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ABSTRACT: We generalize the computations of [[] to generate long wavelength, asymptoti-
cally locally AdSs solutions to the Einstein-dilaton system with a slowly varying boundary
dilaton field and a weakly curved boundary metric. Upon demanding regularity , our solu-
tions are dual, under the AdS/CFT correspondence, to arbitrary fluid flows in the boundary
theory formulated on a weakly curved manifold with a prescribed slowly varying coupling
constant. These solutions turn out to be parameterized by four-velocity and temperature
fields that are constrained to obey the boundary covariant Navier Stokes equations with a
dilaton dependent forcing term. We explicitly evaluate the stress tensor and Lagrangian as
a function of the velocity, temperature, coupling constant and curvature fields, to second
order in the derivative expansion and demonstrate the Weyl covariance of these expressions.
We also construct the event horizon of the dual solutions to second order in the derivative
expansion, and use the area form on this event horizon to construct an entropy current for
the dual fluid. As a check of our constructions we expand the exactly known solutions for
rotating black holes in global AdSs5 in a boundary derivative expansion and find perfect
agreement with all our results upto second order. We also find other simple solutions of
the forced fluid mechanics equations and discuss their bulk interpretation. Our results may
aid in determining a bulk dual to forced flows exhibiting steady state turbulence.
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Notation

1. Introduction

The gauge gravity correspondence(ff] is one of the key ideas to have emerged from devel-
opments in string theory. It has already led to considerable progress, and promises to
teach us much more both about quantum gravity and about strongly coupled field theory
dynamics.

The best studied class of gauge gravity dualities relate the dynamics of a particular
conformal field theory on R*! to the physics of a corresponding gravitational theory on an
AdSs background. We now have an infinite number of proposed dualities of this nature.
As quantum field theories may be formulated on arbitrary base manifolds it is natural to
attempt to generalize these AdS/CFT correspondences to obtain dual descriptions of these
CFTs on an arbitrary Lorentzian base manifold M3 ;.

According to the usual rules of the AdS/CFT correspondence (See [f] for a review),
the classical phase space of the dual bulk description is the set of regular solutions of the
relevant bulk equations of motion that asymptote at small z (the boundary) to the metric!

dz? + dsgl

_ (1.1)

ds? =

5 z

where d.s%’l is the metric of M3 1(See Appendix ({ for a list of notation employed in this

paper). In this paper we use the methods presented in [, f] (see also [{, [f]) to com-

pletely characterize a special corner of this phase space that is dual, under the AdS/CFT
correspondence, to boundary fluid dynamics.

ITogether with similarly prescribed asymptotic conditions for all other fields.



Through most of this paper, we focus on the bulk dual of the four-dimensional CF'T
dynamics at large N and infinitely strong coupling formulated on a weakly curved four
dimensional spacetime 2. Away from possible singularities, the the bulk equations that
determine dual dynamics in this limit may be derived from a two derivative action that
describes the interaction of gravity with other fields ® The equations of motion of all
such systems have a universal subsector, in which the Einstein frame metric is a solution
of Einstein gravity with a negative cosmological constant and all other fields are simply
zero*. In this paper, we study this universal subsector subject to the boundary conditions
)}

We are specifically interested in regular bulk configurations whose variations in the
boundary directions are slow compared to the length scale set by the local energy density
of the solution. Experience with field theory along with AdS/CFT suggests that dynamics
of such long-wavelength solutions is effectively described by four-dimensional hydrodynam-
cs.’. Starting from the bulk Einstein equations, in this paper we demonstrate that this is
indeed the case. More specifically, within a boundary derivative expansion, we construct
an explicit map from the solutions of Navier Stokes equations (with distinguished, gravi-
tationally determined values of parameters) on the manifold M3 to the space of regular
solutions of Einstein’s equations with a negative cosmological constant that asymptote to
(1) at small z

The method employed in this paper is a direct generalization of the procedure employed
in [, f] (see also [{]). Given a velocity field u*(x) and a temperature field T'(z) we note
that the metric

ds* = —2u,,(z")datdr — r* f(b(z")r)u,u, datdz” + r* Py, dat dz”
Puw = gw,(ﬂj“) + u,u(:vu)ul/(:vu) (1.2)
1
flr)=1-7

(where g, (z*) is the metric on M3 1) has several desirable properties. First, its asymptotic
form matches ([L.1]). Next note that lines of constant z# in ([.g) are ingoing null geodesics.
Tubes centered around these geodesics are locally similar to tubes in a uniform black-brane
geometry but with a temperature and velocity that varies with z#. In fact, this metric

2In this introduction, we will first describe our results assuming no variation in the boundary coupling
constant, but we will later generalize these results to a prescribed weakly varying coupling constant.

3For example, when the CFT in question is N = 4 Yang Mills theory, the action corresponds to the S°
compactification of IIB supergravity.

4A class of two-derivative gravitational theories also admit a consistent truncation to a larger Einstein-
dilaton system which we will employ to describe later the bulk duals of boundary theories with prescribed
variation of the coupling constant

5In general, the fluid mechanics approximation is self consistent only when the length scale associated
with curvatures of the boundary metric dsg’h and the length scale of variation of the boundary coupling
constant, are also large in units of the same energy density scale. We assume that these conditions are met
in the following analysis.
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reduces to the exact uniform black-brane solution of Einstein’s equations when u#(z) and
T(z) and g, () are constants. Finally, under suitable assumptions regarding the late-time
behavior of the boundary-metric, boundary velocity, and the boundary temperature fields,
this metric has a regular future event-horizon.

We then generalize the procedure of [[]] to demonstrate that ([.) may be thought of
as the first term in a systematic expansion of Einstein equations in a power series in ﬁ
where T is the local temperature of the solution and L the local length scale of variation
of the temperature and velocity and metric functions in the boundary directions.

We work out the rules of this perturbation theory to arbitrary order in €, and explicitly
implement these rules to second order. As in [[ll], this procedure works only when the
velocity and temperature fields obey a particular dynamical equation of motion. This
equation of motion turns out simply to be V,T" = 0 (the indices (p,7) run only over
the boundary directions ) where the boundary stress tensor T#” is a given function of the
velocity and temperature fields, whose form is determined, order by order in the derivative
expansion, by the perturbative procedure itself. Of course this equation of motion is simply
the Navier Stokes equation of fluid dynamics, with particular values of fluid parameters
predicted by gravity. Our explicit second order solution to this perturbation theory yields
an explicit expression for the fluid dynamical stress tensor to second order in the derivative
expansion. Most terms in this stress tensor are obtained by the simple covariantization
of the flat space second order stress tensor reported in [fl]. However in addition we find
a contribution proportional to a curvature tensor that the analysis of [] was blind to.
The existence of such a term was already predicted in [p(], and our result is in complete
agreement with their prediction (including coefficients) providing a check both of our results
as well as those of [B(0).

We show on general grounds that the metrics constructed by the perturbative proce-
dure developed in this paper must transform in a specified fashion under boundary Weyl
transformations. In particular, Weyl covariance demands that the metric dual to a fluid
configuration be of the form

ds* = —2W; w,dx"(dr + rAxdaz?)
+ [7‘2 (W2 g + Wauyuy) + 17 (Wauuy, + u,Wa,) + W5“,,] dxtdx” . (1.3)

Ay =u.Vuy — %UA

where Wy, Wa and W3 are Weyl-invariant scalars, Wy, is a Weyl-invariant transverse vector
and Ws,, is a Weyl-invariant transverse traceless tensor and Ay is the fluid mechanical
Weyl connection introduced in [pf]. This requirement, while logically necessary is not
algebraically automatic in our perturbative procedure, and so gives a second nontrivial
check on our results. Our construction passes this test; in fact we are able,in §f], to rewrite
the bulk metric dual to second order fluid dynamics entirely in terms of the Weyl covariant
formalism of [5J], making the Weyl transformation properties of our solution manifest.
Having constructed these bulk metrics dual to fluid dynamics, we then proceed to
study their causal properties. In particular, we generalize the results of [[] to demonstrate
that (under appropriate assumptions) all (r = 0) singularities present in the solutions



presented in this paper are shielded from the boundary of AdS by a regular event horizon.
In fact, we find a local expression for the radial location of the event horizon as a function
of boundary fluid data, generalizing the results of [[]. We then use our construction of the
event horizon together with the pull back of the area form on the horizon to the boundary
(see [[i]) to construct an entropy current for the curved space fluid dynamics constructed
in this paper. The non-negativity of the divergence of our entropy current is guaranteed
by the area increase theorem of general relativity.

As an additional check and application of our results we go on to study the most general
AdS;5 Kerr solutions [B5, B8, B4, b8, b9, [0, 1] in fluid dynamical terms. These exact
solutions are labelled by their mass and two angular velocities. It was already observed in
[ that the stress tensor and thermodynamical properties of these black holes agree with
the expectations of perfect fluid dynamics in the large mass limit. In this paper we go a
step further; we rewrite the bulk metric of these black holes in the coordinates employed in
our general construction of bulk duals to fluid flows. In these co-ordinates the AdSs Kerr
solution assumes a particularly simple (and a manifestly Weyl-covariant) form

ds? = —2u,dz" (dr + rAxdz?) + r2g,, drtdz”

R 2 1 -1
— (uuDAw)‘V + wu)‘w,\,, + Eu,m,,) dz*dx” + T—Zl <1 + ﬁwagw‘w) uyuydat dz”
(1.4)

where w,,,, is the vorticity of the fluid, D is the fluid mechanical Weyl covariant derivative
(associated with the Weyl connection Ay) and R is the Weyl-covariantized Ricci scalar.
In this form, this bulk metric admits a simple and explicit all orders expansion in fluid
dynamical terms. The expansion of ([.4) to second order in the derivative expansion is
exactly reproduced by our general metric dual to fluid dynamics, upon substitution of the
velocity field u, into our metric’. We also verify that our formulas for the location of the
event horizon and the local entropy current of this black hole match the exact formulas for
the same quantities upto second order in the derivative expansion.

As we have explained above, we have constructed gravitational solutions dual to every
solution of the covariant Navier Stokes equations

v, T =0 (1.5)

on an arbitrary background manifold with metric g,,,. Let us now consider a special case
of this equation; let

G = (90)pa (65 + hy)) (1.6)

for small A and work to first order in A{. The Navier Stokes equation may be rewritten
as

(Vo)u(To)™ = f* (1.7)

Tt is interesting to note that in the special case of solutions with vorticity wyuy = 0, our metric exactly
reproduces the AdS Schwarzschild blackhole.



where (Tp)"" is the stress tensor of the corresponding fluid flow in the space-time with
metric (go)uw, and the effective forcing function f* is given by

1 1
fu = =5 (T0)30ah = u[(To) haw) + 5 (T0)*0uhas — V0T 93]

All indices in this equation are now raised and lowered with the metric (go) w and Vo is
the covariant derivative with respect to the same metric. In particular, for a symmetric
tensor Q*¥ we have

1 1
viQ" = Naroa [\/ —9 Q" v] - 5@%0.90); (1.8)

In the expression above, 67" is the first order change in the fluid stress tensor (B.19),
under the variation of the metric given in ([[.§), and the variation in the four-velocity
out = —“2—Muo‘uﬁ hag, keeping the temperature fixed. For instance, 07 for the perfect
fluid stress tensor T = T*(4uu” + g*) is given by

§TH — 74 [g(o)““haﬁg(o)ﬁ” + 4u”u”ha5uauﬁ (1.9)

By choosing h,, appropriately we can produce a wide range of forcing functions f,
with one qualitative restriction; f* is relatively mild as it is necessarily at least of first
order in the boundary derivative expansion. Nonetheless we expect even this mild forcing
function to be able to stir the fluid into flows with velocity differences v of unit order. The
reason for this expectation is that that every term on the LHS of ([.7) is also of at least
of first order in derivatives, so that factors of 1/L should ‘cancel out’ between the LHS
and RHS. In §f, below we present evidence for this assertion by presenting some simple
steady state solutions to the equations of fluid dynamics that are pushed into flows with
large velocities.

The Reynolds number for flows of the conformal fluids studied in this paper is given
by T'Lv; where L is the length scale of variation of velocities as above. If v can indeed be
stirred to order unity, it follows that the Reynolds numbers of the corresponding flows are
very large in the limit T'L > 1 considered in this paper. Recall that fluid flows with large
Reynolds numbers are expected to be turbulent. The discussion of this paragraph suggests
that it should be possible to choose h,, and correspondingly the functions f” to stir the
boundary fluid into, for instance, steady state turbulence. The map from fluid dynamics to
gravity, presented in this paper then yields a bulk dual to this turbulent fluid flow. It would
be very interesting to explore this in more detail, and in particular to investigate whether
bulk dual considerations could shed new light on the apparent universality of turbulent
flows.

In this introduction so far, we have described the construction of the bulk solution
dual to the long wavelength dynamics of a field theory on an arbitrary weakly curved
manifold. This discussion can be generalized to the bulk solution dual to an arbitrary
fluid dynamical flow of the field theory, on an arbitrary weakly curved manifold, and with
an arbitrary slowly varying coupling constant. In order to do this we focus on the class
of gravitational theories which admit consistent truncation to Einstein-dilaton sector; this



includes all supergravity theories that result from the compactification of IIB supergravity
down to AdSs, and so includes the duals to all well understood examples of the AdS;/CFTy
correspondence.

For this class of theories, we determine the dual to the the fluid dynamical motions of
field theories with actions of the form

S = /@e“f’ L (1.10)

where ¢(z#) is an arbitrarily specified slowly varying function. ® As the Lagrangian ([[.10)
explicitly breaks translational invariance, the equations of motion obeyed by the velocity
and temperature fields of this system are modified; in fact the Noether procedure for
translational invariance, applied to (), yields the equation

VT =e™? LV
1.11
T = 2 4 (1.11)
Vg ogH”

i.e. the Navier Stokes equations with an additional explicit forcing term. This equation

also follows from a direct analysis of the Einstein-dilaton system near the boundary, upon
employing the usual holographic formulas for 7}, and the Lagrangian (see Appendix A).

In this paper, we perturbatively determine gravity dual descriptions of fluid flows that
obey ([.11)) and in the process determine expressions for the stress tensor and the La-
grangian, as a function of the velocity fields, temperature field, curvature and coupling
constant, order by order in the derivative expansion. The procedure we employ to derive
these results is a straightforward generalization of the procedure described above for ar-
bitrary weakly curved boundary metric. We search for solutions of the Einstein-dilaton
system with boundary conditions on the metric field as described above, but additionally
require that the dilaton field ®(z#) asymptote to ¢(z*). The configuration ([L.3) supple-
mented with ®(z#) = ¢(x*) once again turns out to be a suitable first term in a systematic
perturbative expansion of solutions of the Einstein-dilaton system in powers of €. This
perturbation theory works only if the integrability condition (|L.11]) is obeyed. When this
equation is met, the perturbative procedure generates expressions for 7" and £ as func-
tions of velocities, temperatures and background fields. We have explicitly worked out this
perturbation theory - and consequently the corresponding expressions for these quantities
- explicitly to second order in derivatives. Under suitable assumptions regarding the late-
time behavior of the boundary-metric and the variation of the coupling constant, we have
also determined the location of the event horizon and an expression for the entropy current
for this larger class of bulk configurations.

Upon solving the gravitational equations it turns out that the expectation value of
the Lagrangian is itself proportional to a derivative of the dilaton; as a consequence, the

8In sections §E and §E below, we economize on space by presenting only our most general results which
account for the effects of a varying dilaton field. The bulk metric dual to fluid flows on a curved spacetime
with constant dilaton may easily be obtained from the results of §E and §E by simply setting the boundary
dilaton to a constant in all equations.



explicit forcing function in ([.11]) is of second order or higher in boundary derivatives,
and so is milder than the effective forcing function described by a metric fluctuation ([L.7).
Nonetheless fluid flows forced by the dilaton are interesting for their bulk interpretation.

While we have explicitly derived a duality between solution in fluid mechanics of
strongly coupled gauge CFTs and solutions of the equations of gravity, we expect this
duality to continue to provide a map between fluid flows in the CFT at arbitrary nonzero
coupling and solutions to the equations of the appropriate dual classical string theory. The
equations of fluid dynamics presented in this paper have been computed from Einstein
gravity and so are only valid at large "tHooft coupling, A = e? N. However, many of the
conclusions in this paper only depend on the fact that the forcing function has a mild
effect, if the external gravitational and dilaton fields vary slowly enough compared to the
temperature. This feature is determined by symmetry considerations and must be valid at
arbitrary A.

With this in mind, consider the evolution of the hot boundary field theory with a time
dependent dilaton that starts at a large value, dips at a particular time to a value of order
unity, and then climbs back to a large value at later times. It seems reasonable to guess
that the equations of fluid dynamics derived in this paper provide qualitative (though not
quantitative) guidance to the nature of the evolution of a hot classical solution of string
theory through regions of string scale curvature®. In section §ff we discuss such an evolution
which turns out to be rather mild, suggesting the absence of qualitative surprises in at least
this particular excursion through string scale curvatures.

To conclude this introduction, we reemphasize that in this paper we have determined
the gravitational dual description of the motion of a forced fluid. Forced fluid flows have
been the subject of intense investigation for over a century[fd] and display fascinating
dynamical behaviors all of which must be inherited by gravity. We hope that this connection
can be used to extract useful lessons for the study of gravity and/or fluid dynamics.

2. Long wavelength solutions of the Einstein-dilaton system in derivative
expansion

Consider the Einstein-dilaton system with a negative cosmological constant and boundary
conditions as described in the introduction. In this section, we will describe how one may
systematically solve for a class of long wavelength solutions of this system order by order
in e = T—lL, where L is the length scale of variation of the dilaton field, boundary metric,
velocity and temperature fields and 7T is the local temperature of the fluid. All the results of
this section apply to any CFT whose bulk dual description admits a consistent truncation
to the equations of motion that follow from the Lagrangian

S = 1671G5 /x/é <R+ 12— %(acp)?> (2.1)

9Recall that the curvature in string units of the corresponding string backgrounds is known to scale as
1
AT 4 at strong coupling and is expected to be of unit order when \ is of unit order.



This property is true of all effective actions that are obtained from the compactification I1B
theory on an Einstein manifold, and so of every one of the infinitely many known examples
of the AdS/CFT correspondence.

Notice that the Lagrangian (2.1) admits a further consistent truncation to Einstein
gravity with a negative cosmological constant if we set the dilaton field to any constant
value. Consequently, when our boundary conditions allow us to set the dilaton to a constant
the equations from (R.I)) further simplify. All the results of this section and the next apply
with greater universality in this limit - they apply to any CFT whose dual description is a
two derivative theory of gravity interacting with other fields.

2.1 Uniform Branes in the Einstein-dilaton System

The equations of motion that follow from Lagrangian (B.1) are given by

2
Ry Qu®ON®  Gun <R+ 1o (09) > —0
2 2 2
2 2.2
— R= (92)7 _ 20, Ryn — LM%@N(I) +4Gyn =0 (22)
V2 = 0.

There exists a well known four parameter class of exact solutions to these equations of

motion
ds* = —2u,datdr — r? f (br)u,u, dadz” + r* Py, dat dz”
d =P
,P,uu = Guv T Uy (23)
1
fr)=1--

where g, is an arbitrary constant matrix of signature (—1,1,1,1), b is a constant and u,,
is a constant unit normalized velocity vector : u,u,g"” = —1.

2.1.1 Regulation and Weyl Frames

In this subsection, we pause to recall a well known subtlety in the boundary interpretation
(via the AdS/CFT correspondence) of locally asymptotically AdS metrics like (R.J). This
interpretative subtlety will play no role in the calculation we describe in this section or the
next. However, it will permit a stringent test on the self-consistency of our final results in
i

We begin by noting that the metric (R.3) asymptotes to

ds* = —2u,dztdr + r?g,, da*dz” (2.4)

and according to the usual rules of the AdS/CFT correspondence, describes a state in the
CFT formulated on a space with any of the infinite numbers of metrics that are Weyl
equivalent to g,,. . Next, we note that in order to find the dual interpretation of any



asymptotically AdS space, it is convenient to regulate the solution near its boundary and
the bulk solution may then be regarded as a state on the field theory on a base manifold
whose metric is proportional to the induced metric on this regulated boundary.

In particular, we may choose to regulate the boundary of (R.4) on slices of large
constant r. With this choice the dual CFT resides on a space whose metric may be taken
to be precisely g,,, and (B.3) in fact represents the CFT on a space with metric g, uniform
temperature T = % and in uniform motion at velocity u*.Alternatively, we may choose
to regulate the boundary of (R.J) along slices of constant # = e~ X(@)y for any arbitrary
function y(z*). In order to interpret this new slicing it is convenient to rewrite the metric

in terms of 7; Asymptotically, we have
ds? = —2i,dz" di + 72§, do" dz” (2.5)
where 4, = eXu, and g, = e2><gW. It follows that the constant 7 slicing of (R.3) describes
a state the CF'T on with spacetime varying background metric g,,, and with spacetime
dependent velocities 1, and temperatures 1" = # = e XT for arbitrary x(z*).
The fact that different slicings of the same supergravity solution may in fact be inter-
preted as states of the same theory in distinct though Weyl equivalent background metrics,
reflects the conformal invariance of the dual field theory. As we have seen above, the

temperature and velocity fields T', and u,, transform homogeneously under Weyl transfor-
mations, with weights +1 and —1 respectively.

2.2 Long Wavelength solutions with slowly varying background fields

In this subsection,we will explain the procedure that we use to construct a class of solutions
to the Einstein-dilaton action (R.1]) that asymptote at large r to the metric and dilaton

ds* = —2u,, (z")datdr + 12 gy, (") dat da”
® = ¢(x)

for arbitrary long wavelength functions ¢(«#) and g, (z*). The solutions we construct

(2.6)

are dual to fluid dynamics in a field theory with an arbitrary long wavelength background
metric and coupling constant given by g, («#) and ¢(z*). The method we employ in this
paper closely follows the method in [fl].

2.2.1 The Zeroth Order ansatz

We first note that the ansatz
ds? = —2u, (z")da" dr + r* f (b(x")r)uu, detdz” + P, dzt dz”

® = ¢(zt)
,P,uu = g,u,u(inu) + uu(x“)u,,(:n”) (27)
fr)=1-

for arbitrary functions u#(z#) and b(z*) has several attractive features. First, it asymptotes
at large r to (.5). Second, all singularities in (R.7) (which occur at r = 0) are shielded
from the boundary by a regular event horizon. Third, this configuration solves the Einstein-
dilaton equations of motion for constant g,,, ¢, v, and b.

— 10 —



2.2.2 Setting up a derivative expansion

As in [, we will use (B.3)) as the first term in a systematic derivative expansion of a solution
to Einstein’s equations. The small parameter that justifies this procedure is the inverse
length scale of variation of the functions g,,, ¢, u, and b (each of which is assumed to vary
on the same scale) times the function b. Denoting this parameter by € (see [l for more
details) we plug the expansion

Gu = f:oemG:Z,
" (2.8)
o= o
m=0

into the Einstein-dilaton system and solve Einstein’s equations perturbatively in €. As we
will see, the expansion of these equations to m*" order in e will allow us to determine the
functions G}, and ™.

2.2.3 Gauge Choice and Physical Interpretation
Following [, in the bulk of this paper we work with the gauge choice

G, =0, Gry X Uy, Tr ((G°~'G™) =0 (m>0) (2.9)

The first two of these gauge conditions have been physically interpreted in [f]. As ex-
plained in that paper, lines of constant x* are geodesics in any metric subject to this gauge
condition. The last gauge condition in (R.9) was chosen arbitrarily and turns out to have
no interesting geometrical consequence. However, it is possible to choose a more natural
gauge condition with a good geometric interpretation -

GT’T’ = 07 GTN = U’N (210)

(.10) continues to ensure that lines of constant z* are geodesics but also ensures that the
coordinate r is an affine parameter along these geodesics.

In order to permit easy comparison with the results of [, we will work with gauge
(2.9)the bulk of this paper. However, we will also briefly indicate how our final results may
be transformed into (R.1(), which will prove useful when comparing with explicit black
hole solutions.

2.2.4 Constraint Equations

As in [} it turns out that only 15 of the 16 Einstein plus dilaton equations are actually
independent. These 15 equations may be separated into 4 constraint equations (see [}
and 11 dynamical equations.

In Appendix [A], we show from a direct analysis of the Einstein-dilaton system near the
boundary that the four constraint equations take the form

VT =e™% LV (2.11)

— 11 —



where the stress tensor T}, and Lagrangian £ are defined by in terms of gravity data by
the usual formulas of AdS/CFT®

167GsTH = lim 14 (2(Kaﬁhaﬁ55 — KM

r—00
_ VS
+G8 — 651 — 3 <V“CI)VV(I> - 7(V(I>) >> (2.13)
167Gse™® L = — lim r* <anq> + 1v2<1>>
rT—00 2

where n# is its outward pointing unit normal of the regulated boundary and h,, is its
induced metric which leads to the covariant derivative V and the corresponding Einstein
tensor GJ. The extrinsic curvature of the regulated boundary is defined via the normal
lie-derivative of the induced metric - K, = %thw and 0, is the partial derivative along
n*. All the indices in the above formulas are raised using the induced metric.

As each term in these equations has an explicit boundary derivative, the constraint
equations are special from the viewpoint of the boundary derivative expansion. This is
because each boundary derivative pulls down an additional power of €; consequently in the
expansion of the constraint equations to order m we find contributions from the functions
G}, and @™ only for n < (m — 1). Consequently, the constraint equations at m** order
do not aid in determining the unknown functions GJj, and ®™; they instead impose a
constraint on the solution obtained upto (m — 1)!* order. As this solution has already

th order) in terms of u*(2*) and

been determined (by the perturbation theory to (m — 1)
T (z"), these equations effectively reduce to equations of motion for these fluid dynamical
fields. In other words, at any given order in perturbation theory, the constraint equations

are simply the equations of fluid dynamics.

2.2.5 Dynamical Equations

The expansion of the remaining 11 independent dynamical equations, to order €™, yields
equations that may be used to determine the unknown functions GJj;,, ™.

The nature of the resultant equations is described in [l These equations are ultralocal
in the variables z# (they only contain derivatives of r). Consequently they may be solved
independently point by point in z*# and are linear ordinary differential equations in the

variable r at each x*. At any given z* these equations take the form

M(Gl) = s (2.14)
N(@™) = ¢m

where the homogeneous operators M and N are independent of m (they are the same at
every order in perturbation theory).

YNote that the counterterm subtractions to the stress tensor and Lagrangian respectively in ) are
simply the derivative with respect to g, and ¢ of the counterterm action

Setr = /\/E (g - i(a@?) (2.12)
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2.2.6 The Homogeneous Operators

Let us describe the differential operators M and NN in more detail. Focus on the equations
) at a particular field theory point y*. It turns out that the operators M and N
are simply the equation for linearized radial fluctuations of the metric and dilaton in the
background of the uniform brane (P.J) with constant boundary metric g, (y"), constant
dilaton ¢(y*), constant velocity u,(y*) and constant inverse temperature b(y*). In other
words the homogeneous operators M and N are simply the operators that act on linearized
radial fluctuations of the metric about the background (R.3).

We can now perform a local co-ordinate transformation to go to Riemann normal co-
ordinates where the metric g, = 1,,,. We still have some more co-ordinate freedom param-
eterized by the set of Lorentz transformations which preserve this form of the metric.These
boost transformations may be used to set u* = (1,0,0,0). Finally, a scale transformation
¥ — Azt and r — § may be used to set b to unity. Making this choice of coordinates
for any given point y* we see background metric (P.3) turns into the metric of a uniform
black brane at rest with constant temperature T' = % with the usual flat boundary metric.
However this was precisely the background metric encountered in the perturbative proce-
dure described in [fl]. It follows immediately that operator M is identical to the operator

H in equation 3.4 of [[I].
In the same coordinates the operator NNV is easily determined; it is simply given by

1 1
N = ﬁa, <r5(1 — ﬁ)ar> , (2.15)

the radial part of the minimally coupled equation in a black brane at b = 1.

As was explained in [, the equation MGy, = s, may be solved by integration for
an arbitrary source s,,. As we will explain below, the same is true for the operator N.
Consequently dynamical equations may be solved by integration at each order. As in [,
in this paper we will solve these equations subject to two boundary conditions

1. G}, and @™ are well behaved (analytic) away from the r = 0 singularity.

2. ®™ and T2GZ§/ each go to zero as r — oo.

The first condition requires no explanation, while the second one ensures that our correc-
tions to the metric and dilaton fields do not alter the asymptotic form (R.6) of our full
series solution.

2.2.7 Source Terms

We now turn to a brief discussion of the source terms s, and s™. As in [l each of these

source terms is determined in terms of lower order solutions in perturbation theory, and so
m
Sy

of m* order in derivatives of these quantities. The dependence of Sy

b and u* was already described (and determined to second order) in [fl]. Below we will

may be expressed as local functions of g,, (), ¢(z),u”(x) and b(z). and s™ are each

on derivatives of

also determine the dependence of s}, on derivatives of the metric and dilaton (for m < 2)
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and compute s for m < 2. In this subsubsection we explain the general structure of our
results.

Let us first study the dependence of source terms at y* on derivatives of the metric,
at the same point, for m < 2. For the purpose of this calculation we find it useful to
work with Riemann normal coordinates centered about the point y* in the boundary field

theory directions. In these coordinates the expansion of the boundary metric g,, about y*
1
Qv

G- While sfw receives contributions proportional to the boundary curvature tensor. s

(like all dilaton source terms) is necessarily proportional to a derivative of some order of

and s! each are independent of derivatives of
2

starts at second order. As a consequence s

the dilaton field ! Consequently s® is the first dilaton source term that receives curvature

2

dependent contributions; s is independent of boundary curvatures.

m
72
of the dilaton for m < 2. Let us first focus on s”. As we have argued each of s™ must

We now turn to the dependence of s, and s™ on derivatives of the boundary value
be proportional to at least one derivative of the boundary dilaton. From symmetry it
then follows that s' oc u#d¢. On the other hand s? can and does receive contributions
proportional to both u#u”9,,0,¢ as well as terms proportional to one derivative of a velocity
contracted with a derivative of ¢.

We now discuss the contribution of derivatives of the boundary value of the dilaton,
¢(z) to sj;;,. It follows from (B.9), the dilaton source term for the metric equation is propor-
tional to two derivatives of the dilaton. As the dilaton is constant (has no r dependence) in
the uniform brane solution, and (as we have seen in the previous paragraph) is proportional

to a derivative of the boundary value of ¢ at first order, it follows that dilaton contributions

2

;v are schematically proportional

to s}w vanishes, and the contributions of the dilaton to s

to 0,40, ¢.

2.2.8 The Stress Tensor, Lagrangian and Fluid Equations of motion.

As we have explained above, the dynamical equations upto m*” order in e may be used to
solve for the metric and dilaton, and consequently the stress tensor and the Lagrangian
(from (2.13)) to the same order. By plugging into (R.11), this information also deter-
mines the fluid dynamical equation (including the forcing functions) with (m + 1) or fewer
derivatives.

This concludes our brief review of the general structure of the long wavelength pertur-
bation theory we perform in this paper. We refer the reader to [fl] for a fuller description

of the procedure.

3. Explicit Results Upto Second Order

In this section we present explicit formulas for the metric and dilaton, as a function of
boundary metric, dilaton, velocity and temperature fields, to second order in the boundary
derivative expansion. We have obtained these results by implementing the perturbative
procedure described in the previous section and in [fl].

HThis follows from the fact that Einstein gravity is a consistent truncation of the Einstein-dilaton system.
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3.1 The metric and dilaton at first order

As we have described in the previous section, the metric dual to fluid dynamics at first order
is already completely determined by the results of []. s uv (y*) receives no contribution from
first derivatives of the boundary metric or boundary dilaton at y*, and the metric G v 1
simply by the naive boundary covariantization of equation of equation 4.24 of [I.

The dilaton field ®! is nonzero and requires a new - though very simple - calculation
to determine.

Using coordinates in which g, (y*) = 1w, u, = (=1,1,1,1) and b(y*) = 1, the
equation for ®!(yH) is

oy <7’5(1 — T%)ar@l> + 0,(r30,$) = 0 (3.1)

This equation may be integrated trivially. The arbitrary solution to this differential equa-

dl = ¢ (zM) +C2/r v(b/ r5f (3.2)

Our boundary condition at infinity forces ¢; = 0 Whlle the requirement of regularity at the

tion is given by

horizon r = 1 sets ¢ = 0'2 . Consequently we conclude

_ U¢/°° - —u&b/ Tsf (3:3)

3.2 Solution at second order

The computations required to determine the metric and dilaton field at second order, while
involved in practice, are a straightforward generalization of the calculations presented in [[If].
We have performed these calculations with the aid of the symbolic manipulation program
Mathematica. In this section we simply record our final results.

The metric upto second order is given by

ds? = — 2u,, (x")dz"dr + 2 f (b(z")r)u,u, dat dz” + P, da*dz”
+ <2 b rzF(br)UW + gr 0wy, — r(ayu, + a,,uu)> datdx”

+3 B’H uydztdr (3.4)

1
+ <7’2b2H P + 2b2K Uplhy + 575 oI (Juuy + Jyuy) + 1 2p2a ) dztdx”

-1
Ol SR (or) + SPnE (or)

In this equation the first line is simply the ansatz (2.7). The second line records corrections

O = ¢p(zt) +u8¢/ d$

to this metric at first order in €, while the third and the fourth lines record the second
order corrections to this ansatz.

12Note that, for any non-zero value of ca, the dilaton has a logarithmic divergence at » = 1. This (co-
ordinate invariant) singularity is not shielded by any horizon and hence we will consider it to be physically
unacceptable. We will show in the later sections that when c2 = 0, our solutions have regular event horizon
that passes through the neighbourhood of r = 1.
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(B4) - the metric dual to fluid flows upto second order in the derivative expansion -
is one of the main results of this paper. In the rest of this section we will systematically
define all the previously undefined functions functions that appear in (B.4). We will start
by defining all scalar functions of the radial coordinate r that appear in (2.7), and then
turn to the definition of the index valued forms that these functions multiply.

The only undefined function of r in the second line of (8.4) is F(r) which is given by!?

F(r) = i [m (“ * T)ifll * Tz)) — 2 arctan(r) + 7 (3.5)

The undefined functions on the third fourth and fifth line of the same equation are defined

as
D (br) &4+ hP (br) &5+ A3 (br) 1%
D (br) &4+ k@ (br) &5+ k@ (br) S + kW (0r)S1? + kO (br) S22
Ty = 3D (or) B + 5@ (br) B + 5@ (br) By, (3.6)
= a1 (br) T + as(br) (15)
+ ag(br) (Tﬁ)uy + a7 (br) (T7),W + ag(br) Cuw + CLg(bT)(T¢),W
where

1272

1 ®dx [ 1 2

(3.7)

+3  rt43 1
h(g)( ) = 96,1 i 15, tan 1(7’)—ﬁlnr
4 4 3 2
43 rd 1 9 —2r°+3r 4+ 1
—— In(1 — In(1 S —
+gger AT+ g () + 481

13 As explained in [], we obtain F(r) by integrating a second-order differential equation. One of the
integration constants of this equation are fixed the requirement of regularity of F'(r) at r = 1. For a general
value of this constant, F(r) has a logarithmic singularity at » = 1. This singularity is physical rather than
a coordinate artifact, and is hence unacceptable. We have checked the last statement by computing the
curvature invariant Rasny RMY; this quantity in general has a pole type singularity, proportional to o ind
at r = 1.
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2 0o (1)
I —/ (12:c3h(1>(:c) + (3% — 1)dh () +

/ (123:311(2) (z) + (32" —

dx

dh®
@) ,

1 dx

(3.8)

N 327"4 L
8

i
16r4

+—67‘ + 576 + 3r4 + 213

1674
111(1 +7)+

) + i (1- 7‘4) Inr

8 4 4 1
—3T 32:4 + In(1 +7’2)

—3r2-1

tan

kO (r) =r?/12
i) =

i (r)

16

, 1
i) = -

ar(r) =
& dx
, x(xt—1)

_1/°°
=1/

In(1+
4

(
B dz
T x(zt —1)
dz
x(zt—1)
dz

x(z* —1)

%)

as(r)
ag(r)
az(r)
ag(r)

ag(r)

Wh(T)

7‘2 e’} 0
— dx 3 d -
36 /r v /m Y <18y3(y+1)(y2+1)
- d 3/ d

/r L y<18y3(y+1)(y2+1)

(m— 2tan"(r) + 2In(1 + )

= / dy2y<
/

ot
[ond

4874

1
9y3

p(y)

1 (3.9)

)
)
—In(1+7%)) —

2)-aro)

4 yp( )+3y*—y—1
y? p(y) +5
2[5

] - 6yF(y)>

r2(1 +2r)
8

3()+11

dy 2y
1

} B 6yF(y)> (3.10)

p(y) +1
(y)+5

/ dy 2y
1

40 +r+1)* —23r* +2r + DF(r)

3

240 +r + DB = DF(r) —

r(r+1)2(r2 +1)2
(2r° +2r% + 273 —1r — 1)

Wk(T) = 3

r(r+1)(r24+1)

p(ry=2r +2r2 +2r — 3

v

2
o

-/

[e’9) x y2
- ~7
/T x<x4—1>/1 dy[ o

tan~1(y) +

x(zt = 1)

e (3.11)

[(1+y) 1 +5%)]

y(1+y)(1+y°) - 2:@
3(1+y)(1+y?)

fo(3)

dx 2y

3
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We now turn to defining all the terms that carry boundary index structure in (R.7).
These terms are all expressed in terms of fixed numbers of boundary derivatives of the
velocity, metric and boundary dilaton fields.

Terms with a single boundary derivative

0 = Vu®
ay, = (u.V)u,
¥ = eaﬁwuaVQu«,

1 1
O = 5 PP (Vaug + Vgtua) = 5Pud

(3.12)

The quantity I, defined here does not appear in the first order correction to the ansatz
metric, but does appear, multiplied by other first order terms appears in the second order
metric.

We now describe all terms with two boundary derivatives. Following [[] we sub-classify
these terms as scalar like, vector like or tensor like, depending on their transformation
properties under the SO(3) rotation group that is left unbroken by the velocity w, (see [I]
for more details)

Scalar terms with two derivatives

S= <—§(s3 —Ry)+261- §G3>

G2 = [,a"
Sq = 1,0"
S5 = o, oM
5= T @ (3.13)
G1? = ufu'V ¢V, ¢
G2? = PH'V 6V,
SV = 3ur N,V + 304V 4+ 0ulV
3
S = S5V = 30"V,6 + 0tV 0
where
61 = aya”
S3 = 0?
_1 (3.14)

s3 = b7>aﬁvavﬁ b
1
Ry = =P P" Rasgy

Vector terms with two derivatives

B® =4 (10v4+v5+ 301 —3V2—-6UV3+9 Ry)
B =9 (20v4 — 52 — 603 + 20 Ry) (3.15)
B) =u.V¢ PiV,¢

— 18 —



where

91 1
(va)y = < 57?37?“ (Vsuy + Vaug) — gpaﬁmvyva ug| — PPPIV. Vs u,

(v5)y = PPPIV. V5 u,
Vi1, =a, 0

(3.16)
V2, = €agypu” a® 1
m3u =a” Oav
1
(R2), = —57)&57)3 uf R0
Tensor terms with two derivatives
1
TW = (‘3:1);1,1/ + g(g4),u,y + (gg)‘uu
1
(o) = buly = 5Puw ©4
1
O R
(3.17)
(T = (eaﬁw oy + P Jif) uq g
C = Papﬁ <R v oA 1 af v oA
w = Py Py a8 T 2u’ u R-ya)\g> - g'ij'P <Ra5 +2u’ u Rfya)\ﬁ)
1
(Tqﬁ)w/ = Pﬁpf Voz¢ Vﬁ¢ - gpuupaﬁ(aa(b)(aﬁ(b)
where
1
(T = aua, — §P’“’ G
1 o 1 (6}
() = 5PEPY (wY) (Vats + Voua) = 3Pu P’ (wV)(Vaug)  (318)

(T = oub

Here V denotes the covariant derivative in the curved boundary metric, Rng,, is the
Riemann tensor and R, is the Ricci tensor.

The metric and dilaton configuration presented in this subsection solves the coupled
Einstein-dilaton equations of motion provided that the temperature and velocity fields obey
the equation of motion presented in the next subsection.

3.3 Shift of Gauge

While we have (for historical reasons) presented our final metric gauge choice (B.9), it
would have been more natural, in some respects, to work with the gauge choice (2.10).
The variable change that converts from (R.9) to (R.10) is simply given, to second order, by
dr =dr(1 — %b2H (br)). This variable change may be integrated. The metric expressed in
terms of the variable 7 will be in the gauge (R.1() at second order.
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3.4 The Stress Tensor, Lagrangian and Forcing function at second order

The stress tensor and expectation value of the ‘Lagrangian’ may be determined for the field
theory configurations dual to the solutions of the previous subsection using the formulas

(R.13). We find
167G5TH = (nT)* (¢" + 4u'u”) — 2 (x T)3 o

In2 1
+ (nT)? ((%) (T +2(Te)™ + (2 — In2) T + OM — §T5”>

~167Gse L = (nT)? w.0¢ + (nT)? (%sf) - m%sé”)
(3.19)

Further, the spacetime configuration presented in the previous section is a solution
to the equations of motion if and only if the velocity and temperature fields obey the
constraint

VI =

P e (3.20)

4. Constraints from Weyl Covariance

In the previous section we have determined the bulk metric dual to a particular fluid flow
uy,(x) on a boundary manifold with a particular background metric g, (2*) and boundary
dilaton field ¢(z*). However, as we have explained in section [, this must be the same
as the bulk geometry dual to the velocity field @, (z") = eXu,(z*) on the boundary space
with metric g, (2") = e*Xg,, (z#) and the boundary dilaton unchanged. This equality of
spaces, which is not algebraically automatic in the formulas of our perturbation theory,
constitutes a tight algebraic check on our procedure.

In this section we will demonstrate that the metric described in the previous section
passes this test. In more detail we will demonstrate that the metrics dual to fluid dynamics
must are invariant under the simultaneous replacements'

Uy — Xuy,  Gu — 62X§W, b—eXb, r—e XF, ¢— ¢ (4.1)

This property of our solutions in particular implies the Weyl covariance of the fluid
dynamical stress tensor (and Lagrangian) that follows from our solutions.

11t may be useful to reiterate the logic that underlies this test. Let us imagine we have solved the problem
described in the previous subsection for a given background metric g, and velocity and temperature fields
u,(z) and b(z). Upon performing the coordinate transformation r = 7e X(#") (as described above) for a
slowly varying function x(z) we have a gravitational background of the form (@) with the new metric
velocity and temperature functions i, = eXu, and .., = ¢*X§,. and b = eXb. However we could also have
directly solved for the metric dual to fluid dynamics with this data.
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4.1 Weyl Covariant Formalism and Independent Weyl Covariant Tensors

Note that the transformation ({.I]) is simply a Weyl transformation in the boundary field
theory directions. Consequently, in order to investigate the invariance properties of our
solutions under the transformation ([L.1]) we find it convenient to employ the manifestly
Weyl-covariant formalism for hydrodynamics that was developed in [pg]. The main tech-
nical innovation of [f§] was the introduction of a Weyl-covariant derivative, whose action
on an arbitrary tensor field is defined by

Dy QL =V QU +w A\QL
+ [graAr — 08 Ay — G AL QY + ... (4.2)
— (gAY = 05 A, — S5 AN QL —

where the Weyl-connection A4, is related to the fluid velocity via the relation

A, = a, %uu (4.3)

As a technical prerequisite to our main goal, in the rest of this section we employ
this Weyl covariant formalism to list the most general Weyl invariant scalars, transverse
vectors and symmetric traceless transverse tensors in hydrodynamics that involve no more
than second order derivatives.'®> We perform this listing, taking particular care to account
for the equations of motion. In other words tensor fields that are equivalent on-shell are
counted only once in our listing.

Let us first start by eliminating an easily dealt with redundancy. As an arbitrary
function of the dilaton is Weyl-invariant, it follows that we can generate new Weyl invariants
by multiplying old ones by functions of ¢ to get new Weyl-invariant observables. We shall
omit the observables formed this way from the lists below, but take care to account for
them later.

To begin, let us start with the basic quantities of hydrodynamics - the fluid temperature
T and the fluid velocity u#'® . The former is a Weyl-covariant scalar with conformal weight
unity and the latter is a Weyl-covariant vector with conformal weight unity. It follows that,
at the zero derivative level, there are no non-trivial Weyl-invariant scalars, no transverse

vector or symmetric traceless transverse tensors.
17

15We will restrict attention to fluid dynamics in 3 + 1 dimensions.

16We will assume that there are no other conserved charges except the energy momentum tensor.

1"We shall follow the notations of [@] in the rest of this section(except for the curvature tensors which
differ by a sign from the curvature tensors in [@] In particular, we recall the following definitions

ﬁuu ; Fuv =V, A -V, A,

Ay =a, —
3
R=R+ GVAA)\ — 6./4)\./4)\ 5 Dp,uu = Ouv + Wpv (44)
'D>\U'u)\ = VAO"M — 3./4A0"LA ) DALUH)\ = VAW'“)\ - AAW‘M

Note that in a flat spacetime, R is zero but R is not.
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At one derivative level T _lu“DM(b is the only Weyl invariant scalar. The only Weyl
invariant transverse vector is P/D,¢. Finally, the only Weyl-invariant transverse pseudo-
vector [, and only one Weyl-invariant symmetric traceless transverse tensor T'o,,.

At the two derivative level, there are seven independent Weyl-invariant scalars

T 200", T wuwh, TR,
T2P"D,D,s, T 2u'wD,Dyp, T *P"D,¢D,¢  and T *ulu"D,¢D,
(4.5)

one Weyl-invariant pseudo-scalar T’ _QZMDqu and six independent Weyl-invariant transverse

vectors

T~'P/Dyo,*, T™'P!Dyw,”, T~ 'Pu’D,Dy¢, T~' PYu*D,¢Dy¢,
T7'0, Dyg, and T 'w,*Dyé

and two Weyl-invariant transverse pseudo-vectors T’ _luADAlu and T‘lluu)‘DAqﬁ .

There are eight Weyl-invariant symmetric traceless transverse tensors -

UAD)\U/M/: O'MVUAD)\(b, Cpauﬁuauﬁy WMAU)\V + WV)\UA;La
1 2 1 2
3 PYP)+ PPy — gPO‘ﬁPW] DaDs¢, [P[j‘Pf + PPy - gPWPW D¢ Dy,

A by P/u/

o O — % aagaaﬁ and wy Wy + 3 g

Wapw™.

(4.6)

and five Weyl-invariant symmetric traceless transverse pseudo-tensors'®

2P,
Dyly + Dol 1uPyDaé + L PyDrd — =1 Do
Eaﬁ)\,ucaﬁuauau)\ + Eaﬁ)\ucaﬁuauau)\a Eaﬁ)\uuapﬁgb Oxv + Eaﬁ)\uuapﬁgbo-)\u
1 s

and €7y 679",,00[579 Up\ U

4.2 Manifestly Weyl covariant form of the fluid dynamical metric

In either of the gauges (2-9) or (B-10) employed in this paper, a bulk derivative metric that
is invariant under the transformations ([l.]) must be constructed out of

1. The boundary Weyl invariant tensors listed in the previous subsection.
2. The Weyl-invariant vector-valued 1—form u,(dr + r.Aydz?)

3. Arbitrary functions of the Weyl-invariant scalar & = r/(nT)

¥Note that the last tensor is not really a pseudotensor - but we count it along with the other tensors
which need e?* for their definition.
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. Consequently the metric must take the form
ds* = —2Wy w,dat(dr + rAxdz?)

4.7
+ [ (Wa g + Wawuuwy) + 1 (Wi, + uuWay) + Wy, | dat'da?. (4.7)

where Wy, Wa and W3 are Weyl-invariant scalars, Wy, is a Weyl-invariant transverse vector
and Wi, is a Weyl-invariant transverse traceless tensor. It follows that the W;’s can be
expressed as functions of £ and the Weyl covariant observables in fluid dynamics with
appropriate weights.

In the rest of this section we will check that our metric (8.4) is indeed of this form.
We will also compute all the functions that enter into (f.7)

4.3 Weyl Covariant form of the second order metric

In order to cast the metric in this paper in the form given by (f.7) , we have to first rewrite
the quantities appearing in the metric in a Weyl-covariant form. We have the following
relations in the flat spacetime which identify the Weyl-covariant forms appearing in the
second-order metric -

61? = v'u"D,¢ D,¢; G? = P"D,¢ Dyoh

3
&1 = Wwap; G5 =000 S =3uw'D D S = DD
4 2 2 2 1
—g(Sg — Rl) + 261 — 563 = gO'aﬁO'aB — gwaﬁwaﬁ — gR

5 5 5 5 11 R

§U4“ + §U5H + gﬁllu — Emgu — Em&u = P:'D)\O'V
15 1 1 1
9 Vin T Vs Uiy — Zmzu + §Q33u + 2Ry = P:DAWV)\

(4.8)

These can be used to obtain

B> = 18P/ Do, + 18P Dyw;,

B = 54P Do, + 90P! Dyw, (4.9)

B¢ = P/u’D,¢Dyr¢
Hence, all the second-order scalar and the vector contributions to the metric can be written
in terms of three Weyl-covariant scalars O'agdaﬁ ,wagwo‘ﬁ and R and two Weyl-covariant
vectors 'D)\O'u)‘ and D,\w“’\ .

Further, we will enumerate below the covariant forms which appear in the tensor
contributions to the metric

A
L = u Dyoyy

prv
TE = 4wy + Twaﬁwaﬁ)
p
Topw = 0F A0 — 0P 005 (4.10)
Trw = — 2w o™ + w”yo™)

1
(Ty)w = PSP Dot Dpop — gpaﬁpwpagb Dy
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Comparing it with the metric form in .7, we find that the metric can be written in

the form

ds? = —2Wy w,dx!(dr + rAxdz?)

) (4.11)
+ [r (Wa g + Wauyuy) + 17 (Wauuy + v, Wa) + W5W] dztdz” .
where
Wi =14 Fl(g)O'“yO'MV + wuywuu ;ng2h(3) (é)u“u'fl)u(ﬁ D,¢ n
ny wo_ @e21(3) [T
Wy=1-— By (§ouwo + wuww 6735 2 (§utu"Dyd Dy n
Wy— e+ A(F2(8) — Fi(§) + 1);37:2u0“” — 4wt — R
(€h® (&) + K9 (€) w'uDyé Dy + 5P Dy Dy
+ 53 +...
& (4.12)
F3(£)PYDro,> + PYDaw, + 2672 (€) PYurD, ¢ Dy
Wi = 2r +
W = 2rEF ()0, + Wiz (§)u™ Do, + Waaa(€) (wu)‘U,\u + w:)@w)
+ Ws23(§) <UMAUAV - % 0a50a6> - <wu’\w>\y + % wa5w0‘5>
1 1
+ &2 In(1+¢& ) [ awgUu” u’ Z (P;“Pf — §PO‘5PW> Do Dg(b} +
with
2 2
F) = i [ln <(1 + é)gil +¢ )> — 2 arctan(§) + 77}
® dx [ ydy [1+2y(1+y+y?) + 2031+ 2y + 3y*) F(y
(y+1)2(y* + 1) (4.13)
F(€) =1~ L/w el +et Y@ - DF@) — 2@ o+ o+l '
262 z(x+1)(22 +1)
F =1+ / z3 d:c/
3(6) = & J < Y+ +1)
and
1+ 3y + 3y + 3y3
Weoy = — dy 2y — 3yF
e g/ z(at - 1) / < (y+ D(y? +1) ’ (y)>
L+y+y*+9°
Wisoo = — d — 3yF 4.14
522 = 5/ _1/ y 2 < Wt D2+ 1) Y (Z/)) (4.14)
1—y+2y3 +20* +2¢°
Wisoz = — dy 4 — 3yF
w==¢ [ iy [ o (S ew)

The functions A® (£), k) (€) and a(€) are as given in (B.7).
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Further, the dilaton field can be written in terms of the boundary values as

< 31 1) 3. (2
d = +utD — +3h Fu"D, Dy + = D, D .
o(x) +u “qﬁ/g dxazf’f(x) 3 b (&uv"D, Dy 2h¢) (&)D,D" o (4.15)
where the functions h((;) (¢) are as given in (B.7).

4.4 Constraints on the Stress Tensor and Lagrangian from Weyl Covariance

In (B.19) we have presented formulas for the stress tensor and the expectation value of the
dilaton upto second order in the boundary derivative expansion. In the notation of this
section

167GsTH = (n T)* (¢ + 4utu’) — 2 (r T)3 o + (2 — In 2) (aT)2u*DyoH”
—In2(7T)% (WHao™ + W’ \o™)

v
3 0Poap + CFYPuyyug)

+ 2(nT)* (0" \o™ — (4.16)

1 1
— §(wT)2(PWP5V — gPo‘ﬁP‘“’)DaqS Dy

—167Gse”?L = (7T)* u.Do + @ (D?*¢ +In2 (u.D)?¢)

Aspects of this result could have been predicted immediately from the requirement of
Weyl covariance. In particular it follows immediately from the listing of Weyl invariants
in subsection [£.]) that at the one derivative level!? the stress tensor and the Lagrangian
are proportional respectively to (wT)3 o and (7T)® u.0¢ respectively. Of course the
particular coefficients in (l.16) required a calculation to determine. In a similar manner
the two derivative contributions to the stress tensor and Lagrangian are constrained by
Weyl invariance to be linear combinations of the forms listed in ({.f) and ([L.H) respec-
tively. Again the particular coefficients in (J.16) require knowledge of the bulk equation
of motion, and follow from explicit computation. Note in particular that the Lagrangian
in (.1G), when expressed as a linear combination of the terms in ([I.§), turns out to
have no terms proportional to the Weyl invariant scalars T’ _20,“,0“” , T_zw,ww‘“’ , T72R |
T _2P“”DM¢D,,¢ and T 2utu” D, ¢D,¢. Similarly, the stress tensor, when rewritten as a
linear combination of the terms in (f.§), has no terms proportional to any of O’M,/U,AD)\gb,
% [P/f‘Pf + P,f‘P,ﬁ3 — %PaﬁPW} D,Ds¢, or wu)‘w)\,, + % wagwaﬁ. Above we have already
remarked that general structural features of the Einstein-dilaton system (e.g. the possi-
bility of a consistent truncation to pure gravity) explain several of these terms from the

expressions for the bulk metric and hence Lagrangian and the stress tensor.

5. Causal Structure and Entropy Current

In this brief section we will generalize the construction of [[j] to determine the location
of the event horizon of the metric (B.4) (under certain assumptions about the late time

YInterestingly, the fact that the Lagrangian vanishes at the zero derivative level is not automatic from
Weyl invariance, but follows instead from the additional dynamical input that Einstein gravity is a consistent
truncation of the Einstein-dilaton system. Once we take o’ corrections into account, we do expect a
contribution to the Lagrangian that is simply proportional to 7.
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behavior of the functions in this metric) and also to derive an explicit expression for a
positive divergence entropy current for the dual fluid flow.

For the purposes of this section we restrict our attention to solutions of fluid dynamics
for which the late time metric, dilaton, velocity and temperature fields all settle down to
time independent constant values; we further assume that the the event horizon of this
asymptotic late time spacetime is given by r = 1/b(x*). The last assumption certainly
true for solutions that approach black branes in flat space or rotating black holes in global
AdS space at late times. Under all these assumptions2 the event horizon of the spacetime
@) has a simple mathematical characterization; it is simply the unique null hypersurface
that reduces precisely to r = 1/b(z*) at late times (see [[] for a related discussion).

All the metrics we study in this paper fit into the general form given by equation
2.2 and 2.3 in [{] with one straightforward generalization. The normalization condition
uu,mt = —1 of [l is replaced by uuy g’ = —1, where gt is the arbitrary weakly
curved boundary metric of our paper. Following [[], it is easy to work out the precise
equation for the event horizon within the derivative expansion. In fact it turns out that
equation 2.16 of [{] continues to hold with the single proviso that all indices in that equation
are raised by the metric ¢"” rather than n*”. The expression 2.18 of [fj], for the normal
vector to the horizon, also continues to apply with the same proviso. Finally, the area form
a on the event horizons in our paper may be defined exactly as in section 3.1 of [f]. The
formula 3.10 of [{] for this area form continues to apply. Lines of constant * define a map
from the boundary to the horizon of our solutions. Let s denote the pullback of a, to the
boundary, under this map. Let (J5), = *s. The following slight generalization of 3.11 of
[ gives a formula for the entropy current

NI

(= — e
4G§3+1) \/§ nv

(5.1)
(see [{] for the definition of h). As in [[] it follows immediately from classic area increase
theorems of event horizons in general relativity that V#(J;), > 0. Consequently (J), is a
candidate entropy current with non negative local entropy production.

We have evaluated all the abstract expressions described above for the specific fluid
dynamical solutions presented in our paper; we present our results. In the gauge (B.9) we
find the covariantization of equation 5.4 of [f]

1 b 1 1
p—_ —_— — — ¢
n=gtg <5b+ 595+ 561 ) (5.2)

An explicit expression for J is not difficult to determine: we find

2 2
AGH* JH = ut (1—bZ [<gln2+ %) —1

b2
2

2 2
S5+ %61¢ + %Sb - Sa>
(5.3)
1
P <Vo‘aa,, —3a%0 0 — §Bf> + b2SH

20Tt is probable that these assumptions are more restrictive than necessary.It would be interesting to
know which if any of these assumptions can be relaxed without affecting the simple characterization of the
horizon that we give below.
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where

1 1 1 T 5r2 2 1
Sh 25 1264—1—65( +C+ <+ +3n )—1—1262

6 6 48
b2
Sa = 57 [7864— 65 (8+48C +dm + 47% — 36(In2)? — 127 In2 + 161n2)]
(5.4)
v /r 1
R ¢
+8<4+2+ln2>61

1 1 3
)y = =B - —Bin_"B¢
(e ) 16 # 144 F 8K

As we have explained above, the entropy current presented in (f.J) is guaranteed by

the area increase theorem of general relativity to have non negative divergence. This claim
may also be verified algebraically. Using the equations of motion, we find that

T+4+61n 2
1677

2

TV, J! =2n |:O"W + ( >u)‘D>\a‘“’}
. 5 (5.5)
+1n [u.&b + W(g +2+3In 2)uauﬁDaDg¢} +...
where the RHS is accurate only to third order in the derivative expansion. Of course the
RHS, which is a sum of squares, is manifestly positive, in accordance with the second law.

The second line in (f.9) represents the production of entropy due to the forcing effects of
a time dependent dilaton. Several comments are in order here. Consider the forced Navier
Stokes equations V, T = f#. For an arbitrary function f* this equation is consistent
with either local entropy increase or decrease. The fact that entropy production is always
locally non negative in our situation is a consequence of the particular form of our forcing
function.

In order to see what is special about this forcing function, consider a dilaton field
that is a function only of the boundary time (see §f] for a more detailed discussion of this
situation). According to (B.20), the forcing function for such a field f, 52(8(](;5)2. The
sign in this expression is important; it implies that a varying dilaton field always pumps
energy into the system. This energy raises the fluid temperature increasing its entropy.

This qualitative feature should be true of any forcing function that results from the
coupling of a source to a gauge theory operator. A source term for any boundary operator
excites the expectation value of this operator away from its thermal average. The expec-
tation value of this operator then decays over a time scale 1/T’; in this process the energy
of this excitation thermalizes, resulting in an increase in entropy.

6. AdS; Kerr BlackHole

A three parameter set of asymptotically globally AdSs rotating black hole solutions has
been presented in [5g]. These solutions are labeled by their temperature 7" and their two
angular velocities, w; and wo, on S3. As we will see in more detail below, these solutions
are dual to a field theory configuration which is well described by the equations of fluid
dynamics at large T (the radius of the boundary sphere is unity in our conventions).
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6.1 Summary of Results

In this section we will rewrite the exact solutions of [f5] in the gauge (R.1(). The final
metric admits a remarkably simple all orders re expression in fluid dynamical terms: it
may be put in the form ({.7) with

1
Wi=1,; Wy =1+ @wagwaﬁ
2m 1 o2 R
Ws=— {1+ —2waﬁw°‘6 — 33Was o _ 5
2r 3r 67
1 . (6.1)
1%
Wagw™B
W5,uz/ = - <w,u)\w)\u + %P;w>
Moreover the radial location event horizon of this metric is given by the solution to the
equation
1
(1+ r—z)(ri, +w])(r¥ + w3) =2m (6.2)
H

The entropy of this black hole is given by
2m§23

T A0 - AT D)

(6.3)

Moreover the various components of the local entropy current defined in [E] evaluate, on

this rotating black hole solution

@)+ o)

H

Jo — wi(ry + wi)(rg + wi)(1 — wi)
ra(ry + w?)

wa(ry + w?)(rfy + w3)(1 — wj)
ra(ry + w3)

o

<

(6.4)

g =2

Notice that the exact result (6.1]) admits a remarkably simple derivative expansion.
The derivative expansion of the functions Wy, Wa, Wy, and Wj5,, terminates at second
order in derivatives. On the other hand the function W3 includes terms at all orders in
this expansion: however this expansion sums up to a simple geometrical series. Several
additional remarks are in order

1. We check below that the expansion of (f.1)) to second order in the derivative expansion
matches perfectly with the general predictions given in (). This is a nontrivial
consistency check on the main result of this paper.

2. Note that (B.])) receives contributions from terms that depend on the curvature of
the boundary metric only at second order in the derivative expansion. Consequently
the second order fluid results, (p.1)) listed above, exactly account for all curvature
dependencies in the exact result (.7). In particular the AdS Schwarzschild solution
is reproduced exactly at second order in the fluid expansion.
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3. The fluid dynamical expansion of the metric (6.1) is convergent for 2r? > w,zw®.
It follows that this expansion is convergent everywhere outside the horizon for 72 >
waﬁwag.

Expressions for the location of the event horizon and the local entropy current may also be
expanded rather simply, to all orders, in fluid dynamical expansion. We demonstrate below
that the expansion of these expressions to second order also agree with the predictions of
the previous section.

In summary the fluid expansion works even better for the exact solution ({.7) than
we might naively have the right to expect. In the rest of this section we will derive and
explain all these results in detail.

6.2 Rotating Black Holes in Fluid Dynamical Coordinates

6.2.1 The AdS Kerr Solution and its Stress tensor

The asymptotically globally AdSs rotating black hole solution presented in [63] is given by

A, (. 02 ) 2 A\ 2 2 2
ds® = 2 <dt _wasin® g wacos 9d¢> + a4 L ge?

p? 1—w? 1 —w? A, Ag
A R 2 2 \2 . 2 2 \2
+ —5) sin? @ <w1dt _rt w21 dqﬁ) + cos’© <w2dt It w22 d1/1> (6.5)
1 2 . 2 2 . 2 2 \\?2
+ % (wg sin® © (wldt Tt w21 dgb) + wy cos® O <w2dt Tt w22 d?/)>>
r4p 1—wy 1—wj
where
PP =1+ w?cos’O + wisin? O
1
A, = ﬁ(l +7r2)(r? + wd)(r® + wd) — 2m (6.6)

Ap =1—wicos? O — w3sin?O

In the large r limit (i.e. near the boundary) the induced metric on a surface of constant
r is given by

d 2
STB;‘d = gudztdx”
. 6.7)
Agdt? de? sin?0 , . ~9 cos?® . 2 (
=— d dt d dt
(1—w%)(1—w%)+A@+1—w%( ¢ +wid) +1—w§(w+w2 )

Consequently the solution (B.5) is dual to a state of the CFT on the space Weyl equivalent
to (b.7). (6.7) describes the so called Rotating Einstein Universe.
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The boundary stress tensor (R.13) dual to this metric is easily evaluated, and may be
written in the form

T, —l( +4uu)+; R RO‘“ﬁl’—R—2 where
W 8rGs Jpw RV 64 G op 12 9m
N : 2@ R 2@ R
—uudl‘u:dt—W1SIH2 d¢_wgcos2 o
1—wi 1—w;3 (6.8)
Agdt wisin?2@ , . ~  wycos’O - R .
= — d dt) — ——(d dt
(1—w?)(1—wid) 1—w? (de + widt) 1 — w2 (d9) + wad?)
0
”8 = —=
Y

where R, \, denotes the boundary curvature tensor associated with the metric g,,,. Apart
from an additive curvature dependent piece whose form is dictated by the conformal
anomaly?!, this stress tensor is precisely that for a perfect conformal fluid with velocity

vector u# = (1,0,0,0) and pressure p = 87:”&.

6.2.2 Relationship to analysis in [J]

We pause here to connect these results to those derived in [ff]. The authors of that paper
analyzed the same rotating black hole solutions, however they worked with a different set
of coordinates denoted here by (7,%,¢',7',©'). In these coordinates the boundary of the
rotating black hole solutions is naturally S x R as we now explain.

The Rotating Einstein Universe is Weyl Equivalent to S% x R. In order to see this
consider the boundary coordinate transformation

(1 — w3) cos? ©

2
cos” O =
1—w? sin? @ — w3 cos? ©
2\ o2
. 9 (1 —wy)sin“©
sin“ © =
1—w? sin2 @ — w3 cos? © (6.9)
¢+ wit=¢
)+ wol =4

Expressed in terms of these new variables, the boundary metric (6.7) may be written as

ds2Bnd 1 72 2 2 O 3,2 NN
= e T (O 407+ cost Oy 1 sin ©/ds)
= 7% (—di* + d02) 6.10)
1

’7 =
\/1 — w?sin® @ — w?cos? ©/

where d)2 represents the usual metric on the round 3 sphere.

2INote, for example, that the trace of the stress tensor in this background as calculated from above[ﬂ7 a]
2
is 647G T} = RagR* — .
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In order to obtain a boundary metric that is actually that on S x R rather than
simply conformal to it, the authors of [P] worked with the redefined radial variable 7 =

- _ - . . .
iEerex ey per=T Ay T e so that the induced metric on slices of large
constant 7 is equal to

d32 2 2

With these conventions the rotating black hole solution is dual to a fluid flow on S%x
time. The fluid velocities and temperatures of this flow are given by acting upon the velocity
and temperature fields u* = (1,0,0,0) T = (2]\7/{)
coordinate transformation (6.9) followed by a Weyl transformation (compare (p.1() and

(E10) yielding

1
4

, of the previous subsection, with the

U 24—wi+wi
T\ o T ag T ey
- (2M)1
7o GM (6.12)
s
1

v = _
\/1—w§cosz®—w%8in2 o

precisely as reported in [g].

6.2.3 Recasting the solution in the Fluid mechanical gauge

Continuing with our analysis of (6.7), we will now recast this metric in the gauge (2.10).
As was explained in [ff], the coordinates in gauge (R.10) are adapted to a congruence of null
ingoing geodesics, whose tangent vectors near the boundary are given by g—f\ =1, C{f—; = ut
in Graham Fefferman coordinates. While it turns out to be difficult to solve for the most
general null geodesic in (B.7]), precisely this congruence turns out to be easy to determine
and is given by

dr

=1
dA

do
- =0
dt  (r* +wi)(r® + wi)
dr r2A, (6.13)
d¢ (1 —w?) at
ar Vo ar
r ré 4+ wi dr
dip (1 —wi) at

A p— LA
dr r2 —|—w§ dr

As we have explained before, in the gauge (R.10) the coordinates 2* are constant along
this congruence of geodesics, and the coordinate r is simply the affine parameter along
these geodesics. Consequently, it follows that the change of variables to the Eddington-
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Finkelstein like co-ordinates (P.10)) is given by

(r? + wi)(r? + w3)

t=dt —
di = d A dr
. 2V (2 2
b= dp— U wll(r +w3) 4, (6.14)
A,
’ (r? + w?)(1 — wj)
& = dop — frN dr

Expressed in terms of the new coordinates the metric becomes

.2 2
ds2:2dr<dt—wlsm2@d¢ w9 COS @d¢>
1—wi 1-— w2
A, wy sin? © wy cos? O 2 p? 9
—— (dt — do — d d
p2< 1—w} o w3 w) +A@@
Ao 24w 24w 9 (6.15)
+ — | sin 2o <w1dt — 1 d(b) + cos’© <w2dt 2 dl/))
p 1- w2
1+7? .9 r? + w? r? + w3 2
+ ——— | wosin“ O | widt — 2 Ldd | + wy cos? O | wadt — 5 dy
r2p? 1 —wi 1— w32

As we describe in detail in the appendix [B, we conclude that the AdSs-Kerr metric
can be written in the following manifestly Weyl-covariant form

ds? = —2u,dz (dr + rAxdz?) + r2g,, detdz”

o2m 1 !
_ (uuDAw)‘,, + wu)‘u»\,, + %u“u,,> dztdx” + —- <1 + o 53 Wapw 5) uyuy, det dx”
= —2Wyu,dz” (dr + rAxdz™)
+ [7"2 (W2 guw + Wauyuy) +r (Wauu, +u,Way, ) + W5W] dztdx” .
(6.16)

with the functions in these equations given by (p.]).

6.3 Horizon and Entropy Current

As we have mentioned above, the location of the event horizon (in the radial variable of the
gauge (R.10)) is given by the solution to the equation (f.4). The solution to this equation
is easily obtained at second order in the derivative expansion: we find

_ 1 1—5(1+ 7+ w3)
TH—b 1 Wy Wy

1 b (3 R
S R af | v (6.17)

S| =
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It is easy to check that this result agrees with our general prediction (p.2), once that
equation is re-expressed in the radial variable of the (2.10)

1

2 o)
TR = — b Sy + 5 65 + - 61 3b / H (br) (6.18)
b 2 r=1/b

On the velocity configuration dual to the black hole &5 and &5 vanish and
Sb = wa'aw / H wa'aw IB

inputting these values we see that (6.1§) and (p.17) agree.
In a similar fashion, the formula for the entropy and entropy current (f.3) for these

black holes may be expanded to second order: we find

Qg b2 3wa5waﬁ R
S = 14 — (2P Ly
B w1 w3) ( T < 2 6

Jt = ! <1+b2(w2+w2—3)>
b3 4 1 2

wi(l — w?)
b

wa (1 — w?)
b

(6.19)
J? =

JY =

On the other hand the general formula for the entropy current (b.J) evaluates, on the
specific fluid flow at hand, to

3 11 Iz b’ af b’ MY A
4G = (1- = (5wapew® +R) ) + e (6.20)

It is easy to verify, using (B.4), that (£.20) and (6.19) agree. Upon integration S = [ \/g_]JO

with /g = %"S@) we also reproduce the first of (.19).

7. Some Simple Solutions of Forced Fluid Dynamics

In this section we construct some simple solutions to the equations of motion of fluid
mechanics with forcing terms derived above, and consider their interpretation in the bulk.
In order to make the physical points of interest most immediately, in this section, we often
work with the crudest approximations that capture the physics at hand. We postpone a
more careful study of these solutions (and hopefully several others) to future work.

In subsections [[.]] we study fluid flows that are pushed to high Reynolds numbers by
the effective forcing effect of a varying background metric. In subsection [I.3 we study
‘cosmological’ solutions of fluid dynamics corresponding to a time dependent but spatially
homogeneous dilaton. As we have explained in the introduction, we believe that these
solutions qualitatively capture the excursion of the bulk geometry into regions of strong
curvature. Finally, in subsection [.J we study a fluid that is pushed into motion by the
forcing effect of a varying dilaton field.
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7.1 Metric as the Forcing Term
7.1.1 Hydrostatic Solution in an arbitrary spacetime

We begin by considering the case where the forcing term arises due to a non-trivial metric.
We start with the stress tensor in the perfect fluid approximation,

™ = (7 T)*(g" + 4u'u”), (7.1)
in the presence of a time independent metric of the form,
ds® = goodt® + gijdxidwj. (7.2)
It is easy to see that the conservation equations,
v, T" =0, (7.3)
then admit a hydrostatic solution, with four-velocity,
0

u’ = /—¢% u' =0, (7.4)

and temperature,

C

V1g00]

The temperature dependence can be understood as arising due to the gravitational red-

T —

(7.5)

shift. We see that the temperature is higher, where |ggg| is smaller, i.e., where the grav-
itational potential is deeper. In the bulk the radial location of the horizon is given by,
r = 7, and becomes a function of the spatial coordinates.

This solution gets corrections due to the additional terms in the stress tensor, eq.(R.13).
Since the fluid is at rest the viscosity term is irrelevant. Although we have not attempted
this, it should be possible to work out the corrections due to the second-order terms found
in this paper in a straightforward manner. All such terms are suppressed by a factor of
(TR)™2, where R is the length scale associated with the boundary spacetime, compared
to the leading order result presented above. These terms will lead to a corresponding
second-order correction to the dual geometry.

7.1.2 Small deviations from hydrostatic equilibrium
We now specialize to a boundary metric of the form

9ij = 0ij

goo = 9oo(2) (79)

(z is one of the spatial coordinates) and study a particular perturbation about hydrostatic
equilibrium. In particular, we search for a steady state solution in which, in addition to
a varying temperature, the fluid has a small, time independent velocity purely in the z
direction. Throughout this subsubsection we work to first order in this spatial velocity u?.
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The v = 0 component of eq.([.3) gives 22

T*w*|goo| = ¢, (7.7)

where ¢ is an integration constant. The v = z component of eq.([.3)) is unchanged from
the hydrostatic case, at linear order, and gives, again, eq.((.§). From, eq. (7.7), (7.5) it
follows that

u® = ug|gool, (7.8)

where uf is a constant. ([.H), and (.§), determine the temperature and velocity T, u?,
as a function of z. Let us suppose that gopo = —1 at a particular location and changes
to —(1 + f) over the length scale L. It follows that the change in the fluid velocity over
the same length scale equal in magnitude to fug§. While u§ has been assumed to be small
compared to unity in this subsection, and while we might wish to restrict f also to be
small compared to unity for some physical purposes, it is consistent to hold each of these
quantities fixed as T'L is taken large. In this case the formal ‘Reynolds number’ of this flow

Re ~ AvTL, (7.9)

becomes parametrically large in the fluid dynamical limit T'L > 1.

While the static flow described above is rather tame, we believe it illustrates the general
point argued for in the introduction, namely that even though the forcing effects of gravity
are mild (suppressed by 1/L) they can build up to O(1) changes in the velocity - and hence
high Reynolds numbers - over length scale L. Consequently one might hope to be able
to stir the fluid into steady state within the validity regime of the approximations of this
paper, though we would probably need a more general metric (one that depends on several
spatial directions as well as time) for this purpose.

7.1.3 Flows forced by a time dependent spatial metric

We can also consider an analogous situation where the metric is,
ds? = —dt® + g..(t)dz* + da* + dy?, (7.10)

with only one non-trivial spatial component that depends on time. A consistent solution
can be obtained with u°, u* being the only non-zero components of the 4-velocity. Working
with the perfect fluid stress tensor, one finds from the v = 0 component of eq.(7.J) that,

4,0,2 _ _ €
The four-velocity satisfies the constraint,
(u0)2 - (uz)2gzz =1, (7.12)

22We work in the perfect fluid approximation and at first order in velocities. It should be straightforward
to account for the first nonzero corrections to these approximations.
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The last equation is the v = z component of eq.([.3). Using eq.(f-11)), eq.(7.13), to elimi-
nate two of the variables, one can reduce this problem to quadrature. We skip some of the
details here.

The temperature and 4-velocity are time dependent in this case. It is easy to see that
again order unity changes in the metric, g,,, result in order unity changes in the velocity.
The time varying metric allows energy to be pumped in or out of the system. If the time
scale over which this happens is big compared to the temperature, as is needed for the fluid
mechanics approximation to be valid, one finds analogous to the the spatially varying case
discussed above, that the Reynolds number is much bigger than unity.

7.2 Time Dependent Dilaton and Highly Curved Spacetimes

We now study a simple ‘cosmological’ solution of fluid dynamics. In the solution we study
the metric is taken simply to be 7,,, but the dilaton is taken to be a slowly varying function
of time. We are interested in answering the following question: suppose we start with field
theory heated up to a temperature 7" and at coupling constant A;. Suppose we then slowly
vary the coupling from A\; to Ag over a time At¢. What is the final state of the theory at
the end of this process?

Using the equations of fluid dynamics derived in this paper, it is easy to answer this
question (we comment below on the validity of these equations for the purposes of this
issue). In particular, there exists a solution to the fluid equations of motion in which the
fluid is always at rest and the temperature remains spatially homogeneous but heats up
slowly in time, in response to the varying dilaton. In more detail consider the configuration

uw =1, u' = 0. (7.13)

Taking the leading contribution to the dilaton forcing function (this is the first term on
RHS of the second equation in eq.(R.13)) gives, from eq.(B.20),

V. T" = —(7T)30" $dob. (7.14)

If we take the perfect fluid stress tensor, eq.(f.1]), and 4-velocity, eq.(.13), this gives rise
to one non-trivial equation for T', which can be integrated to give,

1 [

T(ty) = T(0) = 55 |

(¢)2dt. (7.15)

We see that, irrespective of the details, time dependence of the dilaton always increases
the temperature and thus the energy and the entropy density of the fluid monotonically.
In the bulk correspondingly the horizon area increases monotonically. This ties in with the
discussion below (.j).

Note that
AT (Ag)?

T TAt
i.e. a total change in the dilaton, A¢, over a time, At, results in a small fractional change
in temperature if 0t is sufficiently large. When the LHS of ([7.16) is small the condition for

< 1. (7.16)
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the validity of fluid dynamics
T _ (Ag)?
— = 1. 7.17
T2~ (TanE S (7.17)
is automatically met provided A¢ > 1 and hence T'At > 1.
In summary a time dependent coupling constant always heats up the system; however

the fractional increase in the temperature can be arranged to be small - even for a large
fractional increase in the coupling - provided the coupling constant is changed relatively
slowly.

Corrections to eq.([[.15) will arise because of corrections in the stress tensor, eq.(2.13),
and in the forcing function, eq.(B.2(). If the condition, eq.([[.17), is valid corrections due
to second order terms in the stress tensor are small 2. Corrections in the forcing function
go like, ngﬁi(ﬁ. These are small, compared to the leading order term, if TAt > 1.

7.2.1 Highly Curved Spacetimes

In the bulk of this paper we have derived a set of fluid dynamical equations from the
Einstein Hilbert Lagrangian and studied some aspects of the dynamics of these equations.
Our analysis so far has been quantitative. On the other hand, in this subsubsection we
attempt to explore some qualitative aspects of bulk dynamics of highly curved spacetimes
via fluid dynamics.

In particular, we wish to investigate the behavior of a set of classical solutions of string
theory (rather than gravity) that is dual to evolutions of large N. N' = 4 Yang Mills
theory with a time varying 'tHooft coupling that is lowered down to order unity. The
bulk equations that govern these systems are unknown. Nonetheless we will attempt to
qualitatively understand these evolutions using an expectation based on physical intuition
: at long wavelengths these (unknown) equations of classical string theory should reduce
to the equations of boundary fluid dynamics with A dependent parameters. Though we do
not know the detailed A dependence of these parameters, we will attempt to estimate their
qualitative properties to the extent needed for our analysis.

We pause here to explain this intuition in more detail. The equations of fluid dynamics
follow simply from symmetries combined with the physical expectation of local equilibra-
tion. Any interacting system is expected to equilibrate locally over a length and time scale
set by its ‘mean free path’ which may be crudely estimated by the ratio n/p where 7 is
the viscosity and p the energy density of the system. It follows from 'tHooft scaling and
dimensional analysis that this ratio takes the form ¢(\)/T for some function ¢(A) in N'=4
Yang Mills theory. We know from perturbation theory that ¢(\) diverges at weak coupling,
and we know from the AdS/CFT correspondence that ¢()\) is a constant at strong coupling.
From these two behaviors, it seems reasonable to guess that g(\) decreases monotonically
as the coupling is increased or, at least, that it never diverges at a finite value of \. If this
last guess is correct, the effective equilibration length scale for AV = 4 Yang Mills should
be of order 1/T for all A greater than or of order unity, and fluid dynamics should be a
good description of any evolution of the system in which all quantities vary on a length

2 Any corrections due to the viscosity term vanish in this case.
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scale that is large compared to 1/7.We make this assumption in what follows below. We
also assume the absence of any phase transition in high temperature A’ = 4 Yang Mills as
A is varied from large values to values of order unity. We wish to emphasize that if either
of the assumptions listed in this paragraph fails, none of the conclusions we reach in this
section need apply.

With all these caveats in mind, we now proceed to consider a situation where we start,
in the far past, with a value of the dilaton on the boundary such that gslN > 1. We take
the dilaton to be a slowly varying function of time and reduce its value till, gsN = Apin.
Then increase it again so that in the far future g;N > 1.

The fluid dynamical solution presented above accurately captures the boundary dy-
namics of this situation provided A,,;, > 1. When this condition is met, the results of this
paper eq.(B.4) also yield the bulk dual of this field theoretic evolution.

Now let us instead consider take A, to be O(1). In this case we expect the evolution
described in this subsection to be given by some classical solution of string theory rather
than supergravity. We also expect spacetime curvatures to become of order string scale -
and so for stringy effects to become very important - over the times at which A is of order
Amin. However curvatures are small in string units (and so the SUGRA approximation is
good) at early and late times. In other words the dual bulk solution is expected to be a
cosmology where an initially smooth space-time becomes highly curved, with a curvature
of order the string scale so that it is not well described by the two derivative SUGRA
approximation, and then returns in the future to being smooth again. ?* We now want to
inquire what information we can glean about this evolution process by the use of boundary
fluid dynamics.

Of course the specific fluid dynamical equations we have derived in this paper are only
valid at very large A. However aspects of these equations are dictated merely by symmetries
and the physical expectations of equilibration, and may have much greater validity. Of
special importance to us in this section is the structure of dilaton dependence in the forcing
term in the Navier Stokes V,T*” = f¥ studied in this paper. As we have explained in the
introduction, it follows from general field theoretic reasoning that f* = e~?Lo* ¢ where
L is the expectation value of the Lagrangian. As we have explained above, it further
follows Weyl invariance that upto the one derivative level e=?L = T*r()\) + T3g(A)u.0¢.
Similar statements apply to the form of the stress tensor upto first order in the derivative
expansion. It follows that the leading two (boundary) derivative equation of motion that
governs the evolution described in this subsection is

10T (Bo9)?
Taot () 1277

+9(A)do¢. (7.18)

where h(\) is an unknown function that evaluates to unity at A = oo and is expected to
be of order unity provided for A greater than or of order unity. On the other hand g(\) is
another unknown function such that g(A\) — 0 as A — oo. There seems no reason not to
assume that g(\) is of order unity when \ is of order unity.

#TFor some recent work on time dependent cosmologies in the context of AdS/CFT, see [@, E, ﬁ, E,

4. bd. B, B4, B4, B4, B3, Bd)
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Consider again varying the coupling constant down from infinity. The first term in
([7.1§) dominates the evolution of the temperature when the coupling is large enough (i.e for
g(\) < T719y¢ ) and (7-15) applies in this domain. On the other hand once g()\) increase
above T~ 10y¢, the second term in (7-I§) dominates the evolution of the temperature. The
details of the subsequent evolution depend on the precise form of the unknown function
g(A).

In order to get a sense for how this works, however let us assume that g(\) = K/\* for
some positive power a (this would be the expectation for g(\) at large A if it was generated
at finite order in the o/ expansion). In this case the second term of ([.1§) dominates over
the first when A < A\g ~ (%)1/ @. For lower values of A we can ignore the first term in
([71§), and then that equation is easily integrated. We find that, in lowering A from Xg to

a1
Amin, the temperature changes by a factor e (70 758 ). Now % must be small in order

for fluid dynamics to apply. It follows that Ag > Amin When Ay is of unit order, so that
lowering A from Ag to A, changes the temperature of the fluid by a finite factor that is
is independent of Ag.

In summary, if the coupling is lowered very slowly from A to Ay the temperature
is almost unchanged. Subsequent lowering of the coupling from Ay to Ay, changes the
temperature by a fixed finite factor that depends on A,,;; but not on Ay or other details
of the process. We conclude that the principal conclusions of the previous subsection -
namely that the dilaton may slowly be lowered from an arbitrarily large though fixed value
to a value of order one with a finite (though, in this case, not arbitrarily small) change
temperature - carry through unchanged. This appears to be an interesting statement about
the dual bulk evolution. We have argued that nothing particularly dramatic happens to a
spacetime - at least if it is at large finite temperature - as it traverses through a region of
string scale curvature. We emphasize that it was very important to our analysis that we
were at high temperature; the fluid dynamical analysis presented here sheds no light on
the evolution of the same bulk geometries at zero temperature.

In fact one can try and go even further. After having reduced the dilaton to a value
where, gsN ~ O(1), we can reduce it even more till g;/N < 1. At this stage the notion of
spacetime geometry has completely broken down and the correct description is in terms of
a perturbative Yang Mills theory. Thereafter one can increase the dilaton, till in the far
future it meets the condition, g;/N > 1. As long as the driving force due to the dilaton is
slowly enough varying, one expects that the boundary theory will be well defined, and the
initial state we start with can be continued past the highly curved region to match with a
smooth geometry in the future.

Now fluid mechanics can continue to be a good description, at small g;/V, provided,
the function h(\) does not blow up 2> as A — 0, and, the temperature varies slowly enough,
satisfying the condition,

T
lmfp? < 1, (7.19)

(where I, 7, stands for the mean free path). The condition (7.19) is expected to translate

25This seems very reasonable and can be checked against a perturbative calculation.
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into

T
75 < (7.20)

at small A, a stronger condition than ([.I7]) which holds at A of unit order or greater. (This
expectation follows from the estimate, that in perturbative Yang Mills theory

1

as opposed to L, ~ % at strong coupling). Consequently, requiring that fluid mechanics
is a good effective theory in the perturbative regime puts more stringent limits on how fast
the dilaton can be varied. From eq.([.19), eq.(7.21), we get,

d(zy)
—a < T. (7.22)
Nonetheless, using a dilaton profile which varies slowly enough to meet this more stringent
condition, we can construct solutions where two asymptotically smooth regions of spacetime
are connected by an intermediate region which is highly curved (dual to Yang Mills theory at
any specified - though nonzero - coupling). This intermediate region admits no conventional
description in terms of spacetime, but we expect it to be well described by fluid mechanics
26

As must be clear to the reader, the discussion this subsection makes several assumptions
and is tentative in some respects. In particular we reiterate that it makes assumptions
that are difficult to directly verify: in particular the assumption that there are no phase
transitions in high temperature N' = 4 theory as gsN is varied from large values to O(1),
or smaller values.

7.3 Spatially varying Dilaton

Finally we consider a spatially varying dilaton as a forcing function. For simplicity we
take the dilaton to depend on only one spatial coordinate, z. We also set, the u¥,u?,
components of the four-velocity to vanish. As in our discussion of the time dependent case
above, we start with the perfect-fluid stress tensor, eq.([(]]), and leading dilaton forcing
function. Eq() then gives rise to two condition. From, the v = 0 component we get,

d(T*uu®)
I 0 (7.23)
And, from the v = £ component,

AT (A +1) T8

= ()2, (7.24)

dx T

where prime indicates derivative with respect to . In addition the condition,

(u)? = (u")? =1, (7.25)

26 Also it is worth noting that once the dilaton is small enough, we could more directly analyze the time
evolution in perturbation theory, even when fluid mechanics is not valid. This may even allow us to study
evolutions that continue to strictly zero field theory coupling in finite time.

— 40 —



is also valid. This yields three equations in the three variables, T, u°, v*. Eliminating two

variables from eq.(7.23), eq.([.25), and substituting in eq.(f.24) reduces the problem to
quadrature.

Here let us consider the case where where the spatial velocity is small, i.e.,
u’ < 1, (7.26)

and work, to begin with, to linear order in u®. To this order, u® = 1, and from eq.([-23),

c
where ¢ is a constant. Eq,([.24), now gives,
T°(z) 5 uf [*
=1-—-t "2dz. 7.28

where T;, v stand for the temperature and velocity at x — —oo. Without loss of generality
we can choose conventions so that uf > 0. Then we see that as = increases, the temperature
decreases and the velocity increases. From, eq.([7.27), eq.([7.29), we see that the length scale
of variation of the temperature and velocity, are set by the forcing function of the dilaton.
We denote this length scale by L below.

The analysis can be improved by working to quadratic order in u”. In general also the
dilaton will depend on all spatial coordinates, this will lead to spatially varying velocities
and to viscosity effects being important. The Reynolds number for a fluid flow is given by,

Re ~ Au*TL, (7.29)

where Au® is the variation in the velocity along the flow. From, eq.([7.27), eq.([7.2§), we
see that, for A¢p ~ O(1), Au® ~ uf% ~ (u?)?77. This gives Reynolds numbers of order
unity or smaller. Again this is in line with the expectations spelt out in the introduction.
The smallness of the Reynolds number of this flow is connected to the fact that the dilaton
yields a forcing function that is of second rather than first order in derivatives.
Corrections to these flows can be systematically computed, using the corrections to

the stress tensor, eq.(R.13), and forcing function, eq.(B.20).

8. Discussion

In this paper we have used the AdS/CFT correspondence to determine the metric dual
to an arbitrary flow of the fluid of a conformal field theory on an arbitrary weakly curved
four manifold, with an arbitrary slowly varying coupling constant. We have also explicitly
constructed the event horizon of these metrics in the derivative expansion, and used grav-
itational ideas to propose the construction of a dual entropy current whose local increase
is guaranteed by the area increase theorem for black holes in general relativity.

We have tested the constructions of this paper against an exact class of asymptotically
globally AdSs solutions of Einstein’s equations, namely rotating black holes in global AdSs.
We have demonstrated that these solutions admit a remarkably simple rewriting in fluid
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dynamical terms, and have verified that they agree in detail with the general constructions
of our paper when expanded out to second order in a derivative expansion.

The connection of large rotating black holes to fluid dynamics was previously partially
explored in [f]. The authors of that paper noted that the stress tensor dual to rotating black
hole solutions was exactly reproduced, to appropriate order in the derivative expansion, by
the predictions of fluid dynamics. However these authors also noted an apparent first order
discrepancy between the properties of charged rotating black holes[87, B§, [0, and the
predictions of charge fluid dynamics. A generalization of the calculations of this paper to
account for fluid charge would allow us to pinpoint the source of this worrying discrepancy.

Turning to another issue, we believe that it should be possible, within the approxima-
tions of this paper, to choose a time dependent fluctuations of a flat space metric to stir
the conformal fluids studied of this paper into steady motions with high Reynolds num-
bers. Even using the forcing functions provided by linearized fluctuations of the metric
away from flat space (see the introduction) we believe it should be possible, for instance,
to stir a fluid on R® or the sphere into configurations that resemble classic experiments
that display turbulence?”. Consequently, the map from fluid dynamics to metrics in this
paper should yield the spacetime dual to a turbulent fluid flow. The understanding of ap-
parently universal exponents in turbulent motions remains one of the outstanding unsolved
problems of statistical physics. It is conceivable that the dual spacetime perspective could
permit qualitatively new insights for such flows.

Of course transient turbulence occurs in fluid flows even without forcing. For instance,
a configuration of our conformal fluid at temperature 7 on an S® of radius R, and with
(varying) velocities of unit order has Reynolds number of order TR and so presumably
undergoes turbulent motion. Now all such fluid configurations eventually settle down into
(presumably unique) non dissipative solutions of of fluid dynamics with given conserved
energies and angular momenta; the rigid rotations studied in [J]] and in section [ of this
paper. Let us translate this expectation to bulk language. Consider an arbitrary gravita-
tional configuration, in global AdSs, with appropriately large energy and angular momenta.
Such a configuration will undergo gravitational collapse and eventually settle down into
one of the rotating black holes studied in [[f]. The gravitational dynamics of this settling
down process could be dual to a turbulent fluid flow. It may be interesting to pursue this
connection further.

Finally, we end this paper with an amusing thought. Recall that we have been able
to construct a bulk dual to fluid flow in an arbitrary boundary metric. Now the boundary
metric can, in particular, be chosen to have a horizon; for example it could be taken to be
the metric of a 4 dimensional Schwarzschild black hole(See [P(] for an example). It may be
interesting to investigate the bulk dual description of the boundary fluid falling through
horizon of this metric.
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A. Force on the Boundary fluid due to a Varying Dilaton

In this appendix, we calculate the force that a varying dilaton field applies on a fluid at
the boundary. To that end, we start with the bulk expression for the boundary energy-

momentum tensor

167G5Th = lim r* (2(Keph®Phiy — K3)
r—00

hghCD (Al)

_ 1 /- _ _ _
+GA — 6hi — 5 (VA<I>VB(I> - vccchb))

where hap,Kap and Gap are respectively the induced metric, the extrinsic curvature
and the Einstein tensor of the constant r hypersurface. V is the covariant derivative
corresponding to the constant r hypersurface in the bulk.

To compute the divergence fp = V ATg, we proceed as follows - from Gauss-Codazzi-
Mainardi relations (See, for example, Eqn.10.2.24 of [01)]), we have

2V 4 (Keph®Phit — K33) = —2Repggn® = —Ve@VpogGn? = -V50V, o (A.2)

where in the last step we have used the Einstein equations in the bulk. Further, we also

have
le (e L —— 1oy o
—§VA V&oVed — 5 VedVpd | = _EV VP (A.3)
Using these two equations along with the reduced Bianchi identity VAG4Z = 0, we
get
_ _ 1.
167GV AT = —Vpo <vnc1> + 5v2c1>> (A.4)

Multiplying by r* and using 167Gse %L = — lim,_, o0 7 (Vn<I> + %W@) we get the follow-
ing relation among the boundary variables

V. T! =e ?LV,¢ (A.5)
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B. AdS Kerr

In order to rewrite AdS Kerr metric in the fluid dynamical form, we find it convenient to

re-express it as

202 2 A t2
ds? = 2dr (dt— — 9 — 2 @d¢> (r?+1) od”
—wi l-w (1—w1)(1—w2)
2
+ 220 | 2y )Sin i (d¢ Fwdh)? + (2w )COS " (dw + wadt)?
Ag 1-— 1-—
2m wy sin? © w9 COS (9
— | dt — d
* p? < 1—w? oo w3 )
.2 2
:2dr<dt—wlsm2@d¢ wgcos@ )
Agdt? d@2 n’e s ©
2 © 2
d dt
o < (1_W1)(1_W2)+A %(¢+W1 ) +1 %
- wl)(l ey + (Wi cos? © + w3 sin? ©) —— Ag
2 [e) 2 2 [e)
wis_lin(dqﬁ +widt)? + “’iC_L(dw + wadt)?
2m wy sin? © wy cos? O 2
<d D g 2 dzb)
p wy w;
This metric may be rewritten as
2
ds® = —2u, dztdr + rzgw,dx“dﬂc” + p—?uuu,,dzn“dzn” + X, dat dx”
where
Agdt? 9 de?
Ydrtdrt = — + (w? cos? © + w?sin? ©
: i) 25
2 2 02
wlsm @(d¢+w1dt) wj €Os ®(d¢+det)
1-— wl 1-—

(dT/J + wadt) )

(B.1)

(B.2)

(B.3)

The first three terms in ([B.9) are simply the ansatz (R.7) while the last term, proportional

to X, represents the derivative corrections (B.§) to that ansatz.

It is possible to express X, entirely in terms of Weyl-covariant curvatures and Weyl

covariant derivatives of the velocity.
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The non-zero Weyl covariants associated with this fluid configuration are

A, =0; o =0 Civre =0
R =6 (1 +wi +wj — 3(wi cos® © + w3 sin” O))
Wt = 2(wi cos? © + wj sin® O)

1 X w1 w9
z I v _ _
5 wpdxh N dx sin © cos ©dO A (1 7 do T d¢>

D,\w/\udw” = P:DAw’\de” + wagwo‘ﬁuudx“
= —2dt(w? cos® © + w3 sin® O)

-2 2
C9Ae <w1s1n 2@d¢+wgcos 2®d¢>

+ 2(w? — w?)sin? O cos® © w1d¢2 - wgdz/J2
1—wi 1-wj (B.4)
. 2 2 .
w1 sin” © wo cos* O
P'Dyow?, dat = -2 d d
iPat = 2 (2P 00+ 42 )

1—w% 1—w%

de? sin’e cos? ©

P, datds” = do? dyp?
p G AT A@+1—w%¢+l—w§w

—sin?©cos’ O < wid¢ - wad )2

+2(w? — w) sin? O cos® © < wrde | wady >

2 2

A w2V 2 d®2
w, wyydatde” = —(wi cos? © + w3 sin? ) —— Ag

- Ag sin’ © cos® © < widg — wady >2
1

2 2
—w] 1—-ws;

@2
Ag

af 1
<wu>‘w>\y + wag?(;u PW> datdx” = —3(w% cos® © 4 w3 sin? ©) ——

2 in?
+ Z(w? cos® © + w3 sin? ©) o ®2d¢ cos* O dw2
3 1 —o? 1-

+ A®3+ 2 sin © cos® © < wid¢ - wady >

2 2

Using the above expressions, one can rewrite ¥, completely in terms of the Weyl-

covariant derivatives of the fluid velocity and Weyl covariant boundary curvatures: we
find

R
Ydatds” = <uuD>\w v+ w oy, + EW“V) datdz”
(B.5)

1 1
and p? =1+ iwaﬁwaﬁ =2 (1 + 5, 2WapwW 5)
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C. Notation

We work in the mostly positive, (— + +...), signature. The dimensions of the spacetime
in which the conformal fluid lives is denoted by d. In the context of AdS/CFT, the dual
AdSg41 space has d + 1 spacetime dimensions.

Latin alphabets A, B, ... are used to denote the d + 1 dimensional bulk indices which
range over {r,0,1,...,d—1}. Lower Greek letters yu, v, ... indices range over {0,1,...,d—1}
. The co-ordinates in the bulk are denoted by X# which is often split into a radial co-
ordinate r and z*. The dilaton field in the bulk is denoted by ® and its value in the
boundary is denoted by ¢.

Our convention for the Riemann curvature tensor is fixed by the relation

[VH,VV]VA = _Ruua)\vg- (Cl)

In Table [, we list the physical meaning and the definitions of various quantities used
in the text.

Symbol | Definition Symbol | Definition
d dimensions of boundary Gag Bulk metric
9w Boundary metric
T Fluid temperature n Shear viscosity
T Energy-momentum tensor J éf Entropy current
ut Fluid velocity (ufu, = —1) P Projection tensor, g"” + utu”
at Fluid acceleration, Y Fluid expansion,
O Shear strain rate, Wyw Fluid vorticity,
D, Weyl-covariant derivative A, See ([L.3)
R,,,° | Riemann tensor Fuw V., A, =V, A,
Cuvro Weyl curvature

Table 1: Conventions used in the text,with reference to the equations defining them where appro-
priate.
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