge symmetry. The matter fields

transform as three generations of ( , 1) and ( , ), under the SU(9)× SO(5) gauge group.3

Finally, one can move 12—two sets of six—of the remaining branes away from the origin,

leaving behind 11 branes, obtaining thus the SU(5) theory mentioned above, eq. (3.11). We

also should mention that for a generic position of these 12 branes, the full gauge symmetry

includes an additional U(1)×U(1) factor. This “hidden sector” gauge group can be further

enhanced if the branes are placed at G
ZZ3

fixed points or at the G
ZZ2

orientifold planes. For

example, placing six of the 12 branes at a GZ3
fixed point (and the remaining six at the image

point) gives rise to an N = 1 theory with SU(2)3 symmetry and three sets of chiral matter

transforming as bifundamentals under pairs of the SU(2)’s. Dividing the 12 branes between

a G
ZZ2

orientifold plane and its two images, on the other hand, can give rise to a theory with

N = 4 supersymmetry and an SO(4) or SO(5) gauge symmetry (the SO(5) symmetry can

arise if the orientifold planes chosen already contain a D3 brane stuck to them, as mentioned

above in the discussion of the disconnected moduli space).

So far, we have ignored the effects of open strings stretched between branes at different

fixed points. The lightest excitations of such strings are massive states which transform

as fundamental-antifundamental under the respective world volume gauge groups. In the

example we gave above, there can be two world volume theories with N = 1 supersymmetry.

If supersymmetry were dynamically broken in one of these theories, supersymmetry breaking

would be communicated to the other gauge theory via the massive chiral multiplets just

described (and, of course, by the supergravity in the bulk). A more precise investigation

of this would probably involve details of the supersymmetry breaking dynamics and the

stabilization of the dilaton [15]; we leave this for future investigation.

3.3 Non-perturbative consistency conditions

There is one subtlety concerning disconnected sectors of moduli space that needs to be

mentioned. Sometimes such sectors are not allowed, even when they pass all the perturbative

consistency conditions, due to non-perturbative reasons. Similar issues were addressed in

[13], [12]. We will not be able to discuss this matter in full detail here, but will mention

some salient points. The basic idea behind the non-perturbative consistency conditions is

as follows. The Type I theory does not have any perturbative states which transform in

spinor representations of SO(32). However, such states are present in the dual heterotic

SO(32) theory and are nonperturbative in the Type I theory. Allowing for such spinor

representations imposes additional consistency conditions—whose origin from the Type I

viewpoint is non-perturbative.

We can verify that the example discussed above, giving rise to the SU(5) model, meets

3 We are using a notation where the vector of SO(N) is denoted by .
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various non-perturbative conditions. However, we should caution the reader that there might

be other conditions, besides the ones we have checked that might not be met.4 It is in fact

useful to carry out this discussion in the original description of Type-I theory in terms

of 9 branes. The essential feature giving rise to the disconnected branch of moduli space

in the example above was the fact that there were 9 D3 branes (counting images) which

were “stuck” at the orientifold plane. In the T-dual 9-brane language we are using now,

the positions of branes correspond to expectation values for particular Wilson lines. The

question is whether the Wilson lines’ expectation values are consistent with the existence

of states that transform as SO(32) spinors—the holonomies around any contractable loop

should be trivial in the appropriate spinor representation.

The example discussed in Section 3.2 is equivalent to turning on four Wilson lines along

the noncontractible loops of two of the two-tori. It turns out in this case that the holonomy

around any contractible path is trivial in all representations of SO(32). One can show this

by explicitly writing down the Wilson lines that correspond to the brane configuration with

9 D3 branes removed from the origin, which was described in Section 3.2. Moreover, in this

example, an explicit periodic flat connection, which is not constant on the z1, z2 four-torus,

can be found. This can be done by a straightforward generalization of the construction of

ref. [16] to the case of T4. Furthermore, as in [13], one can show that if W is the Wilson line

relevant for the particular ZZ3 fixed point then (Wγα)3 = 1 in spinor representations as well.

Before moving on, let us mention that the example of Section 3.1, giving rise to 11 branes

at the origin, is just one of several possibilities consistent with the various conditions. For

example, one can easily work out brane configurations with an odd total number of branes

removed from the origin that involve moving branes to the G
ZZ2

fixed points in all three

two-tori.

3.4 The GUT: shortcomings

It is useful to describe the construction of the SU(5) theory in group theoretic terms

perhaps more familiar to some model builders. The SO(32) gauge symmetry is broken to

an SO(11) subgroup (times a hidden sector group). The orientifold projection then further

breaks the symmetry to SU(5) (with an additional anomalous U(1)). The 5̄ and 10 matter

fields arise from the adjoint representation of SO(11) by the orientifold projection. The

three generations arise because there are three complex (six real) transverse dimensions and

because the orientifold group acts in an identical manner on the three directions.

The relative ease with which a realistic gauge group and matter content can be obtained

in the Type I theory is interesting. We should note, that even though we used a D3 brane

4By way of comparison, we note that the conditions we have tested are the analogue of those discussed

in Section 2.3 of [13]. The authors also formulated a stronger set of conditions in Section 5 of ref. [13]. We

have not investigated the presence of such stronger consistency conditions in the present case.

10



description to simplify the discussion, the construction as such was purely in the context

of perturbative Type I string theory. In particular, the matter content was obtained, even

though we did not have any spinor representations of SO(32) to begin with—in fact all the

matter fields can be thought of as being obtained by truncating adjoint representations of

SO(32).

However, it should also be noted that the model is meant as an illustrative example and

is not realistic. There are several reasons for this. First, there are no Higgs fields either

to break the SU(5) gauge symmetry or to give rise to the SU(2) Higgs doublets of the

supersymmetric standard model. Second, and this is perhaps a more important limitation,

as was mentioned in passing in eq. (3.12) above there is a Yukawa coupling in the theory that

violates baryon and lepton number. The underlying reason for this coupling is that in the

N = 4 theory, which can be thought of as the starting point for the above construction, there

is a coupling involving the three adjoint fields corresponding to the transverse directions. In

the case of, say, spinor representations of SO(10), a trilinear 163 coupling is not allowed by

gauge invariance and an R-parity symmetry can often be imposed to prevent baryon- and

lepton-number violating terms. However, in the present example, where all the matter arises

from adjoint representations no such R parity symmetry is present. This limitation is likely

to be quite general.

4. Supersymmetry Breaking

We turn now to another feature of the SU(5)×U(1) theory discussed above. As we will

see below, in the world-volume field theory context, a conflict between the non-perturbatively

generated superpotential and the anomalous U(1) D-term results in the breaking of super-

symmetry in this theory. Our discussion of supersymmetry breaking will only involve the

open string sector corresponding to the world volume theory on the D3 branes. Gravity and

other closed string effects will be neglected. In particular, the dilaton and the orientifold

blow-up mode [19], which acts as the Fayet-Illiopoulos term for the U(1), are regarded as

coupling constants, and will be kept fixed in the discussion below. We will establish that

supersymmetry breaking occurs for any finite value of these couplings.5 But, as is usually

the case, once they are allowed to vary, we find that there are runaway directions along which

supersymmetry is restored. Perhaps, these could be stabilized by (yet poorly understood)

nonperturbative corrections to the Kähler potential (see, e.g. the recent discussion in [15]

and references therein). The stability of the supersymmetry breaking ground state in the

context of the full theory is a complicated issue, about which we have nothing to say here.

Towards the end of this section, we will briefly comment on this runaway behavior and

5 More accurately, supersymmetry breaking will be shown when the string coupling is small enough to

argue with confidence that the low-energy dynamics is governed by the SU(5) × U(1) theory.
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the gravitational back reaction. One final comment before we get started: the discussion in

this section only involves the branes at the ZZ6 fixed point, any details of compactification

etc. are irrelevant in this context. For example, the analysis here applies to the world volume

theory of 11 D3 branes on the noncompact C3/ZZ3 orientifold as well.

4.1 Supersymmetry breaking in the U(5) theory

Our strategy to establish supersymmetry breaking is as follows. We first neglect the

anomalous U(1) and show that in the SU(5) theory the resulting non-perturbative superpo-

tential gives rise to runaway behavior. Then on incorporating the anomalous U(1) we find

that its D-term gives rise to an energy that grows along the runaway directions. This leads

to supersymmetry breaking.

The SU(5) “three generation” model is an s-confining theory [17]. The infrared degrees

of freedom are the mesons and baryons

C = A · Q̄ · Q̄ ∼ (3, 3̄ , 0) ,

B = A5 ∼ (6, 1 , 10) , (4.1)

M = A3 · Q̄ ∼ (8, 3 , 5) ,

where we have shown their transformation properties under the global SU(3)A × SU(3)Q̄

symmetry and the last column in each entry refers to the charges under the anomalous U(1)

which follow from eq. (3.11). The confining superpotential is [17]:

W =
Cα

a Bβγ M δa
γ ǫαβδ + Mαa

β Mβb
γ Mγc

α ǫabc

Λ9
+ λ δa

α Cα
a , (4.2)

where a, b, ...(α, β, ...) denote indices under the SU(3)Q̄(A) symmetry, respectively, and the

last term is the tree-level superpotential. The tree-level superpotential breaks the global

symmetry to the diagonal SU(3)diag. It lifts all the C flat directions, but does not lift the

B and some of the M directions. The superpotential coupling λ in (4.2) is proportional to

the value of the gauge coupling at the string scale (since the tree-level superpotential is the

projection of the N = 4 superpotential).

We will show now that the F-term equations of motion following from (4.2) have no

solutions for finite field expectation values. Consider the equations of motion following from

the superpotential (4.2) (suppressing numerical constants):

Mβa
α Bαλ ǫβλδ = δa

δ , (4.3)

ǫabc Mβb
α Mγc

β + ǫαβδ Cβ
a Bδγ = 0 , (4.4)

ǫγαβ Cα
a Mβa

δ = 0 . (4.5)
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Multiplying the first equation (4.3) by ǫδµνMγd
ν ǫbad, summing over δ and a, and substituting

for ǫabcM
βb
α Mγc

β from (4.4), we obtain:

− ǫαδβ Bαµ Bδγ Cβ
b + ǫbad Mµa Bαν Mγd

ν = Mγµ
b − δµ

b Mγν
ν . (4.6)

Now under SU(3)diag, the field Mαa
β decomposes as a 3, given by the partial trace Mαa

a , a 6̄

which is antisymmetric in the upper two indices, and a 15 which is symmetric in the upper

indices (and traceless). Note that the l.h.s. of (4.6) is antisymmetric in µ, γ, hence only the

r.h.s. contributes to the symmetric part of M . This gives rise to the relation:

Mγµ
b + Mµγ

b − δµ
b Mγν

ν − δγ
b Mµν

ν = 0 , (4.7)

from which in turn it follows that Mαa
a vanishes as does the symmetric part of M . Thus the

3 and 15 components of M are zero. The remaining 6̄ can be written as

Mγµ
a = ǫγµκ sκa , (4.8)

where s is symmetric in the two indices. Substituting into eq. (4.3), and evaluating for B · s
then leads to the relation:

s = − 1

2
B−1 . (4.9)

Substituting eq. (4.8) in (4.5) and noting that s is invertible, eq. (4.9) then leads to Cα
a =

δα
a Tr C. This then implies that C = 0. Finally, substituting into eq. (4.4), one similarly

finds that sαβ = δαβ Tr s. This leads to the conclusion that s = 0. But now we see from

eq. (4.9) that B must go to infinity. Thus we have established that there are no solutions to

the F flatness conditions at finite expectation values.

The equations (4.3)–(4.5) do have runaway solutions. The discussion above leads to

the conclusion that along a runaway direction, C and M → 0, while B → ∞ in an in-

vertible manner—more precisely B−1 → 0. For example, a runaway vacuum solution with

SU(3)diag → SO(3) global symmetry is Bαβ ∼ δαβb, Cαa ∼ δαab−3, Mαaβ ∼ ǫαaβb−1, with

b → ∞. The physics along the B, det B 6= 0 directions is easy to understand. Along these

directions the mesons C and M obtain mass. Upon integrating them out, the superpotential

of the low-energy theory is Weff = λ3Λ18/detB, showing explicitly the runaway behavior.

So far we have studied the non-perturbative superpotential. Now let us include the

anomalous U(1) by “turning it on” in the effective theory of the mesons C, M , and B. The

last column in each row of eq. (4.1) gives the U(1) charges of the three fields. We see that

C has charge zero, while B and M both have positive charge. We have argued above that

along a runaway direction B must go to infinity (in an invertible manner) while M and C

go to zero. Since all components of B have positive charge with respect to the U(1), we

see that along such a direction the U(1) D-term contribution to the energy blows up. Thus,

the runaway behavior dictated by the non-perturbative superpotential is in conflict with the
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U(1) D-term potential, leading to the breaking of supersymmetry (note that this is similar

to the mechanism of ref. [18]).

4.2 Remarks on supersymmetry breaking

We end this discussion of supersymmetry breaking with a few remarks. We first re-

mind the reader of an important feature of type I orbifolds: the anomaly cancellation of

the “anomalous” U(1)s is provided, as in the heterotic case, by a Green-Schwarz mecha-

nism. However, unlike the heterotic case, the axion that shifts under the U(1) to cancel

the anomaly is a model-dependent field—the twisted Ramond-Ramond field from the closed

string sector (this has been pointed out in [19] and recently discussed in [20]). It is in the

same supermultiplet as the orbifold blow-up mode (the twisted NS-NS field) and can be

described in terms of a chiral superfield, denoted hereafter by C, with a kinetic term
∫

d4θ
(

C + C† + V
)2

+ . . . , (4.10)

where dots denote higher-order terms. The leading term (4.10) can be written by demanding

U(1) invariance and a smooth kinetic term for C in the orbifold limit 〈C〉 = 0. Here V is the

anomalous U(1) vector superfield; in addition to (4.10), the field C also has a Wess-Zumino

coupling to the gauge field strengths, of the form
∫

d2θCW αWα [19]. In a superunitary

gauge, the term (4.10) represents a mass term (of order the string scale) for the anomalous

U(1) vector superfield. By giving an expectation value to the real part of C (blowing up

the orbifold) one can induce “tree-level” FI terms, with ζ2
FI ∼ 〈C + C†〉, as follows from

(4.10). That (4.10) is correct follows from the computation of ref. [19] of the coupling of the

real part of C (the twisted NS-NS field) to the D-term of the vector superfield (and from

a subsequent supersymmetry transformation). This coupling arises from the disk with two

scalar vertex operators attached to the boundary, and a closed string twisted NS-NS scalar

vertex operator in the bulk [19], and is of order O(gstring) ∼ g2.

We note that the conclusion regarding supersymmetry breaking is true for any sign and

finite value of the U(1) Fayet-Illiopoulous term. Depending on the sign of the FI term,

the D-term potential can have a zero at finite values of the fields.6 However the F-term

potential vanishes only at infinity. Thus supersymmetry is broken. It is possible though to

have vanishing D- and F-term potentials for infinite (negative) value of the FI term.

One would like to find out where the resulting supersymmetry breaking vacuum lies.

Unfortunately, this is quite difficult—as the following argument shows, one expects the

vacuum to lie in a strongly coupled region where a semiclassical analysis is not applicable.

Assuming first that such an analysis is valid, upon balancing the U(1) D-term energy with

6Since the U(1) is anomalous one expects that the FI term is renormalized at one loop. However, an

explicit calculation shows that the FI term is not generated in open string orbifolds, because of cancellations

between contributions of worldsheets of different topology [21].
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the F-term energy one finds that the vacuum energy (with vanishing FI term) scales as

g
16/9
1 λ2/3Λ4, while the typical expectation value of a field goes like v ∼ λ1/6g

−1/18
1 Λ. Here

g1 is the U(1) gauge coupling, λ is the tree-level Yukawa coupling, eq. (4.2), and Λ is the

strong coupling scale of the SU(5) gauge theory. For a semiclassical analysis to be valid,

one requires v ≫ Λ. If the gauge coupling g1 and λ were independent parameters, this could

have been achieved by taking g1 to zero keeping λ fixed. However, in our case g1 ∼ λ, thus

for small g1 the vacuum lies in the strongly coupled region and the semi-classical analysis

is not applicable. One could make v ≫ Λ by taking g1 ≫ 1, but then the string coupling

would be large, again making a semiclassical analysis invalid.

While we cannot determine the vacuum explicitly, we know that some of the B, M , and

C fields must get vacuum expectation values. These expectation values should correspond

to displacing some of the D3 branes away from the orientifold. We remind the reader that

the SU(5) theory under consideration here is the world volume theory for 11 D3 branes

placed at the orientifold. Classically, the 11 D3 branes are all stuck to the orientifold plane

and the configuration has no moduli. This corresponds to the fact that in order to meet the

tadpole conditions and respect the ZZ6 symmetry no branes can be moved away from the

orientifold point. Quantum mechanically, due to non-perturbative supersymmetry breaking

effects we see that some of the branes are repelled by the orientifold plane and come to rest

away from it so as to minimize the energy. Since there are no moduli the configuration of D3

branes cannot be described in terms of classical geometry. The displacement of branes which

are classically stuck at the orientifold is somewhat reminiscent of the splitting of orientifold

7-planes discussed in ref. [22].

As was mentioned in the beginning of this section, the above analysis neglected all in-

teractions with closed string sector modes. One might at first expect that gravitational

interactions are small at low-energies and so can be neglected. But once supersymmetry is

broken and a (boundary) cosmological constant is induced, this is not apriori true. Also,

interactions with some other closed string modes, which determine the couplings of the brane

theory are important. There are two modes of this kind. A blow-up mode for the orientifold

determines the FI term of the U(1) [19]; this mode (together with its partner) also enters

in the determination of the coupling constant (theta angle) for the SU(5) theory. Similarly

the dilaton determines the gauge coupling of the U(1) and together with the blow-up mode

mentioned above determines the SU(5) gauge coupling. As we have argued here super-

symmetry breaking occurs for any fixed values of these couplings, but there are runaway

directions along which it can be restored. For example, as we saw above there is a direction

along which the FI term can go to infinity with appropriate sign. Similarly, if the dilaton

goes to infinity, supersymmetry is restored. In fact, as has been argued recently in [15], it

is necessary to include the dynamics of these closed string sector modes to get a complete
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description of supersymmetry breaking. Without this there is no goldstino, which signals

that the description of supersymmetry breaking is incomplete. It is interesting to ask how

the system of D3-branes will evolve once the dilaton and the blow-up mode are allowed to

relax and the gravitational back reaction is put in. We leave this question for the future.

Finally, another natural configuration to consider involves not 11, but 8 branes placed

at the ZZ6 orientifold plane. This is the minimum number required to meet the tadpole

conditions (e.g. starting with 32 branes and moving 24 = 6×4 away leaves us with 8 branes).

The corresponding theory has an SU(4) × U(1)A gauge symmetry and three generations of

fields which transform in the representation of the group. There is in addition an anomalous

U(1) under which each of the fields has the same charge. In this case if the FI term (i.e.

the orientifold blow-up parameter) vanishes, supersymmetry is unbroken. This is because,

in contrast to the SU(5) model, the SU(4) theory has a branch of moduli space where

no dynamical superpotential is generated—this can be inferred from [23] by noting that

the SU(4) theory with three 6’s is equivalent to the SO(6) theory with three vectors. The

breaking of supersymmetry is then purely due to the U(1) D-term and vanishes for vanishing

FI parameter.
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