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ABSTRACT

Extremal black holes are studied in a two dimensional model motivated by a

dimensional reduction from four dimensions. Their quantum corrected geometry is

calculated semiclassically and a mild singularity is shown to appear at the horizon.

Extensions of the geometry past the horizon are not unique but there are contin-

uations free from malevolent singularities. A few comments are made about the

relevance of these results to four dimensions and to the study of black hole entropy

and information loss.
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Introduction:

Hawking’s discovery of blackhole radiance
[18,19]

raises several intriguing ques-

tions. It shows that black holes have an entropy which can be elegantly expressed

in terms of their geometry but which remains mysterious in terms of any un-

derlying microstates. It also suggests that because of the thermal nature of the

outgoing radiation, a loss of quantum coherence might occur in processes involving

black holes. Extremal black holes provide a convenient setting in which to address

both these issues. Their zero temperature suggests that their entropy should be

explained in terms of a degeneracy of ground states. It also makes them conve-

nient toy laboratories in which to study scattering and a potential loss of quantum

coherence.

In this paper, we study a model consisting of dimensionally reduced gravity

and electromagnetism coupled to two dimensional scalar fields. Classically, this

model has Reissner Nordstrom black hole solutions, obtained from dimensionally

reducing the usual four dimensional charged black hole solutions. In this paper,

we concentrate for the most part on the extremal black holes which in Planck

units have a mass equal to their charge and have zero Hawking temperature. We

show that contrary to expectations, the vacuum polarisation of a scalar field in the

background of such an extremal black hole blows up at the horizon. This raises

the possibility of their geometry being drastically modified in the vicinity of the

horizon and their entropy being very different from what classical considerations

would suggest. A semiclassical calculation of their quantum corrected geometry

shows however, that this is not true. For large black holes the value of the dilaton

at the horizon and hence their entropy
†
, stays large. A singularity does appear

at the horizon but it is very mild. For example, tidal forces and the curvature

stay finite at the horizon. This suggests that there should be a continuation of the

geometry past the horizon. In fact, there is more than one such continuation - even

when we restrict ourselves to static solutions. In one of these the causal structure

† The entropy of these black holes depends on the dilaton and is large if the value of the
dilaton at the horizon is large.
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of space time is much like the classical extremal solution. But there is another

continuation possible in which the causal structure is much different and in which

there are no malevolent singularities. We conclude with a brief discussion of the

relevance of our results to the study of four dimensional extremal black holes, and

to the study of black hole entropy and information loss.

The study of quantum effects in two dimensional black holes was first under-

taken in the 1970′s in some very interesting papers which include references [1-5].

More recently, considerable interest was renewed by the discovery of a two di-

mensional black hole solution in the work of Mandal, Sengupta and Wadia
[20]

and

Witten.
[21]

This solution was then used to study questions related to Hawking evap-

oration in the work of Callan, Giddings, Harvey and Strominger
[22]

(CGHS). Two

recent papers which review the subsequent developments are references [10,11]. Pa-

pers especially relevant to the work presented here include references [6,7,8,9,15,17]

. Papers which discuss dimensionally reduced models include references [12,13,14] .

To our knowledge, the first published reference to the idea of using extremal black

holes for studying issues related to Hawking radiation is in the paper of Preskill

et. al.
[23]

.

The Model:

We start in four dimensions and make a spherical symmetric ansatz for the

metric which gives

ds2 = gαβdxαdxβ + e−2φdΩ. (1)

Here gαβ is the two dimensional metric in the ”r-t” plane and e−2φ, which we call

the dilaton, is the square of the radius of the two sphere. The Einstein Hilbert

action then takes the form

SG =
1

4G

∫

d2x
√

ge−2φ
(

R + 2(∇φ)2 + 2e2φ
)

. (2)

We note that this differs from the action considered by CGHS
[22]

in the form of the

dilaton potential, i.e. the last term above. The term considered here prevents the

action SG from scaling simply under the transformation φ → φ + c.
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Proceeding similarly, the Maxwell field can be dimensionally reduced to give

an action

SEM = − 1

4G

∫

d2x
√

ge−2φF 2 (3)

where F 2 now refers to the field strength of a two dimensional gauge field.

Spherically symmetric charged black hole solutions of the original four dimen-

sional theory continue to be solutions of this theory. They are given by a metric

ds2 = −(1 − 2M

r
+

Q2

r2
)dt2 +

1

(1 − 2M
r

+ Q2

r2 )
dr2 (4)

and a dilaton

e−2φ = r2. (5)

The corresponding field strength is

Frt =
Q

r2
. (6)

Here, M is the mass and Q the charge of the black hole. We will be mainly

interested here in extremal black holes for which M = Q.

In order to incorporate quantum effects in a manageable way we couple the

above theory to N scalar fields. The parameter N allows us to consider the theory in

the large N limit in which N → ∞ and h̄ → 0 while keeping Nh̄ fixed. This allows

us to systematically incorporate the quantum effects due to scalar loops - which

go as Nh̄ - while keeping the other fields classical. The scalar fields are taken to

be conformally coupled scalar fields in two dimensions. This is done in the interest

of tractability and the model we consider here, with electrically charged black

holes, does not retain an obvious four dimensional interpretation. However, all our

conclusions will go through, unchanged, for a closely related model obtained by

dimensionally reducing a system consisting of fermions coupled to a magnetically
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charged black hole in four dimensions
⋆
. The scalar fields will then correspond to

the bosonised version of the Callan-Rubakov modes of the fermions
[6,15]

. We should

add though, that from a strictly four dimensional point of view, even in this model,

the other modes of the fermion fields will contribute to the quantum stress tensor

and their neglect cannot be justified.

Vacuum Polarisation:

We intuitively expect quantum effects associated with curved spacetime to be

small if the curvature is small. One way to make this intuition more precise is

to integrate out the scalar fields and look at the induced action along with the

original action of Einstein gravity. In conformal gauge this would be given by

SIND + SG =
1

4G

[

∫

d2x
{

e2ρ − 4e−2φ∂+(φ + ρ) ∂−(φ + ρ)

+ 4e−2φ(1 − G
Nh̄

12π
e2φ) (∂+ρ∂−ρ)

}

]

(7)

We see that there is critical value of the dilaton field given by

e−2φ = G
Nh̄

12π
(8)

at which the Liouville kinetic energy term becomes degenerate. But if e−2φ is

much larger than this critical value the induced term should have a small effect.

For a black hole with a mass much bigger than the Planck mass this is true from

asymptotic infinity all the way up to the horizon. Thus we would expect quantum

effects to be small in this region. In fact, as we show below, the vacuum polarisation

for a massless scalar field diverges at the horizon of an extremal black hole no matter

how large it’s mass.

⋆ I would like to thank A. Strominger for pointing this out to me.
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We work in Schwarzschild gauge where the metric is given by

ds2 = −fdt2 +
1

f
dr2 (9)

The conservation equations for the stress tensor then imply that
[24]

T r
t = c1 (10)

and that

T r
r =

1

2f

r
∫

rh

f
′

Tµ
µ dr +

c2

f
, (11)

where rh refers to the position of the horizon. An ambiguity in state of the scalar

field is reflected in the two arbitrary constants c1 and c2. Consider now an observer

freely falling into the black hole with a four velocity (p0

f
,−

√

p2
0 − f). She sees an

energy density

TµνUµUν = T r
r (

p2
0

f
− 1) − T t

t

p2
0

f
− 2T r

t

p0

f2

√

p2
0 − f. (12)

Substituting from equations (10) and (11) we see that

TµνU
µUν =

2(c2 − c1)p
2
0

f2
+ (−Tµ

µ +
1

f

r
∫

rh

f
′

Tµ
µ dr)

p2
0

f

− (c2 − c1)

f
− 1

2f

r
∫

rh

f
′

Tµ
µ dr.

(13)

Where f
′

refers to the derivative of f with respect to r.
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This shows that the leading divergence goes as (c2−c1)
f2 p2

0. So we restrict our-

selves to states in which c2 = c1. Then, using the trace anomaly

Tµ
µ = − f ′′

24π
, (14)

and L ’Hospital’s rule we see that close to the horizon

TµνU
µUν ≃ const

f
′′′

f
′
. (15)

And this diverges since for an extremal black hole f has a double zero at the

horizon. In other words, if δτ is the proper time taken to reach the horizon the

energy density diverges like

Tµ
ν UµUν ∼ 1/(δτ). (16)

We note that the analysis above was very general without restrictions to any

particular state of the scalar field. In fact for these black holes, the Boulware,

Unruh and Hartle-Hawking states are the same and considerations similar to those

above at the past horizon, would single it out as having the minimal divergence.

This divergence can be better understood by regarding an extremal black hole

as the limit of a non extremal one. A non extremal black hole has an outer and

an inner horizon and these come together in the extremal limit. Let us take rh in

equation (11) to refer to the outer horizon. Then as before, we see that c1 must

equal c2 for the leading divergence to vanish at the outer horizon. Furthermore,

equation (15) shows that the stress tensor stays finite at the outer horizon, since f

has a single zero. Now let us focus on the inner horizon. Since rh in equation (11)

was taken to mean the outer horizon and c1 = c2 we see from equation (13) that
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the leading divergence goes as

TµνUµUν ≃ − p2
0

48π

[

f
′

(rinner)
2 − f

′

(router)
2
]

f2
. (17)

And this diverges since the quantity within brackets does not cancell and f is zero

- albeit a simple zero- at the inner horizon. If δτ is the proper time taken by a

freely falling observer to reach the horizon this implies that

TµνU
µUν ≃ const

(δτ)2
. (18)

In summary, we find that if we adjust the quantum state of the scalar field

so that the stress tensor is finite at the outer horizon, it diverges at the inner

horizon. It is perhaphs not so surprising then, that in the extremal case when the

two horizons come together the divergence persists, although in a softened form.

Quantum Corrected geometry :

We work in ”Schwarzschild” gauge equation (9) and look for static solutions

which incorporate the vacuum polarisation. The equation of motion of the Maxwell

field gives

F rt =
Q

e−2φ
. (19)

The equation obtained by varying the trace of the metric then becomes :

[

f(e−2φ)
′]

′

− 2 + 2
Q2

(e−2φ)
= −ξ f ′′. (20)

Here

ξ = G
Nh̄

48π
. (21)

Similarly the equation obtained by varying the dilaton is

−f
′′

=
1

2
f

[(e−2φ)
′

]2

(e−2φ)2
+

[f(e−2φ)
′

e−2φ

]
′

− 2Q2

(e−2φ)2
. (22)

Finally, the T++ and T−− constraints tell us that
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−1

4
f2

[

(e−2φ)
′′ − 1

2

(e−2φ)′
2

e−2φ

]

=
ξ

4
[ff

′′ − 1

2
(f

′

)2] + C. (23)

Here, C is an arbitrary constant which indicates an ambiguity in the quantum

state of the scalar fields. We expect extremal black holes to have zero temperature

and seek solutions with C = 0 and f
′

= 0 at the horizon ( where f = 0 ). If x

represents the coordinate distance from the horizon this suggests that close to the

horizon:

f ≃ α1x
2 + α2x

3+δ (24)

and

e−2φ ≃ dh + d2x
1+δ. (25)

Equations (20) and (22) then show that

Q2 =
d2

h

ξ + dh
(26)

and that

α1 =
1

ξ + dh
. (27)

Further equation (20) then shows that

d2 = −ξ
α2

α1

(δ + 2)

δ
. (28)

Finally equation (22) shows that delta is given by the equation

δ =

(

−3 +
√

9 + 24 ξ
(dh−ξ)

)

2
. (29)

These values of the parameters can also be shown to be consistent with equation

(23) (with C set equal to 0). Like their classical counterparts, these solutions have
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only one free parameter, which we can take to be dh, the value of the dilaton at

the horizon. |α2| can be set equal to 1 by rescaling x. The other parameters are

then uniquely determined. Numerical computations show that with α2 = −1 the

solution evolves to an asymptotically flat geometry as x → ∞. As a special case

of equation (29) note that for large black holes where dh ≫ ξ, δ ≃ 2ξ/dh .

Discussion:

What do we learn from these solutions? Extremal black holes are dangerously

close to becaming naked singularities. And we might have thought that the diverg-

ing stress tensor would cause a singularity to appear at the horizon and even drive

the dilaton to it’s critical value equation (8) , thereby changing the entropy of the

black hole dramatically. However, this does not happen. The value of the dilaton

field at the horizon remains a free parameter and for large blackholes (dh ≫ ξ )

the entropy stays large and remains as mysterious as ever.

For generic values of dh, δ is not an integer and the solution is non analytic

in x. This non analyticity implies a very mild singularity at the horizon. The

second derivative of the curvature as seen by a freely falling observer diverges as

she crosses the horizon, but the tidal forces and the curvature stay finite. Thus

there should be an extension of the geometry past the horizon. In fact there are

two obvious static extensions. These correspond to replacing x3+δ in equation (24)

above by |x|3+δ or by x3|x|δ and correspondingly extending the dilaton field. We

will call these the even and odd extensions respectively. It can be shown that

both of these satisfy the junction conditions which arise from equations (23) , (20)

and (22) .
⋆

The odd continuation results in a spacetime much like the classical

extreme black hole spacetime in which we can hit a time like singularity within a

finite proper time of crossing the horizon. The even continuation though, results

in an entierly different spacetime, in which we pass from one asymptotically flat

⋆ For special values of dh ( within the semiclassical regime ), δ becomes an integer and
depending on it’s value either of these can became the analytic continuation, in which even
the mild singularity disappears.
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universe to another without encountering any malevolent singularities at all!
†

The

corresponding Penrose diagrams are shown in figures 1 and 2 respectively.

We have not investigated as yet, whether any of these extensions are relevant

for a blackhole formed from collapse; but it is not inconceivable that at least some

part of spacetime outside a collapsing ”star” is described by either of these. In

this case it should be possible to begin the collapse from one asymptotically flat

universe and open out into another. Information thrown in from one asymptotically

flat universe could then end up in another. Indeed such black holes would be the

”ultimate” remnants.
[22,15,16]

Information would not just be hiding in some long

tube but would have found it’s way into another universe and be lost forever. This

model might also furnish a simple context in which to explore the production of

such remnants inexternal fields .

We cannot say much about four dimensional black holes, since we do not know

how the stress tensor of a four dimensional scalar field behaves
‡

. If we do inter-

pret the two dimensional metric and the dilaton as components of a spherically

symmetric four dimensional metric we find that the tidal forces and the curvature

at the horizon stay finite. This suggests that if the four dimensional stress tensor

behaves similarly to the two dimensional case and blows up for example, no faster

than 1
δτ

(equation(16) ); a very mild singularity would form at the horizon. In

particular the area of the horizon would stay large and so would the entropy.

Is there a loss of information in scattering quanta off these extremal black

holes? Unfortunately, we cannot answer this question conclusively here. It is

clear that some information regarding the kinds of scalar quanta thrown in will

be lost in scattering. But, in the large N limit considered here the entropy of the

black hole - which goes as 1/h̄ - is large
§
. If this entropy has an explanation in

terms of underlying microstates, this would suggest a large degeneracy of ground

† A spacetime with the same causal properties has been found by Horne and Horowitz.
[25]

‡ These calculations are currently in progress
[26]

.
§ I would like to thank J. Preskill for pointing this out and for the subsequent argument

about the large N limit being inadequate.
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states. And we cannot exclude the possibility that the lost information is hiding

in correlations between the ground states and the outgoing radiation. To settle

this issue would require keeping track of very subtle correlations ( beyond leading

order in N ) in the outgoing radiation. We hope, in subsequent work to return to

this problem.

Finally, a few comments regarding non extremal black holes in contact with a

heat bath. Classically these black holes have an outer and inner horizon. Numer-

ical calculations show that the behavior of the geometry inside the outer horizon

depends, for a given value of the dilaton field, on the electric charge. If the elec-

tric charge is small the dilaton decreases in value till it reaches it’s critical value

equation (8) and a space like singularity forms. However once the charge is large

enough the dilaton does not go to it’s critical value. Instead an inner horizon forms

at which the metric component f ( equation (9) ) behaves like

f ≃ α1 x − α1

2

x

log(x)
(30)

and the dilaton behaves like

e−2φ ≃ −const log(x) (31)

where x is the coordinate distance from the horizon. This shows that the curvature

(which is related to the second derivative of f) and hence the tidal forces as felt

by a freely falling observer blow up at the inner horizon. But it is straightforward

to show that the divergence is mild enough for the tidal impulse to stay finite,

which suggests
¶

that there should be an extension of the geometry past the inner

horizon. If the metric and dilaton above are regarded as components of a spher-

ically symmetric metric in four dimensions though, there are components of the

tidal impulse that blow up ( although rather slowly), which suggests that the four

dimensional black holes might behave differently.

¶ A. Ori has found a similar divergence in his study of mass inflation in four dimensions.
[27]
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