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Abstract: We generalize the computations of [1] to generate long wavelength, asymptoti-

cally locally AdS5 solutions to the Einstein-dilaton system with a slowly varying boundary

dilaton field and a weakly curved boundary metric. Upon demanding regularity , our solu-

tions are dual, under the AdS/CFT correspondence, to arbitrary fluid flows in the boundary

theory formulated on a weakly curved manifold with a prescribed slowly varying coupling

constant. These solutions turn out to be parameterized by four-velocity and temperature

fields that are constrained to obey the boundary covariant Navier Stokes equations with a

dilaton dependent forcing term. We explicitly evaluate the stress tensor and Lagrangian as

a function of the velocity, temperature, coupling constant and curvature fields, to second

order in the derivative expansion and demonstrate the Weyl covariance of these expressions.

We also construct the event horizon of the dual solutions to second order in the derivative

expansion, and use the area form on this event horizon to construct an entropy current for

the dual fluid. As a check of our constructions we expand the exactly known solutions for

rotating black holes in global AdS5 in a boundary derivative expansion and find perfect

agreement with all our results upto second order. We also find other simple solutions of

the forced fluid mechanics equations and discuss their bulk interpretation. Our results may

aid in determining a bulk dual to forced flows exhibiting steady state turbulence.
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1. Introduction

The gauge gravity correspondence[3] is one of the key ideas to have emerged from devel-

opments in string theory. It has already led to considerable progress, and promises to

teach us much more both about quantum gravity and about strongly coupled field theory

dynamics.

The best studied class of gauge gravity dualities relate the dynamics of a particular

conformal field theory on R3,1 to the physics of a corresponding gravitational theory on an

AdS5 background. We now have an infinite number of proposed dualities of this nature.

As quantum field theories may be formulated on arbitrary base manifolds it is natural to

attempt to generalize these AdS/CFT correspondences to obtain dual descriptions of these

CFTs on an arbitrary Lorentzian base manifold M3,1.

According to the usual rules of the AdS/CFT correspondence (See [4] for a review),

the classical phase space of the dual bulk description is the set of regular solutions of the

relevant bulk equations of motion that asymptote at small z (the boundary) to the metric1

ds25 =
dz2 + ds23,1

z2
(1.1)

where ds23,1 is the metric of M3,1(See Appendix C for a list of notation employed in this

paper). In this paper we use the methods presented in [1, 5] (see also [6, 7]) to com-

pletely characterize a special corner of this phase space that is dual, under the AdS/CFT

correspondence, to boundary fluid dynamics.

1Together with similarly prescribed asymptotic conditions for all other fields.
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Through most of this paper, we focus on the bulk dual of the four-dimensional CFT

dynamics at large N and infinitely strong coupling formulated on a weakly curved four

dimensional spacetime 2. Away from possible singularities, the the bulk equations that

determine dual dynamics in this limit may be derived from a two derivative action that

describes the interaction of gravity with other fields 3 The equations of motion of all

such systems have a universal subsector, in which the Einstein frame metric is a solution

of Einstein gravity with a negative cosmological constant and all other fields are simply

zero4. In this paper, we study this universal subsector subject to the boundary conditions

(1.1).

We are specifically interested in regular bulk configurations whose variations in the

boundary directions are slow compared to the length scale set by the local energy density

of the solution. Experience with field theory along with AdS/CFT suggests that dynamics

of such long-wavelength solutions is effectively described by four-dimensional hydrodynam-

ics.5. Starting from the bulk Einstein equations, in this paper we demonstrate that this is

indeed the case. More specifically, within a boundary derivative expansion, we construct

an explicit map from the solutions of Navier Stokes equations (with distinguished, gravi-

tationally determined values of parameters) on the manifold M3,1 to the space of regular

solutions of Einstein’s equations with a negative cosmological constant that asymptote to

(1.1) at small z. 6

The method employed in this paper is a direct generalization of the procedure employed

in [1, 5] (see also [6]). Given a velocity field uµ(x) and a temperature field T (x) we note

that the metric

ds2 = −2uµ(x
µ)dxµdr − r2f(b(xµ)r)uµuνdx

µdxν + r2Pµνdxµdxν

Pµν = gµν(x
µ) + uµ(x

µ)uν(x
µ)

f(r) = 1 − 1

r4

(1.2)

(where gµν(x
µ) is the metric on M3,1) has several desirable properties. First, its asymptotic

form matches (1.1). Next note that lines of constant xµ in (1.2) are ingoing null geodesics.

Tubes centered around these geodesics are locally similar to tubes in a uniform black-brane

geometry but with a temperature and velocity that varies with xµ. In fact, this metric

2In this introduction, we will first describe our results assuming no variation in the boundary coupling

constant, but we will later generalize these results to a prescribed weakly varying coupling constant.
3For example, when the CFT in question is N = 4 Yang Mills theory, the action corresponds to the S5

compactification of IIB supergravity.
4A class of two-derivative gravitational theories also admit a consistent truncation to a larger Einstein-

dilaton system which we will employ to describe later the bulk duals of boundary theories with prescribed

variation of the coupling constant
5In general, the fluid mechanics approximation is self consistent only when the length scale associated

with curvatures of the boundary metric ds2
3,1, and the length scale of variation of the boundary coupling

constant, are also large in units of the same energy density scale. We assume that these conditions are met

in the following analysis.
6See [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 2, 45, 46, 47, 48, 49, 50, 1, 51, 52, 53, 54, 55, 56, 6, 57, 58, 5, 59, 60,

61, 7, 62, 63, 64] for a list of relevant literature on this subject.
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reduces to the exact uniform black-brane solution of Einstein’s equations when uµ(x) and

T (x) and gµν(x) are constants. Finally, under suitable assumptions regarding the late-time

behavior of the boundary-metric, boundary velocity, and the boundary temperature fields,

this metric has a regular future event-horizon.

We then generalize the procedure of [1] to demonstrate that (1.2) may be thought of

as the first term in a systematic expansion of Einstein equations in a power series in 1
TL

where T is the local temperature of the solution and L the local length scale of variation

of the temperature and velocity and metric functions in the boundary directions.

We work out the rules of this perturbation theory to arbitrary order in ǫ, and explicitly

implement these rules to second order. As in [1], this procedure works only when the

velocity and temperature fields obey a particular dynamical equation of motion. This

equation of motion turns out simply to be ∇µT
µν = 0 (the indices (µ, ν) run only over

the boundary directions ) where the boundary stress tensor T µν is a given function of the

velocity and temperature fields, whose form is determined, order by order in the derivative

expansion, by the perturbative procedure itself. Of course this equation of motion is simply

the Navier Stokes equation of fluid dynamics, with particular values of fluid parameters

predicted by gravity. Our explicit second order solution to this perturbation theory yields

an explicit expression for the fluid dynamical stress tensor to second order in the derivative

expansion. Most terms in this stress tensor are obtained by the simple covariantization

of the flat space second order stress tensor reported in [1]. However in addition we find

a contribution proportional to a curvature tensor that the analysis of [1] was blind to.

The existence of such a term was already predicted in [50], and our result is in complete

agreement with their prediction (including coefficients) providing a check both of our results

as well as those of [50].

We show on general grounds that the metrics constructed by the perturbative proce-

dure developed in this paper must transform in a specified fashion under boundary Weyl

transformations. In particular, Weyl covariance demands that the metric dual to a fluid

configuration be of the form

ds2 = −2W1 uµdx
µ(dr + rAλdx

λ)

+
[

r2 (W2 gµν +W3uµuν) + r (W4µuν + uµW4ν) +W5µν

]

dxµdxν .

Aλ ≡ u.∇uλ −
∇.u
3
uλ

(1.3)

where W1,W2 and W3 are Weyl-invariant scalars, W4µ is a Weyl-invariant transverse vector

and W5µν is a Weyl-invariant transverse traceless tensor and Aλ is the fluid mechanical

Weyl connection introduced in [55]. This requirement, while logically necessary is not

algebraically automatic in our perturbative procedure, and so gives a second nontrivial

check on our results. Our construction passes this test; in fact we are able,in §4, to rewrite

the bulk metric dual to second order fluid dynamics entirely in terms of the Weyl covariant

formalism of [55], making the Weyl transformation properties of our solution manifest.

Having constructed these bulk metrics dual to fluid dynamics, we then proceed to

study their causal properties. In particular, we generalize the results of [5] to demonstrate

that (under appropriate assumptions) all (r = 0) singularities present in the solutions
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presented in this paper are shielded from the boundary of AdS by a regular event horizon.

In fact, we find a local expression for the radial location of the event horizon as a function

of boundary fluid data, generalizing the results of [5]. We then use our construction of the

event horizon together with the pull back of the area form on the horizon to the boundary

(see [5]) to construct an entropy current for the curved space fluid dynamics constructed

in this paper. The non-negativity of the divergence of our entropy current is guaranteed

by the area increase theorem of general relativity.

As an additional check and application of our results we go on to study the most general

AdS5 Kerr solutions [65, 66, 67, 68, 69, 70, 71] in fluid dynamical terms. These exact

solutions are labelled by their mass and two angular velocities. It was already observed in

[2] that the stress tensor and thermodynamical properties of these black holes agree with

the expectations of perfect fluid dynamics in the large mass limit. In this paper we go a

step further; we rewrite the bulk metric of these black holes in the coordinates employed in

our general construction of bulk duals to fluid flows. In these co-ordinates the AdS5 Kerr

solution assumes a particularly simple (and a manifestly Weyl-covariant) form

ds2 = −2uµdx
µ(dr + rAλdx

λ) + r2gµνdx
µdxν

−
(

uµDλω
λ
ν + ωµ

λωλν +
R
6
uµuν

)

dxµdxν +
2m

r2

(

1 +
1

2r2
ωαβω

αβ

)

−1

uµuνdx
µdxν

(1.4)

where ωµν is the vorticity of the fluid, D is the fluid mechanical Weyl covariant derivative

(associated with the Weyl connection Aλ) and R is the Weyl-covariantized Ricci scalar.

In this form, this bulk metric admits a simple and explicit all orders expansion in fluid

dynamical terms. The expansion of (1.4) to second order in the derivative expansion is

exactly reproduced by our general metric dual to fluid dynamics, upon substitution of the

velocity field uµ into our metric7. We also verify that our formulas for the location of the

event horizon and the local entropy current of this black hole match the exact formulas for

the same quantities upto second order in the derivative expansion.

As we have explained above, we have constructed gravitational solutions dual to every

solution of the covariant Navier Stokes equations

∇µT
µν = 0 (1.5)

on an arbitrary background manifold with metric gµν . Let us now consider a special case

of this equation; let

gµν = (g0)µα (δαν + hαν ) (1.6)

for small hαν and work to first order in hαν . The Navier Stokes equation may be rewritten

as

(∇0)µ(T0)
µν = f ν (1.7)

7It is interesting to note that in the special case of solutions with vorticity ωµν = 0, our metric exactly

reproduces the AdS Schwarzschild blackhole.
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where (T0)
µν is the stress tensor of the corresponding fluid flow in the space-time with

metric (g0)µν , and the effective forcing function f ν is given by

fν = −1

2
(T0)

α
ν ∂αh− ∂µ[(T0)

µαhαν ] +
1

2
(T0)

αβ∂νhαβ −∇(0)
µ [δT µλg

(0)
λν ]

All indices in this equation are now raised and lowered with the metric (g0)µν and ∇0 is

the covariant derivative with respect to the same metric. In particular, for a symmetric

tensor Qµν we have

∇(0)
µ Qµν ≡ 1

√

−g(0)
∂µ

[

√

−g(0) Qµν

]

− 1

2
Qαβ∂νg

(0)
αβ (1.8)

In the expression above, δTαν is the first order change in the fluid stress tensor (3.19),

under the variation of the metric given in (1.6), and the variation in the four-velocity

δuµ = −uµ

2 u
αuβhαβ, keeping the temperature fixed. For instance, δTαν for the perfect

fluid stress tensor Tαν = T 4(4uαuν + gαν) is given by

δT µν = −T 4
[

g(0)µαhαβg
(0)βν + 4uµuνhαβu

αuβ
]

(1.9)

By choosing hµν appropriately we can produce a wide range of forcing functions fµ
with one qualitative restriction; fµ is relatively mild as it is necessarily at least of first

order in the boundary derivative expansion. Nonetheless we expect even this mild forcing

function to be able to stir the fluid into flows with velocity differences v of unit order. The

reason for this expectation is that that every term on the LHS of (1.7) is also of at least

of first order in derivatives, so that factors of 1/L should ‘cancel out’ between the LHS

and RHS. In §7, below we present evidence for this assertion by presenting some simple

steady state solutions to the equations of fluid dynamics that are pushed into flows with

large velocities.

The Reynolds number for flows of the conformal fluids studied in this paper is given

by TLv; where L is the length scale of variation of velocities as above. If v can indeed be

stirred to order unity, it follows that the Reynolds numbers of the corresponding flows are

very large in the limit TL≫ 1 considered in this paper. Recall that fluid flows with large

Reynolds numbers are expected to be turbulent. The discussion of this paragraph suggests

that it should be possible to choose hµν and correspondingly the functions f ν to stir the

boundary fluid into, for instance, steady state turbulence. The map from fluid dynamics to

gravity, presented in this paper then yields a bulk dual to this turbulent fluid flow. It would

be very interesting to explore this in more detail, and in particular to investigate whether

bulk dual considerations could shed new light on the apparent universality of turbulent

flows.

In this introduction so far, we have described the construction of the bulk solution

dual to the long wavelength dynamics of a field theory on an arbitrary weakly curved

manifold. This discussion can be generalized to the bulk solution dual to an arbitrary

fluid dynamical flow of the field theory, on an arbitrary weakly curved manifold, and with

an arbitrary slowly varying coupling constant. In order to do this we focus on the class

of gravitational theories which admit consistent truncation to Einstein-dilaton sector; this
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includes all supergravity theories that result from the compactification of IIB supergravity

down to AdS5, and so includes the duals to all well understood examples of the AdS5/CFT4

correspondence.

For this class of theories, we determine the dual to the the fluid dynamical motions of

field theories with actions of the form

S =

∫ √
ge−φ L (1.10)

where φ(xµ) is an arbitrarily specified slowly varying function. 8 As the Lagrangian (1.10)

explicitly breaks translational invariance, the equations of motion obeyed by the velocity

and temperature fields of this system are modified; in fact the Noether procedure for

translational invariance, applied to (1.10), yields the equation

∇µT
µν = e−φ L ∇νφ

Tµν = − 2√
g

δ

δgµν
S

(1.11)

i.e. the Navier Stokes equations with an additional explicit forcing term. This equation

also follows from a direct analysis of the Einstein-dilaton system near the boundary, upon

employing the usual holographic formulas for Tµν and the Lagrangian (see Appendix A).

In this paper, we perturbatively determine gravity dual descriptions of fluid flows that

obey (1.11) and in the process determine expressions for the stress tensor and the La-

grangian, as a function of the velocity fields, temperature field, curvature and coupling

constant, order by order in the derivative expansion. The procedure we employ to derive

these results is a straightforward generalization of the procedure described above for ar-

bitrary weakly curved boundary metric. We search for solutions of the Einstein-dilaton

system with boundary conditions on the metric field as described above, but additionally

require that the dilaton field Φ(xµ) asymptote to φ(xµ). The configuration (1.2) supple-

mented with Φ(xµ) = φ(xµ) once again turns out to be a suitable first term in a systematic

perturbative expansion of solutions of the Einstein-dilaton system in powers of ǫ. This

perturbation theory works only if the integrability condition (1.11) is obeyed. When this

equation is met, the perturbative procedure generates expressions for T µν and L as func-

tions of velocities, temperatures and background fields. We have explicitly worked out this

perturbation theory - and consequently the corresponding expressions for these quantities

- explicitly to second order in derivatives. Under suitable assumptions regarding the late-

time behavior of the boundary-metric and the variation of the coupling constant, we have

also determined the location of the event horizon and an expression for the entropy current

for this larger class of bulk configurations.

Upon solving the gravitational equations it turns out that the expectation value of

the Lagrangian is itself proportional to a derivative of the dilaton; as a consequence, the

8In sections §2 and §3 below, we economize on space by presenting only our most general results which

account for the effects of a varying dilaton field. The bulk metric dual to fluid flows on a curved spacetime

with constant dilaton may easily be obtained from the results of §2 and §3 by simply setting the boundary

dilaton to a constant in all equations.
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explicit forcing function in (1.11) is of second order or higher in boundary derivatives,

and so is milder than the effective forcing function described by a metric fluctuation (1.7).

Nonetheless fluid flows forced by the dilaton are interesting for their bulk interpretation.

While we have explicitly derived a duality between solution in fluid mechanics of

strongly coupled gauge CFTs and solutions of the equations of gravity, we expect this

duality to continue to provide a map between fluid flows in the CFT at arbitrary nonzero

coupling and solutions to the equations of the appropriate dual classical string theory. The

equations of fluid dynamics presented in this paper have been computed from Einstein

gravity and so are only valid at large ’tHooft coupling, λ ≡ eφN . However, many of the

conclusions in this paper only depend on the fact that the forcing function has a mild

effect, if the external gravitational and dilaton fields vary slowly enough compared to the

temperature. This feature is determined by symmetry considerations and must be valid at

arbitrary λ.

With this in mind, consider the evolution of the hot boundary field theory with a time

dependent dilaton that starts at a large value, dips at a particular time to a value of order

unity, and then climbs back to a large value at later times. It seems reasonable to guess

that the equations of fluid dynamics derived in this paper provide qualitative (though not

quantitative) guidance to the nature of the evolution of a hot classical solution of string

theory through regions of string scale curvature9. In section §7 we discuss such an evolution

which turns out to be rather mild, suggesting the absence of qualitative surprises in at least

this particular excursion through string scale curvatures.

To conclude this introduction, we reemphasize that in this paper we have determined

the gravitational dual description of the motion of a forced fluid. Forced fluid flows have

been the subject of intense investigation for over a century[72] and display fascinating

dynamical behaviors all of which must be inherited by gravity. We hope that this connection

can be used to extract useful lessons for the study of gravity and/or fluid dynamics.

2. Long wavelength solutions of the Einstein-dilaton system in derivative

expansion

Consider the Einstein-dilaton system with a negative cosmological constant and boundary

conditions as described in the introduction. In this section, we will describe how one may

systematically solve for a class of long wavelength solutions of this system order by order

in ǫ = 1
TL , where L is the length scale of variation of the dilaton field, boundary metric,

velocity and temperature fields and T is the local temperature of the fluid. All the results of

this section apply to any CFT whose bulk dual description admits a consistent truncation

to the equations of motion that follow from the Lagrangian

S =
1

16πG5

∫ √
G

(

R+ 12 − 1

2
(∂Φ)2

)

(2.1)

9Recall that the curvature in string units of the corresponding string backgrounds is known to scale as

λ−
1

4 at strong coupling and is expected to be of unit order when λ is of unit order.
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This property is true of all effective actions that are obtained from the compactification IIB

theory on an Einstein manifold, and so of every one of the infinitely many known examples

of the AdS/CFT correspondence.

Notice that the Lagrangian (2.1) admits a further consistent truncation to Einstein

gravity with a negative cosmological constant if we set the dilaton field to any constant

value. Consequently, when our boundary conditions allow us to set the dilaton to a constant

the equations from (2.1) further simplify. All the results of this section and the next apply

with greater universality in this limit - they apply to any CFT whose dual description is a

two derivative theory of gravity interacting with other fields.

2.1 Uniform Branes in the Einstein-dilaton System

The equations of motion that follow from Lagrangian (2.1) are given by

RMN − ∂MΦ∂NΦ

2
− GMN

2

(

R+ 12 − (∂Φ)2

2

)

= 0

=⇒ R =
(∂Φ)2

2
− 20, RMN − ∂MΦ∂NΦ

2
+ 4GMN = 0

∇2Φ = 0.

(2.2)

There exists a well known four parameter class of exact solutions to these equations of

motion

ds2 = −2uµdx
µdr − r2f(br)uµuνdx

µdxν + r2Pµνdxµdxν

Φ = Φ0

Pµν = gµν + uµuν

f(r) = 1 − 1

r4

(2.3)

where gµν is an arbitrary constant matrix of signature (−1, 1, 1, 1), b is a constant and uµ
is a constant unit normalized velocity vector : uµuνg

µν = −1.

2.1.1 Regulation and Weyl Frames

In this subsection, we pause to recall a well known subtlety in the boundary interpretation

(via the AdS/CFT correspondence) of locally asymptotically AdS metrics like (2.3). This

interpretative subtlety will play no role in the calculation we describe in this section or the

next. However, it will permit a stringent test on the self-consistency of our final results in

§ 4.

We begin by noting that the metric (2.3) asymptotes to

ds2 = −2uµdx
µdr + r2gµνdx

µdxν (2.4)

and according to the usual rules of the AdS/CFT correspondence, describes a state in the

CFT formulated on a space with any of the infinite numbers of metrics that are Weyl

equivalent to gµν . . Next, we note that in order to find the dual interpretation of any

– 9 –



asymptotically AdS space, it is convenient to regulate the solution near its boundary and

the bulk solution may then be regarded as a state on the field theory on a base manifold

whose metric is proportional to the induced metric on this regulated boundary.

In particular, we may choose to regulate the boundary of (2.4) on slices of large

constant r. With this choice the dual CFT resides on a space whose metric may be taken

to be precisely gµν , and (2.3) in fact represents the CFT on a space with metric gµν uniform

temperature T = 1
πb and in uniform motion at velocity uµ.Alternatively, we may choose

to regulate the boundary of (2.3) along slices of constant r̃ = e−χ(xµ)r for any arbitrary

function χ(xµ). In order to interpret this new slicing it is convenient to rewrite the metric

in terms of r̃; Asymptotically, we have

ds2 = −2ũµdx
µdr̃ + r̃2g̃µνdx

µdxν (2.5)

where ũµ = eχuµ and g̃µν = e2χg̃µν . It follows that the constant r̃ slicing of (2.3) describes

a state the CFT on with spacetime varying background metric g̃µν , and with spacetime

dependent velocities ũµ and temperatures T̃ = 1
πb̃

= e−χT for arbitrary χ(xµ).

The fact that different slicings of the same supergravity solution may in fact be inter-

preted as states of the same theory in distinct though Weyl equivalent background metrics,

reflects the conformal invariance of the dual field theory. As we have seen above, the

temperature and velocity fields T , and uµ transform homogeneously under Weyl transfor-

mations, with weights +1 and −1 respectively.

2.2 Long Wavelength solutions with slowly varying background fields

In this subsection,we will explain the procedure that we use to construct a class of solutions

to the Einstein-dilaton action (2.1) that asymptote at large r to the metric and dilaton

ds2 = −2uµ(x
µ)dxµdr + r2gµν(x

µ)dxµdxν

Φ = φ(x)
(2.6)

for arbitrary long wavelength functions φ(xµ) and gµν(x
µ). The solutions we construct

are dual to fluid dynamics in a field theory with an arbitrary long wavelength background

metric and coupling constant given by gµν(x
µ) and φ(xµ). The method we employ in this

paper closely follows the method in [1].

2.2.1 The Zeroth Order ansatz

We first note that the ansatz

ds2 = −2uµ(x
µ)dxµdr + r2f(b(xµ)r)uµuνdx

µdxν + Pµνdxµdxν

Φ = φ(xµ)

Pµν = gµν(x
µ) + uµ(x

µ)uν(x
µ)

f(r) = 1 − 1

r4

(2.7)

for arbitrary functions uµ(xµ) and b(xµ) has several attractive features. First, it asymptotes

at large r to (2.5). Second, all singularities in (2.7) (which occur at r = 0) are shielded

from the boundary by a regular event horizon. Third, this configuration solves the Einstein-

dilaton equations of motion for constant gµν , φ, uµ and b.
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2.2.2 Setting up a derivative expansion

As in [1], we will use (2.3) as the first term in a systematic derivative expansion of a solution

to Einstein’s equations. The small parameter that justifies this procedure is the inverse

length scale of variation of the functions gµν , φ, uµ and b (each of which is assumed to vary

on the same scale) times the function b. Denoting this parameter by ǫ (see [1] for more

details) we plug the expansion

Gµν =
∞
∑

m=0

ǫmGmµν

Φ =

∞
∑

m=0

ǫmΦm

(2.8)

into the Einstein-dilaton system and solve Einstein’s equations perturbatively in ǫ. As we

will see, the expansion of these equations to mth order in ǫ will allow us to determine the

functions Gmµν and Φm.

2.2.3 Gauge Choice and Physical Interpretation

Following [1], in the bulk of this paper we work with the gauge choice

Grr = 0, Grµ ∝ uµ, T r
(

(G0)−1Gm
)

= 0 (m > 0) (2.9)

The first two of these gauge conditions have been physically interpreted in [5]. As ex-

plained in that paper, lines of constant xµ are geodesics in any metric subject to this gauge

condition. The last gauge condition in (2.9) was chosen arbitrarily and turns out to have

no interesting geometrical consequence. However, it is possible to choose a more natural

gauge condition with a good geometric interpretation -

Grr = 0, Grµ = uµ (2.10)

(2.10) continues to ensure that lines of constant xµ are geodesics but also ensures that the

coordinate r is an affine parameter along these geodesics.

In order to permit easy comparison with the results of [1], we will work with gauge

(2.9)the bulk of this paper. However, we will also briefly indicate how our final results may

be transformed into (2.10), which will prove useful when comparing with explicit black

hole solutions.

2.2.4 Constraint Equations

As in [1] it turns out that only 15 of the 16 Einstein plus dilaton equations are actually

independent. These 15 equations may be separated into 4 constraint equations (see [1])

and 11 dynamical equations.

In Appendix A, we show from a direct analysis of the Einstein-dilaton system near the

boundary that the four constraint equations take the form

∇µT
µν = e−φ L∇νφ (2.11)
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where the stress tensor Tµν and Lagrangian L are defined by in terms of gravity data by

the usual formulas of AdS/CFT10

16πG5T
µ
ν = lim

r→∞

r4
(

2(Kαβh
αβδµν −Kµ

ν )

+Ḡµν − 6δµν − 1

2

(

∇̄µΦ∇̄νΦ − δµν
2

(∇̄Φ)2
))

16πG5e
−φ L = − lim

r→∞

r4
(

∂nΦ +
1

2
∇̄2Φ

)

(2.13)

where nµ is its outward pointing unit normal of the regulated boundary and hµν is its

induced metric which leads to the covariant derivative ∇̄ and the corresponding Einstein

tensor Ḡµν . The extrinsic curvature of the regulated boundary is defined via the normal

lie-derivative of the induced metric - Kµν ≡ 1
2Lnhµν and ∂n is the partial derivative along

nµ. All the indices in the above formulas are raised using the induced metric.

As each term in these equations has an explicit boundary derivative, the constraint

equations are special from the viewpoint of the boundary derivative expansion. This is

because each boundary derivative pulls down an additional power of ǫ; consequently in the

expansion of the constraint equations to order m we find contributions from the functions

Gmµν and Φm only for n ≤ (m − 1). Consequently, the constraint equations at mth order

do not aid in determining the unknown functions Gmµν and Φm; they instead impose a

constraint on the solution obtained upto (m − 1)th order. As this solution has already

been determined (by the perturbation theory to (m − 1)th order) in terms of uµ(xµ) and

T (xµ), these equations effectively reduce to equations of motion for these fluid dynamical

fields. In other words, at any given order in perturbation theory, the constraint equations

are simply the equations of fluid dynamics.

2.2.5 Dynamical Equations

The expansion of the remaining 11 independent dynamical equations, to order ǫm, yields

equations that may be used to determine the unknown functions Gmµν , Φm.

The nature of the resultant equations is described in [1]. These equations are ultralocal

in the variables xµ (they only contain derivatives of r). Consequently they may be solved

independently point by point in xµ and are linear ordinary differential equations in the

variable r at each xµ. At any given xµ these equations take the form

M(Gmµν) = smµν

N(Φm) = sm
(2.14)

where the homogeneous operators M and N are independent of m (they are the same at

every order in perturbation theory).

10Note that the counterterm subtractions to the stress tensor and Lagrangian respectively in (2.13) are

simply the derivative with respect to gµν and φ of the counterterm action [73]

Sctr =

Z √
h

„

R

2
− 1

4
(∂φ)2

«

(2.12)
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2.2.6 The Homogeneous Operators

Let us describe the differential operators M and N in more detail. Focus on the equations

(2.14) at a particular field theory point yµ. It turns out that the operators M and N

are simply the equation for linearized radial fluctuations of the metric and dilaton in the

background of the uniform brane (2.3) with constant boundary metric gµν(y
µ), constant

dilaton φ(yµ), constant velocity uµ(y
µ) and constant inverse temperature b(yµ). In other

words the homogeneous operators M and N are simply the operators that act on linearized

radial fluctuations of the metric about the background (2.3).

We can now perform a local co-ordinate transformation to go to Riemann normal co-

ordinates where the metric gµν = ηµν . We still have some more co-ordinate freedom param-

eterized by the set of Lorentz transformations which preserve this form of the metric.These

boost transformations may be used to set uµ = (1, 0, 0, 0). Finally, a scale transformation

xµ → λxµ and r → r
λ may be used to set b to unity. Making this choice of coordinates

for any given point yµ we see background metric (2.3) turns into the metric of a uniform

black brane at rest with constant temperature T = 1
π with the usual flat boundary metric.

However this was precisely the background metric encountered in the perturbative proce-

dure described in [1]. It follows immediately that operator M is identical to the operator

H in equation 3.4 of [1].

In the same coordinates the operator N is easily determined; it is simply given by

N =
1

r3
∂r

(

r5(1 − 1

r4
)∂r

)

, (2.15)

the radial part of the minimally coupled equation in a black brane at b = 1.

As was explained in [1], the equation MGµν = sµν may be solved by integration for

an arbitrary source sµν . As we will explain below, the same is true for the operator N .

Consequently dynamical equations may be solved by integration at each order. As in [1],

in this paper we will solve these equations subject to two boundary conditions

1. Gmµν and Φm are well behaved (analytic) away from the r = 0 singularity.

2. Φm and r2Gmµν each go to zero as r → ∞.

The first condition requires no explanation, while the second one ensures that our correc-

tions to the metric and dilaton fields do not alter the asymptotic form (2.6) of our full

series solution.

2.2.7 Source Terms

We now turn to a brief discussion of the source terms smµν and sm. As in [1] each of these

source terms is determined in terms of lower order solutions in perturbation theory, and so

may be expressed as local functions of gµν(x), φ(x), uµ(x) and b(x). smµν and sm are each

of mth order in derivatives of these quantities. The dependence of smµν on derivatives of

b and uµ was already described (and determined to second order) in [1]. Below we will

also determine the dependence of smµν on derivatives of the metric and dilaton (for m ≤ 2)

– 13 –



and compute sm for m ≤ 2. In this subsubsection we explain the general structure of our

results.

Let us first study the dependence of source terms at yµ on derivatives of the metric,

at the same point, for m ≤ 2. For the purpose of this calculation we find it useful to

work with Riemann normal coordinates centered about the point yµ in the boundary field

theory directions. In these coordinates the expansion of the boundary metric gµν about yµ

starts at second order. As a consequence s1µν and s1 each are independent of derivatives of

gµν . While s2µν receives contributions proportional to the boundary curvature tensor. s2

(like all dilaton source terms) is necessarily proportional to a derivative of some order of

the dilaton field 11 Consequently s3 is the first dilaton source term that receives curvature

dependent contributions; s2 is independent of boundary curvatures.

We now turn to the dependence of smµν and sm on derivatives of the boundary value

of the dilaton for m ≤ 2. Let us first focus on sm. As we have argued each of sm must

be proportional to at least one derivative of the boundary dilaton. From symmetry it

then follows that s1 ∝ uµ∂φ. On the other hand s2 can and does receive contributions

proportional to both uµuν∂µ∂νφ as well as terms proportional to one derivative of a velocity

contracted with a derivative of φ.

We now discuss the contribution of derivatives of the boundary value of the dilaton,

φ(x) to smµν . It follows from (2.2), the dilaton source term for the metric equation is propor-

tional to two derivatives of the dilaton. As the dilaton is constant (has no r dependence) in

the uniform brane solution, and (as we have seen in the previous paragraph) is proportional

to a derivative of the boundary value of φ at first order, it follows that dilaton contributions

to s1µν vanishes, and the contributions of the dilaton to s2µν are schematically proportional

to ∂µφ∂νφ.

2.2.8 The Stress Tensor, Lagrangian and Fluid Equations of motion.

As we have explained above, the dynamical equations upto mth order in ǫ may be used to

solve for the metric and dilaton, and consequently the stress tensor and the Lagrangian

(from (2.13)) to the same order. By plugging into (2.11), this information also deter-

mines the fluid dynamical equation (including the forcing functions) with (m+ 1) or fewer

derivatives.

This concludes our brief review of the general structure of the long wavelength pertur-

bation theory we perform in this paper. We refer the reader to [1] for a fuller description

of the procedure.

3. Explicit Results Upto Second Order

In this section we present explicit formulas for the metric and dilaton, as a function of

boundary metric, dilaton, velocity and temperature fields, to second order in the boundary

derivative expansion. We have obtained these results by implementing the perturbative

procedure described in the previous section and in [1].

11This follows from the fact that Einstein gravity is a consistent truncation of the Einstein-dilaton system.
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3.1 The metric and dilaton at first order

As we have described in the previous section, the metric dual to fluid dynamics at first order

is already completely determined by the results of [1]. s1µν(y
µ) receives no contribution from

first derivatives of the boundary metric or boundary dilaton at yµ, and the metric G1
µν is

simply by the naive boundary covariantization of equation of equation 4.24 of [1].

The dilaton field Φ1 is nonzero and requires a new - though very simple - calculation

to determine.

Using coordinates in which gµν(y
µ) = ηµν , uµ = (−1, 1, 1, 1) and b(yµ) = 1, the

equation for Φ1(yµ) is

∂r

(

r5(1 − 1

r4
)∂rΦ

1

)

+ ∂r(r
3∂vφ) = 0 (3.1)

This equation may be integrated trivially. The arbitrary solution to this differential equa-

tion is given by

Φ1 = c1(x
µ) + c2

∫

∞

r

1

r5f(r)
+ ∂vφ

∫

∞

r

r3 − 1

r5f(r)
(3.2)

Our boundary condition at infinity forces c1 = 0 while the requirement of regularity at the

horizon r = 1 sets c2 = 012 . Consequently we conclude

Φ1 = ∂vφ

∫

∞

r

r3 − 1

r5f(r)
= u.∂φ

∫

∞

r

r3 − 1

r5f(r)
(3.3)

3.2 Solution at second order

The computations required to determine the metric and dilaton field at second order, while

involved in practice, are a straightforward generalization of the calculations presented in [1].

We have performed these calculations with the aid of the symbolic manipulation program

Mathematica. In this section we simply record our final results.

The metric upto second order is given by

ds2 = − 2uµ(x
µ)dxµdr + r2f(b(xµ)r)uµuνdx

µdxν + Pµνdxµdxν

+

(

2 b r2F (br)σµν +
2

3
r θ uµuν − r(aµuν + aνuµ)

)

dxµdxν

+3 b2H uµdx
µdr

+

(

r2b2H Pµν +
1

r2b2
K uµuν +

1

r2b2
(Jµuν + Jνuµ) + r2b2αµν

)

dxµdxν

Φ = φ(xµ) + u.∂φ

∫

∞

rb
dx

x3 − 1

x5f(x)
+ S(1)

φ h
(1)
φ (br) + S(2)

φ h
(2)
φ (br)

(3.4)

In this equation the first line is simply the ansatz (2.7). The second line records corrections

to this metric at first order in ǫ, while the third and the fourth lines record the second

order corrections to this ansatz.
12Note that, for any non-zero value of c2, the dilaton has a logarithmic divergence at r = 1. This (co-

ordinate invariant) singularity is not shielded by any horizon and hence we will consider it to be physically

unacceptable. We will show in the later sections that when c2 = 0, our solutions have regular event horizon

that passes through the neighbourhood of r = 1.
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(3.4) - the metric dual to fluid flows upto second order in the derivative expansion -

is one of the main results of this paper. In the rest of this section we will systematically

define all the previously undefined functions functions that appear in (3.4). We will start

by defining all scalar functions of the radial coordinate r that appear in (2.7), and then

turn to the definition of the index valued forms that these functions multiply.

The only undefined function of r in the second line of (3.4) is F (r) which is given by13

F (r) =
1

4

[

ln

(

(1 + r)2(1 + r2)

r4

)

− 2 arctan(r) + π

]

(3.5)

The undefined functions on the third fourth and fifth line of the same equation are defined

as

H = h(1)(br) S+ h(2)(br) S+ h(3)(br) Sφ

K = k(1)(br) S+ k(2)(br) S+ k(3)(br) S + k(4)(br)Sφ + k(5)(br)Sφ

Jµ = j(1)(br) B∞

µ + j(2)(br) Bfin
µ + j(3)(br)Bφ

µ

αµν = a1(br)Tµν + a5(br) (T5)µν

+ a6(br) (T6)µν + a7(br) (T7)µν + a8(br) Cµν + a9(br)(Tφ)µν

(3.6)

where

h(1)(r) = − 1

12r2

h(2)(r) = − 1

6r2
+

∫

∞

r

dx

x5

∫

∞

x
dy y4

(

1

2
Wh(y) −

2

3y3

)

h(3)(r) =
r4 + 3

96r4
π − r4 + 3

48r4
tan−1(r) − 1

12
ln r

+
r4 + 3

48r4
ln(1 + r) +

r4 − 1

32r4
ln(1 + r2) +

−2r3 + 3r2 + 1

48r4

(3.7)

13As explained in [1], we obtain F (r) by integrating a second-order differential equation. One of the

integration constants of this equation are fixed the requirement of regularity of F (r) at r = 1. For a general

value of this constant, F (r) has a logarithmic singularity at r = 1. This singularity is physical rather than

a coordinate artifact, and is hence unacceptable. We have checked the last statement by computing the

curvature invariant RMNRMN ; this quantity in general has a pole type singularity, proportional to σµνσµν

at r = 1.
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k(1)(r) = − r
2

12
−
∫

∞

r

(

12x3h(1)(x) + (3x4 − 1)
dh(1)(x)

dx
+

1 + 2x4

6x3
+
x

6

)

k(2)(r) =
7r2

6
−
∫

∞

r

(

12x3h(2)(x) + (3x4 − 1)
dh(2)(x)

dx
+

1

2
Wk(x) −

7x

3

)

k(3)(r) = r2/2

k(4)(r) =
r8 − 1

32r4
π − r8 − 1

16r4
tan−1(r) +

1

4

(

1 − r4
)

ln r

+
r8 − 1

16r4
ln(1 + r) +

3r8 − 4r4 + 1

32r4
ln(1 + r2)

+
−6r7 + 5r6 + 3r4 + 2r3 − 3r2 − 1

48r4

k(5)(r) = r2/12

(3.8)

j(1)(r) =
r2

36
−
∫

∞

r
dx x3

∫

∞

x
dy

(

p(y)

18y3(y + 1)(y2 + 1)
− 1

9y3

)

j(2)(r) = −
∫

∞

r
dx x3

∫

∞

x
dy

(

1

18y3(y + 1)(y2 + 1)

)

j(3)(r) = −1 − r4

16

(

π − 2 tan−1(r) + 2 ln(1 + r) − ln(1 + r2)
)

− r2(1 + 2r)

8

(3.9)

a1(r) = −
∫

∞

r

dx

x(x4 − 1)

∫ x

1
dy 2y

([

3p(y) + 11

p(y) + 5

]

− 3yF (y)

)

a5(r) = −
∫

∞

r

dx

x(x4 − 1)

∫ x

1
dy y

(

1 +
1

y4

)

a6(r) = −
∫

∞

r

dx

x(x4 − 1)

∫ x

1
dy 2y

(

4

y2

[

y2p(y) + 3y2 − y − 1

p(y) + 5

]

− 6yF (y)

)

a7(r) =
1

4

∫

∞

r

dx

x(x4 − 1)

∫ x

1
dy 2y

(

2

[

p(y) + 1

p(y) + 5

]

− 6yF (y)

)

a8(r) = −
∫

∞

r

dx

x(x4 − 1)

∫ x

1
dy 2y

a9(r) =
ln(1 + 1

r2
)

4

(3.10)

Wh(r) =
4

3

(r2 + r + 1)2 − 2(3r2 + 2r + 1)F (r)

r(r + 1)2(r2 + 1)2

Wk(r) =
2

3

4(r2 + r + 1)(3r4 − 1)F (r) − (2r5 + 2r4 + 2r3 − r − 1)

r(r + 1)(r2 + 1)

p(r) = 2r3 + 2r2 + 2r − 3

h
(1)
φ (r) = −

∫

∞

r

dx

x(x4 − 1)

∫ x

1
dy

[

−y
2

4
ln
[

(1 + y)(1 + y2)
]

+
y2

2
tan−1(y) +

y(1 + y)(1 + y2) − 2y

3(1 + y)(1 + y2)

]

h
(2)
φ (r) =

∫

∞

r

dx

x(x4 − 1)

∫ x

1
dy

(

2y

3

)

(3.11)
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We now turn to defining all the terms that carry boundary index structure in (2.7).

These terms are all expressed in terms of fixed numbers of boundary derivatives of the

velocity, metric and boundary dilaton fields.

Terms with a single boundary derivative

θ = ∇αu
α

aµ = (u.∇)uµ

lµ = ǫαβγµuα∇βuγ

σµν =
1

2
PµαPνβ (∇αuβ + ∇βuα) −

1

3
Pµνθ

(3.12)

The quantity lµ defined here does not appear in the first order correction to the ansatz

metric, but does appear, multiplied by other first order terms appears in the second order

metric.

We now describe all terms with two boundary derivatives. Following [1] we sub-classify

these terms as scalar like, vector like or tensor like, depending on their transformation

properties under the SO(3) rotation group that is left unbroken by the velocity uµ (see [1]

for more details)

Scalar terms with two derivatives

S =

(

−4

3
(s −R1) + 2 S− 2

9
S

)

S = lµa
µ

S = lµl
µ

S = σµν σ
µν

Sφ = uµuν∇µφ∇νφ

Sφ = Pµν∇µφ∇νφ

S(1)
φ = 3uµuν∇µ∇νφ+ 3aµ∇µφ+ θuµ∇µφ

S(2)
φ =

3

2
∇2φ− 3aµ∇µφ+ θuµ∇µφ

(3.13)

where

S = aµa
µ

S = θ2

s =
1

b
Pαβ∇α∇β b

R1 = −1

4
PαβPγνRαγβν

(3.14)

Vector terms with two derivatives

B∞ = 4 (10v + v+ 3V− 3V− 6V+ 9 R2)

Bfin = 9 (20v − 5V− 6V+ 20 R2)

Bφ
µ = u.∇φ Pν

µ∇νφ

(3.15)
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where

(v)ν =
9

5

[

1

2
Pα
ν Pβγ (∇βuγ + ∇γuβ) −

1

3
PαβPγ

ν∇γ∇α uβ

]

− PαβPγ
ν∇α∇β uγ

(v)ν = PαβPγ
ν∇α∇β uγ

Vν = aν θ

Vν = ǫαβγνu
α aβ lγ

Vν = aα σαν

(R2)ν = −1

2
PαβPγ

ν u
µ Rµαγβ

(3.16)

Tensor terms with two derivatives

Tµν = (T1)µν +
1

3
(T4)µν + (T3)µν

(T5)µν = lµlν −
1

3
Pµν S

(T6)µν = σµα σ
α
ν − 1

3
Pµν S

(T7)µν =
(

ǫαβγµ σνγ + ǫαβγν σµγ

)

uα lβ

Cµν = Pα
µPβ

ν

(

Rαβ + 2uγ uλRγαλβ

)

− 1

3
PµνPαβ

(

Rαβ + 2uγ uλRγαλβ

)

(Tφ)µν = Pα
µPβ

ν ∇αφ ∇βφ− 1

3
PµνPαβ(∂αφ)(∂βφ)

(3.17)

where

(T1)µν = aµaν −
1

3
Pµν S

(T3)µν =
1

2
Pα
µPβ

ν (u.∇) (∇αuβ + ∇βuα) −
1

3
PµνPαβ(u.∇)(∇αuβ)

(T4)µν = σµνθ

(3.18)

Here ∇ denotes the covariant derivative in the curved boundary metric, Rαβγν is the

Riemann tensor and Rµν is the Ricci tensor.

The metric and dilaton configuration presented in this subsection solves the coupled

Einstein-dilaton equations of motion provided that the temperature and velocity fields obey

the equation of motion presented in the next subsection.

3.3 Shift of Gauge

While we have (for historical reasons) presented our final metric gauge choice (2.9), it

would have been more natural, in some respects, to work with the gauge choice (2.10).

The variable change that converts from (2.9) to (2.10) is simply given, to second order, by

dr̃ = dr(1 − 3
2b

2H(br)). This variable change may be integrated. The metric expressed in

terms of the variable r̃ will be in the gauge (2.10) at second order.
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3.4 The Stress Tensor, Lagrangian and Forcing function at second order

The stress tensor and expectation value of the ‘Lagrangian’ may be determined for the field

theory configurations dual to the solutions of the previous subsection using the formulas

(2.13). We find

16πG5T
µν = (π T )4 (gµν + 4uµuν) − 2 (π T )3 σµν

+ (πT )2
((

ln 2

2

)

(T7)
µν + 2 (T6)

µν + (2 − ln 2) T
µν + Cµν − 1

2
T µνφ

)

−16πG5e
−φL = (πT )3 u.∂φ+ (πT )2

(

1

3
S(2)
φ +

ln 2

6
S(1)
φ

)

(3.19)

Further, the spacetime configuration presented in the previous section is a solution

to the equations of motion if and only if the velocity and temperature fields obey the

constraint

∇µT
µν = f ν

f ν = e−φL∇νφ
(3.20)

4. Constraints from Weyl Covariance

In the previous section we have determined the bulk metric dual to a particular fluid flow

uµ(x) on a boundary manifold with a particular background metric gµν(x
µ) and boundary

dilaton field φ(xµ). However, as we have explained in section 2, this must be the same

as the bulk geometry dual to the velocity field ũµ(x
µ) = eχuµ(x

µ) on the boundary space

with metric g̃µν(x
µ) = e2χgµν(x

µ) and the boundary dilaton unchanged. This equality of

spaces, which is not algebraically automatic in the formulas of our perturbation theory,

constitutes a tight algebraic check on our procedure.

In this section we will demonstrate that the metric described in the previous section

passes this test. In more detail we will demonstrate that the metrics dual to fluid dynamics

must are invariant under the simultaneous replacements14

ũµ → eχuµ, g̃µν → e2χg̃µν , b→ eχb̃, r → e−χr̃, φ→ φ (4.1)

This property of our solutions in particular implies the Weyl covariance of the fluid

dynamical stress tensor (and Lagrangian) that follows from our solutions.

14It may be useful to reiterate the logic that underlies this test. Let us imagine we have solved the problem

described in the previous subsection for a given background metric gµν and velocity and temperature fields

uµ(x) and b(x). Upon performing the coordinate transformation r = r̃e−χ(xµ) (as described above) for a

slowly varying function χ(x) we have a gravitational background of the form (2.7) with the new metric

velocity and temperature functions ũµ = eχuµ and g̃µν = e2χg̃µν and b̃ = eχb. However we could also have

directly solved for the metric dual to fluid dynamics with this data.

– 20 –



4.1 Weyl Covariant Formalism and Independent Weyl Covariant Tensors

Note that the transformation (4.1) is simply a Weyl transformation in the boundary field

theory directions. Consequently, in order to investigate the invariance properties of our

solutions under the transformation (4.1) we find it convenient to employ the manifestly

Weyl-covariant formalism for hydrodynamics that was developed in [55]. The main tech-

nical innovation of [55] was the introduction of a Weyl-covariant derivative, whose action

on an arbitrary tensor field is defined by

Dλ Q
µ...
ν... ≡ ∇λ Q

µ...
ν... + w AλQ

µ...
ν...

+
[

gλαAµ − δµλAα − δµαAλ

]

Qα...ν... + . . .

− [gλνAα − δαλAν − δανAλ]Q
µ...
α... − . . .

(4.2)

where the Weyl-connection Aµ is related to the fluid velocity via the relation

Aµ = aµ −
ϑ

d− 1
uµ (4.3)

As a technical prerequisite to our main goal, in the rest of this section we employ

this Weyl covariant formalism to list the most general Weyl invariant scalars, transverse

vectors and symmetric traceless transverse tensors in hydrodynamics that involve no more

than second order derivatives.15 We perform this listing, taking particular care to account

for the equations of motion. In other words tensor fields that are equivalent on-shell are

counted only once in our listing.

Let us first start by eliminating an easily dealt with redundancy. As an arbitrary

function of the dilaton is Weyl-invariant, it follows that we can generate new Weyl invariants

by multiplying old ones by functions of φ to get new Weyl-invariant observables. We shall

omit the observables formed this way from the lists below, but take care to account for

them later.

To begin, let us start with the basic quantities of hydrodynamics - the fluid temperature

T and the fluid velocity uµ16 . The former is a Weyl-covariant scalar with conformal weight

unity and the latter is a Weyl-covariant vector with conformal weight unity. It follows that,

at the zero derivative level, there are no non-trivial Weyl-invariant scalars, no transverse

vector or symmetric traceless transverse tensors.
17

15We will restrict attention to fluid dynamics in 3 + 1 dimensions.
16We will assume that there are no other conserved charges except the energy momentum tensor.
17We shall follow the notations of [55] in the rest of this section(except for the curvature tensors which

differ by a sign from the curvature tensors in [55]. In particular, we recall the following definitions

Aµ = aµ − ϑ

3
uµ ; Fµν = ∇µAν −∇νAµ

R = R + 6∇λAλ − 6AλAλ ; Dµuν = σµν + ωµν

Dλσ
µλ = ∇λσ

µλ − 3Aλσ
µλ ; Dλω

µλ = ∇λω
µλ −Aλω

µλ

(4.4)

Note that in a flat spacetime, R is zero but R is not.
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At one derivative level T−1uµDµφ is the only Weyl invariant scalar. The only Weyl

invariant transverse vector is P νµDνφ. Finally, the only Weyl-invariant transverse pseudo-

vector lµ and only one Weyl-invariant symmetric traceless transverse tensor Tσµν .

At the two derivative level, there are seven independent Weyl-invariant scalars

T−2σµνσ
µν , T−2ωµνω

µν , T−2R,
T−2PµνDµDνφ, T−2uµuνDµDνφ, T−2PµνDµφDνφ and T−2uµuνDµφDνφ

(4.5)

one Weyl-invariant pseudo-scalar T−2lµDµφ and six independent Weyl-invariant transverse

vectors

T−1P νµDλσν
λ, T−1P νµDλων

λ, T−1P νµu
λDνDλφ, T−1P νµu

λDνφDλφ,

T−1σµ
λDλφ, and T−1ωµ

λDλφ

and two Weyl-invariant transverse pseudo-vectors T−1uλDλlµ and T−1lµu
λDλφ .

There are eight Weyl-invariant symmetric traceless transverse tensors -

uλDλσµν , σµνu
λDλφ, Cµανβu

αuβ , ωµ
λσλν + ων

λσλµ,

1

2

[

Pαµ P
β
ν + Pαν P

β
µ − 2

3
PαβPµν

]

DαDβφ,
1

2

[

Pαµ P
β
ν + Pαν P

β
µ − 2

3
PαβPµν

]

Dαφ Dβφ,

σµ
λσλν −

Pµν
3

σαβσ
αβ and ωµ

λωλν +
Pµν
3

ωαβω
αβ .

(4.6)

and five Weyl-invariant symmetric traceless transverse pseudo-tensors18

Dµlν + Dν lµ, lµP
λ
ν Dλφ+ lνP

λ
µDλφ− 2Pµν

3
lλDλφ

ǫαβλµCαβνσu
σuλ + ǫαβλνCαβµσu

σuλ, ǫαβλµuαDβφ σλν + ǫαβλνuαDβφσλµ

and
1

4
ǫαβλµ ǫ

γθσ
νCαβγθ uλuσ.

4.2 Manifestly Weyl covariant form of the fluid dynamical metric

In either of the gauges (2.9) or (2.10) employed in this paper, a bulk derivative metric that

is invariant under the transformations (4.1) must be constructed out of

1. The boundary Weyl invariant tensors listed in the previous subsection.

2. The Weyl-invariant vector-valued 1−form uµ(dr + rAλdx
λ)

3. Arbitrary functions of the Weyl-invariant scalar ξ = r/(πT )

18Note that the last tensor is not really a pseudotensor - but we count it along with the other tensors

which need ǫαβλµ for their definition.
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. Consequently the metric must take the form

ds2 = −2W1 uµdx
µ(dr + rAλdx

λ)

+
[

r2 (W2 gµν +W3uµuν) + r (W4µuν + uµW4ν) +W5µν

]

dxµdxν .
(4.7)

where W1,W2 and W3 are Weyl-invariant scalars, W4µ is a Weyl-invariant transverse vector

and W5µν is a Weyl-invariant transverse traceless tensor. It follows that the Wi’s can be

expressed as functions of ξ and the Weyl covariant observables in fluid dynamics with

appropriate weights.

In the rest of this section we will check that our metric (3.4) is indeed of this form.

We will also compute all the functions that enter into (4.7)

4.3 Weyl Covariant form of the second order metric

In order to cast the metric in this paper in the form given by (4.7) , we have to first rewrite

the quantities appearing in the metric in a Weyl-covariant form. We have the following

relations in the flat spacetime which identify the Weyl-covariant forms appearing in the

second-order metric -

S1
φ = uµuνDµφ Dνφ; S2

φ = PµνDµφ Dνφ

S4 = 2ωαβω
αβ; S5 = σαβσ

αβ ; S(1)
φ = 3uµuνDµDνφ; S(2)

φ =
3

2
DµDµφ

−4

3
(s3 −R1) + 2S1 −

2

9
S3 =

2

3
σαβσ

αβ − 2

3
ωαβω

αβ − 1

3
R

5

9
v4µ +

5

9
v5µ +

5

3
V1µ −

5

12
V2µ −

11

6
V3µ = P νµDλσν

λ

15

9
v4µ −

1

3
v5µ − V1µ −

1

4
V2µ +

1

2
V3µ + 2R2 = P νµDλων

λ

(4.8)

These can be used to obtain

B∞

µ = 18P νµDλσ
λ
ν + 18P νµDλω

λ
ν

Bfin
µ = 54P νµDλσ

λ
ν + 90P νµDλω

λ
ν

Bφ
µ = P νµu

λDνφDλφ

(4.9)

Hence, all the second-order scalar and the vector contributions to the metric can be written

in terms of three Weyl-covariant scalars σαβσ
αβ, ωαβω

αβ and R and two Weyl-covariant

vectors Dλσµ
λ and Dλωµ

λ .

Further, we will enumerate below the covariant forms which appear in the tensor

contributions to the metric

Tµν = uλDλσµν

T
µν
5 = 4(ωµλω

λν +
Pµν

3
ωαβωαβ)

T6µν = σµλσ
λν − Pµν

3
σαβσαβ

T7µν = − 2(ωµλσ
λν + ωνλσ

λµ)

(Tφ)µν = Pαµ P
β
ν Dαφ Dβφ− 1

3
PαβPµνDαφ Dβφ

(4.10)
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Comparing it with the metric form in 4.7, we find that the metric can be written in

the form

ds2 = −2W1 uµdx
µ(dr + rAλdx

λ)

+
[

r2 (W2 gµν +W3uµuν) + r (W4µuν + uµW4ν) +W5µν

]

dxµdxν .
(4.11)

where

W1 = 1 +
F1(ξ)σµνσ

µν + ωµνω
µν − 6ξ2h(3)(ξ)uµuνDµφ Dνφ

4r2
+ . . .

W2 = 1 − F1(ξ)σµνσ
µν + ωµνω

µν − 6ξ2h(3)(ξ)uµuνDµφ Dνφ

6r2
+ . . .

W3 = ξ−4 +
4(F2(ξ) − F1(ξ) + 1)σµνσ

µν − 4ωµνω
µν −R

6r2

+

(

ξ2h(3)(ξ) + k(4)(ξ)
)

uµuνDµφ Dνφ+ ξ2

12P
µνDµφ Dνφ

ξ2r2
+ . . .

W4µ =
F3(ξ)P

ν
µDλσν

λ + P νµDλων
λ + 2ξ−2j(3)(ξ)P νµu

λDνφDλφ

2r
+ . . .

W5µν = 2rξF (ξ)σµν +W521(ξ)u
λDλσµν +W522(ξ)

(

ωµ
λσλν + ων

λσλµ

)

+W523(ξ)

(

σµ
λσλν −

Pµν
3

σαβσ
αβ

)

−
(

ωµ
λωλν +

Pµν
3

ωαβω
αβ

)

+ ξ2 ln(1 + ξ−2)

[

Cµανβu
αuβ +

1

4

(

Pαµ P
β
ν − 1

3
PαβPµν

)

Dαφ Dβφ

]

+ . . .

(4.12)

with

F (ξ) =
1

4

[

ln

(

(1 + ξ)2(1 + ξ2)

ξ4

)

− 2 arctan(ξ) + π

]

F1(ξ) = 1 + 4ξ2
∫

∞

ξ

dx

x5

∫

∞

x

ydy
[

1 + 2y(1 + y + y2) + 2y2(1 + 2y + 3y2)F (y)
]

(y + 1)2(y2 + 1)2

F2(ξ) = 1 − 1

2ξ2

∫

∞

ξ

4(x2 + x+ 1)(3x4 − 1)F (x) − 2x3(x2 + x+ 1) + x+ 1

x(x+ 1)(x2 + 1)

F3(ξ) = 1 +
4

ξ2

∫

∞

ξ
x3 dx

∫

∞

x

dy

y3(y + 1)(y2 + 1)

(4.13)

and

W521 = −ξ2
∫

∞

ξ

dx

x(x4 − 1)

∫ x

1
dy 2y

(

1 + 3y + 3y2 + 3y3

(y + 1)(y2 + 1)
− 3yF (y)

)

W522 = −ξ2
∫

∞

ξ

dx

x(x4 − 1)

∫ x

1
dy 2y

(−1 + y + y2 + y3

(y + 1)(y2 + 1)
− 3yF (y)

)

W523 = −ξ2
∫

∞

ξ

dx

x(x4 − 1)

∫ x

1
dy 4y

(−1 − y + 2y3 + 2y4 + 2y5

y2(y + 1)(y2 + 1)
− 3yF (y)

)

(4.14)

The functions h(i)(ξ), k(i)(ξ) and a(i)(ξ) are as given in (3.7).
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Further, the dilaton field can be written in terms of the boundary values as

Φ = φ(x) + uµDµφ

∫

∞

ξ
dx

x3 − 1

x5f(x)
+ 3h

(1)
φ (ξ)uµuνDµDνφ+

3

2
h

(2)
φ (ξ)DµDµφ (4.15)

where the functions h
(i)
φ (ξ) are as given in (3.7).

4.4 Constraints on the Stress Tensor and Lagrangian from Weyl Covariance

In (3.19) we have presented formulas for the stress tensor and the expectation value of the

dilaton upto second order in the boundary derivative expansion. In the notation of this

section

16πG5T
µν = (π T )4 (gµν + 4uµuν) − 2 (π T )3 σµν + (2 − ln 2) (πT )2uλDλσ

µν

− ln 2(πT )2 (ωµλσ
λν + ωνλσ

λµ)

+ 2(πT )2(σµλσ
λν − Pµν

3
σαβσαβ + Cµανβuαuβ)

− 1

2
(πT )2(PαµP βν − 1

3
PαβPµν)Dαφ Dβφ

−16πG5e
−φL = (πT )3 u.Dφ+

(πT )2

2

(

D2φ+ ln 2 (u.D)2φ
)

(4.16)

Aspects of this result could have been predicted immediately from the requirement of

Weyl covariance. In particular it follows immediately from the listing of Weyl invariants

in subsection 4.1 that at the one derivative level19 the stress tensor and the Lagrangian

are proportional respectively to (π T )3 σµν and (πT )3 u.∂φ respectively. Of course the

particular coefficients in (4.16) required a calculation to determine. In a similar manner

the two derivative contributions to the stress tensor and Lagrangian are constrained by

Weyl invariance to be linear combinations of the forms listed in (4.6) and (4.5) respec-

tively. Again the particular coefficients in (4.16) require knowledge of the bulk equation

of motion, and follow from explicit computation. Note in particular that the Lagrangian

in (4.16), when expressed as a linear combination of the terms in (4.5), turns out to

have no terms proportional to the Weyl invariant scalars T−2σµνσ
µν , T−2ωµνω

µν , T−2R ,

T−2PµνDµφDνφ and T−2uµuνDµφDνφ. Similarly, the stress tensor, when rewritten as a

linear combination of the terms in (4.6), has no terms proportional to any of σµνu
λDλφ,

1
2

[

Pαµ P
β
ν + Pαν P

β
µ − 2

3P
αβPµν

]

DαDβφ, or ωµ
λωλν +

Pµν

3 ωαβω
αβ . Above we have already

remarked that general structural features of the Einstein-dilaton system (e.g. the possi-

bility of a consistent truncation to pure gravity) explain several of these terms from the

expressions for the bulk metric and hence Lagrangian and the stress tensor.

5. Causal Structure and Entropy Current

In this brief section we will generalize the construction of [5] to determine the location

of the event horizon of the metric (3.4) (under certain assumptions about the late time
19Interestingly, the fact that the Lagrangian vanishes at the zero derivative level is not automatic from

Weyl invariance, but follows instead from the additional dynamical input that Einstein gravity is a consistent

truncation of the Einstein-dilaton system. Once we take α′ corrections into account, we do expect a

contribution to the Lagrangian that is simply proportional to T 4.
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behavior of the functions in this metric) and also to derive an explicit expression for a

positive divergence entropy current for the dual fluid flow.

For the purposes of this section we restrict our attention to solutions of fluid dynamics

for which the late time metric, dilaton, velocity and temperature fields all settle down to

time independent constant values; we further assume that the the event horizon of this

asymptotic late time spacetime is given by r = 1/b(xµ). The last assumption certainly

true for solutions that approach black branes in flat space or rotating black holes in global

AdS space at late times. Under all these assumptions20 the event horizon of the spacetime

(3.4) has a simple mathematical characterization; it is simply the unique null hypersurface

that reduces precisely to r = 1/b(xµ) at late times (see [5] for a related discussion).

All the metrics we study in this paper fit into the general form given by equation

2.2 and 2.3 in [5] with one straightforward generalization. The normalization condition

uµuνη
µν = −1 of [5] is replaced by uµuνg

µν = −1, where gµν is the arbitrary weakly

curved boundary metric of our paper. Following [5], it is easy to work out the precise

equation for the event horizon within the derivative expansion. In fact it turns out that

equation 2.16 of [5] continues to hold with the single proviso that all indices in that equation

are raised by the metric gµν rather than ηµν . The expression 2.18 of [5], for the normal

vector to the horizon, also continues to apply with the same proviso. Finally, the area form

a on the event horizons in our paper may be defined exactly as in section 3.1 of [5]. The

formula 3.10 of [5] for this area form continues to apply. Lines of constant xµ define a map

from the boundary to the horizon of our solutions. Let s denote the pullback of a, to the

boundary, under this map. Let (Js)µ = ∗s. The following slight generalization of 3.11 of

[5] gives a formula for the entropy current

(Js)
µ =

√
h

4G
(d+1)
N

√
g

nµ

nv
(5.1)

(see [5] for the definition of h). As in [5] it follows immediately from classic area increase

theorems of event horizons in general relativity that ∇µ(Js)µ ≥ 0. Consequently (Js)µ is a

candidate entropy current with non negative local entropy production.

We have evaluated all the abstract expressions described above for the specific fluid

dynamical solutions presented in our paper; we present our results. In the gauge (2.9) we

find the covariantization of equation 5.4 of [5]

rh =
1

b
+
b

4

(

Sb +
1

3
S+

1

6
Sφ

)

(5.2)

An explicit expression for Jµs is not difficult to determine: we find

4Gb3Jµs = uµ

(

1 − b2

4

[

(

3

2
ln 2 +

π

4

)2

− 1

]

S+
b2

8
Sφ +

3b2

4
Sb + Sa

)

− b2

2
Pµν

(

∇ασαν − 3aασνα − 1

2
Bφ
ν

)

+ b2Sµc

(5.3)

20It is probable that these assumptions are more restrictive than necessary.It would be interesting to

know which if any of these assumptions can be relaxed without affecting the simple characterization of the

horizon that we give below.
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where

Sb =
1

2
S − 1

12
S+ S

(

1

6
+ C +

π

6
+

5π2

48
+

2

3
ln 2

)

+
1

12
Sφ

Sa =
b2

64

[

−8S− S
(

8 + 48C + 4π + 4π2 − 36(ln 2)2 − 12π ln 2 + 16 ln 2
)]

+
b2

8

(

π

4
+

1

2
+ ln 2

)

Sφ

(Sc)µ =
1

16
B∞

µ − 1

144
Bfin
µ − 3

8
Bφ
µ

(5.4)

As we have explained above, the entropy current presented in (5.3) is guaranteed by

the area increase theorem of general relativity to have non negative divergence. This claim

may also be verified algebraically. Using the equations of motion, we find that

T∇µJ
µ
s = 2η

[

σµν +
(π + 4 + 6 ln 2)

16πT uλDλσ
µν

]2

+ η

[

u.∂φ+
1

4πT
(
π

2
+ 2 + 3 ln 2)uαuβDαDβφ

]2

+ . . .

(5.5)

where the RHS is accurate only to third order in the derivative expansion. Of course the

RHS, which is a sum of squares, is manifestly positive, in accordance with the second law.

The second line in (5.5) represents the production of entropy due to the forcing effects of

a time dependent dilaton. Several comments are in order here. Consider the forced Navier

Stokes equations ∇νT
µν = fµ. For an arbitrary function fµ this equation is consistent

with either local entropy increase or decrease. The fact that entropy production is always

locally non negative in our situation is a consequence of the particular form of our forcing

function.

In order to see what is special about this forcing function, consider a dilaton field

that is a function only of the boundary time (see §7 for a more detailed discussion of this

situation). According to (3.20), the forcing function for such a field fµ ∝ δ0µ(∂0φ)2. The

sign in this expression is important; it implies that a varying dilaton field always pumps

energy into the system. This energy raises the fluid temperature increasing its entropy.

This qualitative feature should be true of any forcing function that results from the

coupling of a source to a gauge theory operator. A source term for any boundary operator

excites the expectation value of this operator away from its thermal average. The expec-

tation value of this operator then decays over a time scale 1/T ; in this process the energy

of this excitation thermalizes, resulting in an increase in entropy.

6. AdS5 Kerr BlackHole

A three parameter set of asymptotically globally AdS5 rotating black hole solutions has

been presented in [65]. These solutions are labeled by their temperature T and their two

angular velocities, ω1 and ω2, on S3. As we will see in more detail below, these solutions

are dual to a field theory configuration which is well described by the equations of fluid

dynamics at large T (the radius of the boundary sphere is unity in our conventions).
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6.1 Summary of Results

In this section we will rewrite the exact solutions of [65] in the gauge (2.10). The final

metric admits a remarkably simple all orders re expression in fluid dynamical terms: it

may be put in the form (4.7) with

W1 = 1 ; W2 = 1 +
1

3r2
ωαβω

αβ

W3 =
2m

r4

(

1 +
1

2r2
ωαβω

αβ

)

−1

− 2

3r2
ωαβω

αβ − R
6r2

W4µ = − 1

2r
P νµDλω

λ
ν

W5µν = −
(

ωµ
λωλν +

ωαβω
αβ

3
Pµν

)

(6.1)

Moreover the radial location event horizon of this metric is given by the solution to the

equation

(1 +
1

r2H
)(r2H + ω2

1)(r
2
H + ω2

2) = 2m (6.2)

The entropy of this black hole is given by

S =
2mΩ3

rH(1 − ω2
1)(1 − ω2

2)(1 + 1
r2
H

)
(6.3)

Moreover the various components of the local entropy current defined in [5] evaluate, on

this rotating black hole solution

J t =
(r2H + ω2

1)(r
2
H + ω2

2)

rH

Jφ =
ω1(r

2
H + ω2

1)(r
2
H + ω2

2)(1 − ω2
1)

rH(r2H + ω2
1)

Jψ =
ω2(r

2
H + ω2

1)(r
2
H + ω2

2)(1 − ω2
2)

rH(r2H + ω2
2)

(6.4)

Notice that the exact result (6.1) admits a remarkably simple derivative expansion.

The derivative expansion of the functions W1, W2, W4µ and W5µν terminates at second

order in derivatives. On the other hand the function W3 includes terms at all orders in

this expansion: however this expansion sums up to a simple geometrical series. Several

additional remarks are in order

1. We check below that the expansion of (6.1) to second order in the derivative expansion

matches perfectly with the general predictions given in (4.7). This is a nontrivial

consistency check on the main result of this paper.

2. Note that (6.1) receives contributions from terms that depend on the curvature of

the boundary metric only at second order in the derivative expansion. Consequently

the second order fluid results, (6.1) listed above, exactly account for all curvature

dependencies in the exact result (4.7). In particular the AdS Schwarzschild solution

is reproduced exactly at second order in the fluid expansion.
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3. The fluid dynamical expansion of the metric (6.1) is convergent for 2r2 ≥ ωαβω
αβ.

It follows that this expansion is convergent everywhere outside the horizon for T 2 ≫
ωαβωαβ.

Expressions for the location of the event horizon and the local entropy current may also be

expanded rather simply, to all orders, in fluid dynamical expansion. We demonstrate below

that the expansion of these expressions to second order also agree with the predictions of

the previous section.

In summary the fluid expansion works even better for the exact solution (4.7) than

we might naively have the right to expect. In the rest of this section we will derive and

explain all these results in detail.

6.2 Rotating Black Holes in Fluid Dynamical Coordinates

6.2.1 The AdS Kerr Solution and its Stress tensor

The asymptotically globally AdS5 rotating black hole solution presented in [65] is given by

ds2 = −∆r

ρ2

(

dt̂− ω1 sin2 Θ

1 − ω2
1

dφ̂− ω2 cos2 Θ

1 − ω2
2

dψ̂

)2

+
ρ2

∆r
dr2 +

ρ2

∆Θ
dΘ2

+
∆Θ

ρ2

(

sin2 Θ

(

ω1dt̂−
r2 + ω2

1

1 − ω2
1

dφ̂

)2

+ cos2 Θ

(

ω2dt̂−
r2 + ω2

2

1 − ω2
2

dψ̂

)2
)

+
1 + r2

r2ρ2

(

ω2 sin2 Θ

(

ω1dt̂−
r2 + ω2

1

1 − ω2
1

dφ̂

)

+ ω1 cos2 Θ

(

ω2dt̂−
r2 + ω2

2

1 − ω2
2

dψ̂

))2

(6.5)

where

ρ2 ≡ r2 + ω2
1 cos2 Θ + ω2

2 sin2 Θ

∆r ≡
1

r2
(1 + r2)(r2 + ω2

1)(r
2 + ω2

2) − 2m

∆Θ ≡ 1 − ω2
1 cos2 Θ − ω2

2 sin2 Θ

(6.6)

In the large r limit (i.e. near the boundary) the induced metric on a surface of constant

r is given by

ds2Bnd

r2
= gµνdx

µdxν

= − ∆Θdt̂
2

(1 − ω2
1)(1 − ω2

2)
+
dΘ2

∆Θ
+

sin2 Θ

1 − ω2
1

(dφ̂+ ω1dt̂)
2 +

cos2 Θ

1 − ω2
2

(dψ̂ + ω2dt̂)
2

(6.7)

Consequently the solution (6.5) is dual to a state of the CFT on the space Weyl equivalent

to (6.7). (6.7) describes the so called Rotating Einstein Universe.
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The boundary stress tensor (2.13) dual to this metric is easily evaluated, and may be

written in the form

Tµν =
m

8πG5
(gµν + 4uµuν) +

1

64πG5

(

RαβR
αµβν − R2

12
gµν

)

where

−uµdxµ = dt̂− ω1 sin2 Θ

1 − ω2
1

dφ̂− ω2 cos2 Θ

1 − ω2
2

dψ̂

=
∆Θdt̂

(1 − ω2
1)(1 − ω2

2)
− ω1 sin2 Θ

1 − ω2
1

(dφ̂+ ω1dt̂) −
ω2 cos2 Θ

1 − ω2
2

(dψ̂ + ω2dt̂)

uµ∂µ =
∂

∂t̂

(6.8)

where Rµνλσ denotes the boundary curvature tensor associated with the metric gµν . Apart

from an additive curvature dependent piece whose form is dictated by the conformal

anomaly21, this stress tensor is precisely that for a perfect conformal fluid with velocity

vector uµ = (1, 0, 0, 0) and pressure p = m
8πG5

.

6.2.2 Relationship to analysis in [2]

We pause here to connect these results to those derived in [2]. The authors of that paper

analyzed the same rotating black hole solutions, however they worked with a different set

of coordinates denoted here by (r̃, t̂, φ′, ψ′,Θ′). In these coordinates the boundary of the

rotating black hole solutions is naturally S3 ×R as we now explain.

The Rotating Einstein Universe is Weyl Equivalent to S3 × R. In order to see this

consider the boundary coordinate transformation

cos2 Θ =
(1 − ω2

2) cos2 Θ′

1 − ω2
1 sin2 Θ′ − ω2

2 cos2 Θ′

sin2 Θ =
(1 − ω2

1) sin2 Θ′

1 − ω2
1 sin2 Θ′ − ω2

2 cos2 Θ′

φ̂+ ω1t̂ = φ′

ψ̂ + ω2t̂ = ψ′

(6.9)

Expressed in terms of these new variables, the boundary metric (6.7) may be written as

ds2Bnd

r2
=

1

1 − ω2
1 sin2 Θ′ − ω2

2 cos2 Θ′

(

−dt̂2 + dΘ′2 + cos2 Θ′dψ′2 + sin2 Θ′dφ′
2
)

= γ2
(

−dt̂2 + dΩ2
3

)

γ =
1

√

1 − ω2
1 sin2 Θ′ − ω2

2 cos2 Θ′

(6.10)

where dΩ2
3 represents the usual metric on the round 3 sphere.

21Note, for example, that the trace of the stress tensor in this background as calculated from above[74, 67]

is 64πG5T
µ
µ = RαβRαβ − R2

3
.
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In order to obtain a boundary metric that is actually that on S3 × R rather than

simply conformal to it, the authors of [2] worked with the redefined radial variable r̃ =
r√

1−ω2
1 sin2 Θ̃−ω2

2 cos2 Θ′

= r√
1−ω2

1 cos2 Θ−ω2
2 sin2 Θ

so that the induced metric on slices of large

constant r̃ is equal to

ds2

r̃2
= −dt2 + dΩ2

3. (6.11)

With these conventions the rotating black hole solution is dual to a fluid flow on S3×
time. The fluid velocities and temperatures of this flow are given by acting upon the velocity

and temperature fields uµ = (1, 0, 0, 0) T = (2M)
1
4

π , of the previous subsection, with the

coordinate transformation (6.9) followed by a Weyl transformation (compare (6.10) and

(6.11)) yielding

ũ = γ

(

∂

∂t̂
+ ω1

∂

∂φ′
+ ω2

∂

∂ψ′

)

T̃ =
(2M)

1
4

π
γ

γ =
1

√

1 − ω2
2 cos2 Θ̃ − ω2

1 sin2 Θ′

(6.12)

precisely as reported in [2].

6.2.3 Recasting the solution in the Fluid mechanical gauge

Continuing with our analysis of (6.7), we will now recast this metric in the gauge (2.10).

As was explained in [5], the coordinates in gauge (2.10) are adapted to a congruence of null

ingoing geodesics, whose tangent vectors near the boundary are given by dz
dλ = 1, dx

µ

dλ = uµ

in Graham Fefferman coordinates. While it turns out to be difficult to solve for the most

general null geodesic in (6.7), precisely this congruence turns out to be easy to determine

and is given by

dr

dλ
= −1

dΘ

dλ
= 0

dt

dr
= −(r2 + ω2

1)(r
2 + ω2

2)

r2∆r

dφ

dr
= ω1

(1 − ω2
1)

r2 + ω2
1

dt

dr

dψ

dr
= ω2

(1 − ω2
2)

r2 + ω2
2

dt

dr

(6.13)

As we have explained before, in the gauge (2.10) the coordinates xµ are constant along

this congruence of geodesics, and the coordinate r is simply the affine parameter along

these geodesics. Consequently, it follows that the change of variables to the Eddington-
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Finkelstein like co-ordinates (2.10) is given by

dt̂ = dt− (r2 + ω2
1)(r

2 + ω2
2)

r2∆r
dr

dφ̂ = dφ− (1 − ω2
1)(r

2 + ω2
2)

r2∆r
dr

dψ̂ = dψ − (r2 + ω2
1)(1 − ω2

2)

r2∆r
dr

(6.14)

Expressed in terms of the new coordinates the metric becomes

ds2 = 2dr

(

dt− ω1 sin2 Θ

1 − ω2
1

dφ− ω2 cos2 Θ

1 − ω2
2

dψ

)

− ∆r

ρ2

(

dt − ω1 sin2 Θ

1 − ω2
1

dφ− ω2 cos2 Θ

1 − ω2
2

dψ

)2

+
ρ2

∆Θ
dΘ2

+
∆Θ

ρ2

(

sin2 Θ

(

ω1dt −
r2 + ω2

1

1 − ω2
1

dφ

)2

+ cos2 Θ

(

ω2dt−
r2 + ω2

2

1 − ω2
2

dψ

)2
)

+
1 + r2

r2ρ2

(

ω2 sin2 Θ

(

ω1dt −
r2 + ω2

1

1 − ω2
1

dφ

)

+ ω1 cos2 Θ

(

ω2dt−
r2 + ω2

2

1 − ω2
2

dψ

))2

(6.15)

As we describe in detail in the appendix B, we conclude that the AdS5-Kerr metric

can be written in the following manifestly Weyl-covariant form

ds2 = −2uµdx
µ(dr + rAλdx

λ) + r2gµνdx
µdxν

−
(

uµDλω
λ
ν + ωµ

λωλν +
R
6
uµuν

)

dxµdxν +
2m

r2

(

1 +
1

2r2
ωαβω

αβ

)

−1

uµuνdx
µdxν

= −2W1uµdx
µ(dr + rAλdx

λ)

+
[

r2 (W2 gµν +W3uµuν) + r (W4µuν + uµW4ν) +W5µν

]

dxµdxν .

(6.16)

with the functions in these equations given by (6.1).

6.3 Horizon and Entropy Current

As we have mentioned above, the location of the event horizon (in the radial variable of the

gauge (2.10)) is given by the solution to the equation (6.2). The solution to this equation

is easily obtained at second order in the derivative expansion: we find

rH =
1

b

(

1 − b2

4
(1 + ω2

1 + ω2
2)

)

=
1

b

(

1 − b2

4

(

3

2
ωαβω

αβ +
R
6

))

1

b
= (2m)

1
4

(6.17)
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It is easy to check that this result agrees with our general prediction (5.2), once that

equation is re-expressed in the radial variable of the (2.10)

rh =
1

b
+
b

4

(

Sb +
1

3
S+

1

6
Sφ

)

+
3b2

2

∫

∞

r=1/b
H(br) (6.18)

On the velocity configuration dual to the black hole S5 and S5 vanish and

Sb = −ωαβω
αβ

2
− R

6
,

∫

∞

r
H(r) = −ωαβω

αβ

4r
;

inputting these values we see that (6.18) and (6.17) agree.

In a similar fashion, the formula for the entropy and entropy current (6.3) for these

black holes may be expanded to second order: we find

S =
Ω3

b3(1 − ω2
1)(1 − ω2

2)

(

1 +
b2

4

(

3ωαβω
αβ

2
+

R
6

− 4

))

J t =
1

b3

(

1 +
b2

4
(ω2

1 + ω2
2 − 3)

)

Jφ =
ω1(1 − ω2

1)

b

Jψ =
ω2(1 − ω2

2)

b

(6.19)

On the other hand the general formula for the entropy current (5.3) evaluates, on the

specific fluid flow at hand, to

4G5b
3Jµs = uµ

(

1 − b2

8

(

5ωαβω
αβ + R

)

)

+
b2

2
PµνDλων

λ (6.20)

It is easy to verify, using (B.4), that (6.20) and (6.19) agree. Upon integration S =
∫ √

gJ0

with
√
g = sinΘ cos Θ

(1−ω2
1)(1−ω2

2)
we also reproduce the first of (6.19).

7. Some Simple Solutions of Forced Fluid Dynamics

In this section we construct some simple solutions to the equations of motion of fluid

mechanics with forcing terms derived above, and consider their interpretation in the bulk.

In order to make the physical points of interest most immediately, in this section, we often

work with the crudest approximations that capture the physics at hand. We postpone a

more careful study of these solutions (and hopefully several others) to future work.

In subsections 7.1 we study fluid flows that are pushed to high Reynolds numbers by

the effective forcing effect of a varying background metric. In subsection 7.2 we study

‘cosmological’ solutions of fluid dynamics corresponding to a time dependent but spatially

homogeneous dilaton. As we have explained in the introduction, we believe that these

solutions qualitatively capture the excursion of the bulk geometry into regions of strong

curvature. Finally, in subsection 7.3 we study a fluid that is pushed into motion by the

forcing effect of a varying dilaton field.
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7.1 Metric as the Forcing Term

7.1.1 Hydrostatic Solution in an arbitrary spacetime

We begin by considering the case where the forcing term arises due to a non-trivial metric.

We start with the stress tensor in the perfect fluid approximation,

T µν = (πT )4(gµν + 4uµuν), (7.1)

in the presence of a time independent metric of the form,

ds2 = g00dt
2 + gijdx

idxj . (7.2)

It is easy to see that the conservation equations,

∇µT
µν = 0, (7.3)

then admit a hydrostatic solution, with four-velocity,

u0 =
√

−g00, ui = 0, (7.4)

and temperature,

T =
C

√

|g00|
. (7.5)

The temperature dependence can be understood as arising due to the gravitational red-

shift. We see that the temperature is higher, where |g00| is smaller, i.e., where the grav-

itational potential is deeper. In the bulk the radial location of the horizon is given by,

r = πT , and becomes a function of the spatial coordinates.

This solution gets corrections due to the additional terms in the stress tensor, eq.(2.13).

Since the fluid is at rest the viscosity term is irrelevant. Although we have not attempted

this, it should be possible to work out the corrections due to the second-order terms found

in this paper in a straightforward manner. All such terms are suppressed by a factor of

(TR)−2, where R is the length scale associated with the boundary spacetime, compared

to the leading order result presented above. These terms will lead to a corresponding

second-order correction to the dual geometry.

7.1.2 Small deviations from hydrostatic equilibrium

We now specialize to a boundary metric of the form

gij = δij

g00 = g00(z)
(7.6)

(z is one of the spatial coordinates) and study a particular perturbation about hydrostatic

equilibrium. In particular, we search for a steady state solution in which, in addition to

a varying temperature, the fluid has a small, time independent velocity purely in the z

direction. Throughout this subsubsection we work to first order in this spatial velocity uz.
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The ν = 0 component of eq.(7.3) gives 22

T 4uz|g00| = c̃, (7.7)

where c̃ is an integration constant. The ν = z component of eq.(7.3) is unchanged from

the hydrostatic case, at linear order, and gives, again, eq.(7.5). From, eq. (7.7), (7.5) it

follows that

uz = uz0|g00|, (7.8)

where uz0 is a constant. (7.5), and (7.8), determine the temperature and velocity T, uz,

as a function of z. Let us suppose that g00 = −1 at a particular location and changes

to −(1 + f) over the length scale L. It follows that the change in the fluid velocity over

the same length scale equal in magnitude to fuz0. While uz0 has been assumed to be small

compared to unity in this subsection, and while we might wish to restrict f also to be

small compared to unity for some physical purposes, it is consistent to hold each of these

quantities fixed as TL is taken large. In this case the formal ‘Reynolds number’ of this flow

Re ∼ ∆vTL, (7.9)

becomes parametrically large in the fluid dynamical limit TL≫ 1.

While the static flow described above is rather tame, we believe it illustrates the general

point argued for in the introduction, namely that even though the forcing effects of gravity

are mild (suppressed by 1/L) they can build up to O(1) changes in the velocity - and hence

high Reynolds numbers - over length scale L. Consequently one might hope to be able

to stir the fluid into steady state within the validity regime of the approximations of this

paper, though we would probably need a more general metric (one that depends on several

spatial directions as well as time) for this purpose.

7.1.3 Flows forced by a time dependent spatial metric

We can also consider an analogous situation where the metric is,

ds2 = −dt2 + gzz(t)dz
2 + dx2 + dy2, (7.10)

with only one non-trivial spatial component that depends on time. A consistent solution

can be obtained with u0, uz being the only non-zero components of the 4-velocity. Working

with the perfect fluid stress tensor, one finds from the ν = 0 component of eq.(7.3) that,

T 4u0uz =
c1

(gzz)3/2
. (7.11)

The four-velocity satisfies the constraint,

(u0)2 − (uz)2gzz = 1, (7.12)

22We work in the perfect fluid approximation and at first order in velocities. It should be straightforward

to account for the first nonzero corrections to these approximations.
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The last equation is the ν = z component of eq.(7.3). Using eq.(7.11), eq.(7.12), to elimi-

nate two of the variables, one can reduce this problem to quadrature. We skip some of the

details here.

The temperature and 4-velocity are time dependent in this case. It is easy to see that

again order unity changes in the metric, gzz, result in order unity changes in the velocity.

The time varying metric allows energy to be pumped in or out of the system. If the time

scale over which this happens is big compared to the temperature, as is needed for the fluid

mechanics approximation to be valid, one finds analogous to the the spatially varying case

discussed above, that the Reynolds number is much bigger than unity.

7.2 Time Dependent Dilaton and Highly Curved Spacetimes

We now study a simple ‘cosmological’ solution of fluid dynamics. In the solution we study

the metric is taken simply to be ηµν , but the dilaton is taken to be a slowly varying function

of time. We are interested in answering the following question: suppose we start with field

theory heated up to a temperature T and at coupling constant λ1. Suppose we then slowly

vary the coupling from λ1 to λ2 over a time ∆t. What is the final state of the theory at

the end of this process?

Using the equations of fluid dynamics derived in this paper, it is easy to answer this

question (we comment below on the validity of these equations for the purposes of this

issue). In particular, there exists a solution to the fluid equations of motion in which the

fluid is always at rest and the temperature remains spatially homogeneous but heats up

slowly in time, in response to the varying dilaton. In more detail consider the configuration

u0 = 1, ui = 0. (7.13)

Taking the leading contribution to the dilaton forcing function (this is the first term on

RHS of the second equation in eq.(2.13)) gives, from eq.(3.20),

∇µT
µν = −(πT )3∂νφ∂0φ. (7.14)

If we take the perfect fluid stress tensor, eq.(7.1), and 4-velocity, eq.(7.13), this gives rise

to one non-trivial equation for T , which can be integrated to give,

T (tf ) − T (ti) =
1

12π

∫ tf

ti

(φ̇)2dt. (7.15)

We see that, irrespective of the details, time dependence of the dilaton always increases

the temperature and thus the energy and the entropy density of the fluid monotonically.

In the bulk correspondingly the horizon area increases monotonically. This ties in with the

discussion below (5.5).

Note that
∆T

T
∼ (∆φ)2

T∆t
≪ 1. (7.16)

i.e. a total change in the dilaton, ∆φ, over a time, ∆t, results in a small fractional change

in temperature if δt is sufficiently large. When the LHS of (7.16) is small the condition for
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the validity of fluid dynamics

Ṫ

T 2
=

(∆φ)2

(T∆t)2
≪ 1. (7.17)

is automatically met provided ∆φ ≥ 1 and hence T∆t > 1.

In summary a time dependent coupling constant always heats up the system; however

the fractional increase in the temperature can be arranged to be small - even for a large

fractional increase in the coupling - provided the coupling constant is changed relatively

slowly.

Corrections to eq.(7.15) will arise because of corrections in the stress tensor, eq.(2.13),

and in the forcing function, eq.(3.20). If the condition, eq.(7.17), is valid corrections due

to second order terms in the stress tensor are small 23. Corrections in the forcing function

go like, T 2φ̇φ̈. These are small, compared to the leading order term, if T∆t > 1.

7.2.1 Highly Curved Spacetimes

In the bulk of this paper we have derived a set of fluid dynamical equations from the

Einstein Hilbert Lagrangian and studied some aspects of the dynamics of these equations.

Our analysis so far has been quantitative. On the other hand, in this subsubsection we

attempt to explore some qualitative aspects of bulk dynamics of highly curved spacetimes

via fluid dynamics.

In particular, we wish to investigate the behavior of a set of classical solutions of string

theory (rather than gravity) that is dual to evolutions of large Nc N = 4 Yang Mills

theory with a time varying ’tHooft coupling that is lowered down to order unity. The

bulk equations that govern these systems are unknown. Nonetheless we will attempt to

qualitatively understand these evolutions using an expectation based on physical intuition

: at long wavelengths these (unknown) equations of classical string theory should reduce

to the equations of boundary fluid dynamics with λ dependent parameters. Though we do

not know the detailed λ dependence of these parameters, we will attempt to estimate their

qualitative properties to the extent needed for our analysis.

We pause here to explain this intuition in more detail. The equations of fluid dynamics

follow simply from symmetries combined with the physical expectation of local equilibra-

tion. Any interacting system is expected to equilibrate locally over a length and time scale

set by its ‘mean free path’ which may be crudely estimated by the ratio η/ρ where η is

the viscosity and ρ the energy density of the system. It follows from ’tHooft scaling and

dimensional analysis that this ratio takes the form q(λ)/T for some function q(λ) in N=4

Yang Mills theory. We know from perturbation theory that q(λ) diverges at weak coupling,

and we know from the AdS/CFT correspondence that q(λ) is a constant at strong coupling.

From these two behaviors, it seems reasonable to guess that q(λ) decreases monotonically

as the coupling is increased or, at least, that it never diverges at a finite value of λ. If this

last guess is correct, the effective equilibration length scale for N = 4 Yang Mills should

be of order 1/T for all λ greater than or of order unity, and fluid dynamics should be a

good description of any evolution of the system in which all quantities vary on a length

23Any corrections due to the viscosity term vanish in this case.
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scale that is large compared to 1/T .We make this assumption in what follows below. We

also assume the absence of any phase transition in high temperature N = 4 Yang Mills as

λ is varied from large values to values of order unity. We wish to emphasize that if either

of the assumptions listed in this paragraph fails, none of the conclusions we reach in this

section need apply.

With all these caveats in mind, we now proceed to consider a situation where we start,

in the far past, with a value of the dilaton on the boundary such that gsN ≫ 1. We take

the dilaton to be a slowly varying function of time and reduce its value till, gsN = λmin.

Then increase it again so that in the far future gsN ≫ 1.

The fluid dynamical solution presented above accurately captures the boundary dy-

namics of this situation provided λmin ≫ 1. When this condition is met, the results of this

paper eq.(3.4) also yield the bulk dual of this field theoretic evolution.

Now let us instead consider take λmin to be O(1). In this case we expect the evolution

described in this subsection to be given by some classical solution of string theory rather

than supergravity. We also expect spacetime curvatures to become of order string scale -

and so for stringy effects to become very important - over the times at which λ is of order

λmin. However curvatures are small in string units (and so the SUGRA approximation is

good) at early and late times. In other words the dual bulk solution is expected to be a

cosmology where an initially smooth space-time becomes highly curved, with a curvature

of order the string scale so that it is not well described by the two derivative SUGRA

approximation, and then returns in the future to being smooth again. 24 We now want to

inquire what information we can glean about this evolution process by the use of boundary

fluid dynamics.

Of course the specific fluid dynamical equations we have derived in this paper are only

valid at very large λ. However aspects of these equations are dictated merely by symmetries

and the physical expectations of equilibration, and may have much greater validity. Of

special importance to us in this section is the structure of dilaton dependence in the forcing

term in the Navier Stokes ∇µT
µν = f ν studied in this paper. As we have explained in the

introduction, it follows from general field theoretic reasoning that fµ = e−φL∂µφ where

L is the expectation value of the Lagrangian. As we have explained above, it further

follows Weyl invariance that upto the one derivative level e−φL = T 4r(λ) + T 3g(λ)u.∂φ.

Similar statements apply to the form of the stress tensor upto first order in the derivative

expansion. It follows that the leading two (boundary) derivative equation of motion that

governs the evolution described in this subsection is

1

T

∂T

∂t
= −h(λ)

(∂0φ)2

12πT
+ g(λ)∂0φ. (7.18)

where h(λ) is an unknown function that evaluates to unity at λ = ∞ and is expected to

be of order unity provided for λ greater than or of order unity. On the other hand g(λ) is

another unknown function such that g(λ) → 0 as λ → ∞. There seems no reason not to

assume that g(λ) is of order unity when λ is of order unity.

24For some recent work on time dependent cosmologies in the context of AdS/CFT, see [75, 76, 77, 78,

79, 80, 81, 82, 83, 84, 85, 86].
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Consider again varying the coupling constant down from infinity. The first term in

(7.18) dominates the evolution of the temperature when the coupling is large enough (i.e for

g(λ) ≪ T−1∂0φ ) and (7.15) applies in this domain. On the other hand once g(λ) increase

above T−1∂0φ, the second term in (7.18) dominates the evolution of the temperature. The

details of the subsequent evolution depend on the precise form of the unknown function

g(λ).

In order to get a sense for how this works, however let us assume that g(λ) = K/λa for

some positive power a (this would be the expectation for g(λ) at large λ if it was generated

at finite order in the α′ expansion). In this case the second term of (7.18) dominates over

the first when λ ≤ λ0 ∼ (T
φ̇
)1/a. For lower values of λ we can ignore the first term in

(7.18), and then that equation is easily integrated. We find that, in lowering λ from λ0 to

λmin, the temperature changes by a factor e
−

K
a

( 1
λa

min
−

1
λa
0

)
. Now φ̇

T must be small in order

for fluid dynamics to apply. It follows that λ0 ≫ λmin when λmin is of unit order, so that

lowering λ from λ0 to λmin changes the temperature of the fluid by a finite factor that is

is independent of λ0.

In summary, if the coupling is lowered very slowly from λ to λ0 the temperature

is almost unchanged. Subsequent lowering of the coupling from λ0 to λmin changes the

temperature by a fixed finite factor that depends on λmin but not on λ0 or other details

of the process. We conclude that the principal conclusions of the previous subsection -

namely that the dilaton may slowly be lowered from an arbitrarily large though fixed value

to a value of order one with a finite (though, in this case, not arbitrarily small) change

temperature - carry through unchanged. This appears to be an interesting statement about

the dual bulk evolution. We have argued that nothing particularly dramatic happens to a

spacetime - at least if it is at large finite temperature - as it traverses through a region of

string scale curvature. We emphasize that it was very important to our analysis that we

were at high temperature; the fluid dynamical analysis presented here sheds no light on

the evolution of the same bulk geometries at zero temperature.

In fact one can try and go even further. After having reduced the dilaton to a value

where, gsN ∼ O(1), we can reduce it even more till gsN ≪ 1. At this stage the notion of

spacetime geometry has completely broken down and the correct description is in terms of

a perturbative Yang Mills theory. Thereafter one can increase the dilaton, till in the far

future it meets the condition, gsN ≫ 1. As long as the driving force due to the dilaton is

slowly enough varying, one expects that the boundary theory will be well defined, and the

initial state we start with can be continued past the highly curved region to match with a

smooth geometry in the future.

Now fluid mechanics can continue to be a good description, at small gsN , provided,

the function h(λ) does not blow up 25 as λ→ 0, and, the temperature varies slowly enough,

satisfying the condition,

lmfp
Ṫ

T
≪ 1, (7.19)

(where lmfp stands for the mean free path). The condition (7.19) is expected to translate

25This seems very reasonable and can be checked against a perturbative calculation.
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into
Ṫ

T 2
≪ λ (7.20)

at small λ, a stronger condition than (7.17) which holds at λ of unit order or greater. (This

expectation follows from the estimate, that in perturbative Yang Mills theory

lmfp ∼
1

(gsN)2T
. (7.21)

as opposed to lmfp ∼ 1
T at strong coupling). Consequently, requiring that fluid mechanics

is a good effective theory in the perturbative regime puts more stringent limits on how fast

the dilaton can be varied. From eq.(7.19), eq.(7.21), we get,

d( 1
eφN

)

dt
≪ T. (7.22)

Nonetheless, using a dilaton profile which varies slowly enough to meet this more stringent

condition, we can construct solutions where two asymptotically smooth regions of spacetime

are connected by an intermediate region which is highly curved (dual to Yang Mills theory at

any specified - though nonzero - coupling). This intermediate region admits no conventional

description in terms of spacetime, but we expect it to be well described by fluid mechanics
26.

As must be clear to the reader, the discussion this subsection makes several assumptions

and is tentative in some respects. In particular we reiterate that it makes assumptions

that are difficult to directly verify: in particular the assumption that there are no phase

transitions in high temperature N = 4 theory as gsN is varied from large values to O(1),

or smaller values.

7.3 Spatially varying Dilaton

Finally we consider a spatially varying dilaton as a forcing function. For simplicity we

take the dilaton to depend on only one spatial coordinate, x. We also set, the uy, uz,

components of the four-velocity to vanish. As in our discussion of the time dependent case

above, we start with the perfect-fluid stress tensor, eq.(7.1), and leading dilaton forcing

function. Eq.(7.14) then gives rise to two condition. From, the ν = 0 component we get,

d(T 4u0ux)

dx
= 0. (7.23)

And, from the ν = x component,

d(T 4(4(ux)2 + 1)

dx
= −T

3

π
ux(φ′)2, (7.24)

where prime indicates derivative with respect to x. In addition the condition,

(u0)2 − (ux)2 = 1, (7.25)

26Also it is worth noting that once the dilaton is small enough, we could more directly analyze the time

evolution in perturbation theory, even when fluid mechanics is not valid. This may even allow us to study

evolutions that continue to strictly zero field theory coupling in finite time.
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is also valid. This yields three equations in the three variables, T, u0, ux. Eliminating two

variables from eq.(7.23), eq.(7.25), and substituting in eq.(7.24) reduces the problem to

quadrature.

Here let us consider the case where where the spatial velocity is small, i.e.,

ux ≪ 1, (7.26)

and work, to begin with, to linear order in ux. To this order, u0 = 1, and from eq.(7.23),

ux =
c

T 4
, (7.27)

where c is a constant. Eq,(7.24), now gives,

T 5(x)

T 5
i

= 1 − 5

4π

uxi
Ti

∫ x

−∞

(φ′)2dx. (7.28)

where Ti, u
x
i stand for the temperature and velocity at x→ −∞. Without loss of generality

we can choose conventions so that uxi > 0. Then we see that as x increases, the temperature

decreases and the velocity increases. From, eq.(7.27), eq.(7.28), we see that the length scale

of variation of the temperature and velocity, are set by the forcing function of the dilaton.

We denote this length scale by L below.

The analysis can be improved by working to quadratic order in ux. In general also the

dilaton will depend on all spatial coordinates, this will lead to spatially varying velocities

and to viscosity effects being important. The Reynolds number for a fluid flow is given by,

Re ∼ ∆uxTL, (7.29)

where ∆ux is the variation in the velocity along the flow. From, eq.(7.27), eq.(7.28), we

see that, for ∆φ ∼ O(1), ∆ux ∼ uxi
∆T
T ∼ (uxi )

2 1
TL . This gives Reynolds numbers of order

unity or smaller. Again this is in line with the expectations spelt out in the introduction.

The smallness of the Reynolds number of this flow is connected to the fact that the dilaton

yields a forcing function that is of second rather than first order in derivatives.

Corrections to these flows can be systematically computed, using the corrections to

the stress tensor, eq.(2.13), and forcing function, eq.(3.20).

8. Discussion

In this paper we have used the AdS/CFT correspondence to determine the metric dual

to an arbitrary flow of the fluid of a conformal field theory on an arbitrary weakly curved

four manifold, with an arbitrary slowly varying coupling constant. We have also explicitly

constructed the event horizon of these metrics in the derivative expansion, and used grav-

itational ideas to propose the construction of a dual entropy current whose local increase

is guaranteed by the area increase theorem for black holes in general relativity.

We have tested the constructions of this paper against an exact class of asymptotically

globally AdS5 solutions of Einstein’s equations, namely rotating black holes in global AdS5.

We have demonstrated that these solutions admit a remarkably simple rewriting in fluid
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dynamical terms, and have verified that they agree in detail with the general constructions

of our paper when expanded out to second order in a derivative expansion.

The connection of large rotating black holes to fluid dynamics was previously partially

explored in [2]. The authors of that paper noted that the stress tensor dual to rotating black

hole solutions was exactly reproduced, to appropriate order in the derivative expansion, by

the predictions of fluid dynamics. However these authors also noted an apparent first order

discrepancy between the properties of charged rotating black holes[87, 88, 70, 89] and the

predictions of charge fluid dynamics. A generalization of the calculations of this paper to

account for fluid charge would allow us to pinpoint the source of this worrying discrepancy.

Turning to another issue, we believe that it should be possible, within the approxima-

tions of this paper, to choose a time dependent fluctuations of a flat space metric to stir

the conformal fluids studied of this paper into steady motions with high Reynolds num-

bers. Even using the forcing functions provided by linearized fluctuations of the metric

away from flat space (see the introduction) we believe it should be possible, for instance,

to stir a fluid on R3 or the sphere into configurations that resemble classic experiments

that display turbulence27. Consequently, the map from fluid dynamics to metrics in this

paper should yield the spacetime dual to a turbulent fluid flow. The understanding of ap-

parently universal exponents in turbulent motions remains one of the outstanding unsolved

problems of statistical physics. It is conceivable that the dual spacetime perspective could

permit qualitatively new insights for such flows.

Of course transient turbulence occurs in fluid flows even without forcing. For instance,

a configuration of our conformal fluid at temperature T on an S3 of radius R, and with

(varying) velocities of unit order has Reynolds number of order TR and so presumably

undergoes turbulent motion. Now all such fluid configurations eventually settle down into

(presumably unique) non dissipative solutions of of fluid dynamics with given conserved

energies and angular momenta; the rigid rotations studied in [2] and in section 6 of this

paper. Let us translate this expectation to bulk language. Consider an arbitrary gravita-

tional configuration, in global AdS5, with appropriately large energy and angular momenta.

Such a configuration will undergo gravitational collapse and eventually settle down into

one of the rotating black holes studied in [2]. The gravitational dynamics of this settling

down process could be dual to a turbulent fluid flow. It may be interesting to pursue this

connection further.

Finally, we end this paper with an amusing thought. Recall that we have been able

to construct a bulk dual to fluid flow in an arbitrary boundary metric. Now the boundary

metric can, in particular, be chosen to have a horizon; for example it could be taken to be

the metric of a 4 dimensional Schwarzschild black hole(See [90] for an example). It may be

interesting to investigate the bulk dual description of the boundary fluid falling through

horizon of this metric.
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A. Force on the Boundary fluid due to a Varying Dilaton

In this appendix, we calculate the force that a varying dilaton field applies on a fluid at

the boundary. To that end, we start with the bulk expression for the boundary energy-

momentum tensor

16πG5T
A
B = lim

r→∞

r4
(

2(KCDh
CDhAB −KA

B)

+ḠAB − 6hAB − 1

2

(

∇̄AΦ∇̄BΦ − hABh
CD

2
∇̄CΦ∇̄DΦ

)) (A.1)

where hAB ,KAB and ḠAB are respectively the induced metric, the extrinsic curvature

and the Einstein tensor of the constant r hypersurface. ∇̄ is the covariant derivative

corresponding to the constant r hypersurface in the bulk.

To compute the divergence fB = ∇̄AT
A
B , we proceed as follows - from Gauss-Codazzi-

Mainardi relations (See, for example, Eqn.10.2.24 of [91]), we have

2∇̄A

(

KCDh
CDhAB −KA

B

)

= −2RCDg
C
Bn

D = −∇CΦ∇DΦgCBn
D = −∇̄BΦ∇nΦ (A.2)

where in the last step we have used the Einstein equations in the bulk. Further, we also

have

−1

2
∇̄A

(

∇̄AΦ∇̄BΦ − hABh
CD

2
∇̄CΦ∇̄DΦ

)

= −1

2
∇̄2Φ∇̄BΦ (A.3)

Using these two equations along with the reduced Bianchi identity ∇̄AḠAB = 0, we

get

16πG5∇̄AT
A
B = −∇̄Bφ

(

∇nΦ +
1

2
∇̄2Φ

)

(A.4)

Multiplying by r4 and using 16πG5e
−φL = − limr→∞ r4

(

∇nΦ + 1
2∇̄2Φ

)

we get the follow-

ing relation among the boundary variables

∇µT
µ
ν = e−φL∇νφ (A.5)
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B. AdS Kerr

In order to rewrite AdS Kerr metric in the fluid dynamical form, we find it convenient to

re-express it as

ds2 = 2dr

(

dt− ω1 sin2 Θ

1 − ω2
1

dφ− ω2 cos2 Θ

1 − ω2
2

dψ

)

− (r2 + 1)
∆Θdt

2

(1 − ω2
1)(1 − ω2

2)

+ ρ2dΘ
2

∆Θ
+ (r2 + ω2

1)
sin2 Θ

1 − ω2
1

(dφ+ ω1dt)
2 + (r2 + ω2

2)
cos2 Θ

1 − ω2
2

(dψ + ω2dt)
2

+
2m

ρ2

(

dt− ω1 sin2 Θ

1 − ω2
1

dφ− ω2 cos2 Θ

1 − ω2
2

dψ

)2

= 2dr

(

dt− ω1 sin2 Θ

1 − ω2
1

dφ− ω2 cos2 Θ

1 − ω2
2

dψ

)

+ r2
(

− ∆Θdt
2

(1 − ω2
1)(1 − ω2

2)
+
dΘ2

∆Θ
+

sin2 Θ

1 − ω2
1

(dφ+ ω1dt)
2 +

cos2 Θ

1 − ω2
2

(dψ + ω2dt)
2

)

− ∆Θdt
2

(1 − ω2
1)(1 − ω2

2)
+ (ω2

1 cos2 Θ + ω2
2 sin2 Θ)

dΘ2

∆Θ

+
ω2

1 sin2 Θ

1 − ω2
1

(dφ+ ω1dt)
2 +

ω2
2 cos2 Θ

1 − ω2
2

(dψ + ω2dt)
2

+
2m

ρ2

(

dt− ω1 sin2 Θ

1 − ω2
1

dφ− ω2 cos2 Θ

1 − ω2
2

dψ

)2

(B.1)

This metric may be rewritten as

ds2 = −2uµdx
µdr + r2gµνdx

µdxν +
2m

ρ2
uµuνdx

µdxν + Σµνdx
µdxν (B.2)

where

Σµνdx
µdxν ≡ − ∆Θdt

2

(1 − ω2
1)(1 − ω2

2)
+ (ω2

1 cos2 Θ + ω2
2 sin2 Θ)

dΘ2

∆Θ

+
ω2

1 sin2 Θ

1 − ω2
1

(dφ + ω1dt)
2 +

ω2
2 cos2 Θ

1 − ω2
2

(dψ + ω2dt)
2

(B.3)

The first three terms in (B.2) are simply the ansatz (2.7) while the last term, proportional

to Σµν represents the derivative corrections (2.8) to that ansatz.

It is possible to express Σµν entirely in terms of Weyl-covariant curvatures and Weyl

covariant derivatives of the velocity.
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The non-zero Weyl covariants associated with this fluid configuration are

Aµ = 0 ; σµν = 0 ; Cµνλσ = 0

R = 6
(

1 + ω2
1 + ω2

2 − 3(ω2
1 cos2 Θ + ω2

2 sin2 Θ)
)

ωµνω
µν = 2(ω2

1 cos2 Θ + ω2
2 sin2 Θ)

1

2
ωµνdx

µ ∧ dxν = sinΘ cos ΘdΘ ∧
(

ω1

1 − ω2
1

dφ− ω2

1 − ω2
2

dψ

)

Dλω
λ
µdx

µ = P νµDλω
λ
νdx

µ + ωαβω
αβuµdx

µ

= −2dt(ω2
1 cos2 Θ + ω2

2 sin2 Θ)

− 2∆Θ

(

ω1 sin2 Θ

1 − ω2
1

dφ+
ω2 cos2 Θ

1 − ω2
2

dψ

)

+ 2(ω2
1 − ω2

2) sin2 Θ cos2 Θ

(

ω1dφ

1 − ω2
1

− ω2dψ

1 − ω2
2

)

P νµDλω
λ
νdx

µ = −2

(

ω1 sin2 Θ

1 − ω2
1

dφ+
ω2 cos2 Θ

1 − ω2
2

dψ

)

+ 2(ω2
1 − ω2

2) sin2 Θ cos2 Θ

(

ω1dφ

1 − ω2
1

− ω2dψ

1 − ω2
2

)

Pµνdx
µdxν =

dΘ2

∆Θ
+

sin2 Θ

1 − ω2
1

dφ2 +
cos2 Θ

1 − ω2
2

dψ2

− sin2 Θ cos2 Θ

(

ω1dφ

1 − ω2
1

− ω2dψ

1 − ω2
2

)2

ωµ
λωλνdx

µdxν = −(ω2
1 cos2 Θ + ω2

2 sin2 Θ)
dΘ2

∆Θ

− ∆Θ sin2 Θ cos2 Θ

(

ω1dφ

1 − ω2
1

− ω2dψ

1 − ω2
2

)2

(B.4)

(

ωµ
λωλν +

ωαβω
αβ

3
Pµν

)

dxµdxν = −1

3
(ω2

1 cos2 Θ + ω2
2 sin2 Θ)

dΘ2

∆Θ

+
2

3
(ω2

1 cos2 Θ + ω2
2 sin2 Θ)

(

sin2 Θ

1 − ω2
1

dφ2 +
cos2 Θ

1 − ω2
2

dψ2

)

+
∆Θ + 2

3
sin2 Θ cos2 Θ

(

ω1dφ

1 − ω2
1

− ω2dψ

1 − ω2
2

)2

Using the above expressions, one can rewrite Σµν completely in terms of the Weyl-

covariant derivatives of the fluid velocity and Weyl covariant boundary curvatures: we

find

Σµνdx
µdxν = −

(

uµDλω
λ
ν + ωµ

λωλν +
R
6
uµuν

)

dxµdxν

and ρ2 = r2 +
1

2
ωαβω

αβ = r2
(

1 +
1

2r2
ωαβω

αβ

) (B.5)
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C. Notation

We work in the mostly positive, (− + + . . .), signature. The dimensions of the spacetime

in which the conformal fluid lives is denoted by d. In the context of AdS/CFT, the dual

AdSd+1 space has d+ 1 spacetime dimensions.

Latin alphabets A,B, . . . are used to denote the d+ 1 dimensional bulk indices which

range over {r, 0, 1, . . . , d−1}. Lower Greek letters µ, ν, . . . indices range over {0, 1, . . . , d−1}
. The co-ordinates in the bulk are denoted by XA which is often split into a radial co-

ordinate r and xµ. The dilaton field in the bulk is denoted by Φ and its value in the

boundary is denoted by φ.

Our convention for the Riemann curvature tensor is fixed by the relation

[∇µ,∇ν ]V
λ = −RµνσλV σ. (C.1)

In Table 1, we list the physical meaning and the definitions of various quantities used

in the text.

Symbol Definition Symbol Definition

d dimensions of boundary GAB Bulk metric

gµν Boundary metric

T Fluid temperature η Shear viscosity

T µν Energy-momentum tensor JµS Entropy current

uµ Fluid velocity (uµuµ = −1) Pµν Projection tensor, gµν + uµuν

aµ Fluid acceleration, ϑ Fluid expansion,

σµν Shear strain rate, ωµν Fluid vorticity,

Dµ Weyl-covariant derivative Aµ See (1.3)

Rµνλ
σ Riemann tensor Fµν ∇µAν −∇νAµ

Cµνλσ Weyl curvature

Table 1: Conventions used in the text,with reference to the equations defining them where appro-

priate.
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