
ar
X

iv
:h

ep
-p

h/
93

11
30

4v
2 

 1
 F

eb
 1

99
4

CALT-68-1902
DOE RESEARCH AND
DEVELOPMENT REPORT

Strong Decays of Strange Charmed P-Wave Mesons

Peter Cho† and Sandip P. Trivedi‡

Lauritsen Laboratory

California Institute of Technology

Pasadena, CA 91125

Abstract

Goldstone boson decays of P-wave D∗∗
s mesons are studied within the framework of

Heavy Hadron Chiral Perturbation Theory. We first analyze the simplest single kaon decays

of these strange charmed mesons. We derive a model independent prediction for the width

of Ds2 and use experimental information on Ds1 to constrain the S-wave contribution

to D0
1 decay. Single and double pion decay modes are then discussed and shown to be

significantly restricted by isospin conservation. We conclude that the pion channels may

offer the best hope for detecting one strange member of an otherwise invisible P-wave

flavor multiplet.
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1. Introduction

During the past few years, a synthesis of Chiral Perturbation Theory and the Heavy

Quark Effective Theory (HQET) has been developed [1–5]. This hybrid effective theory

describes the low energy strong interactions between light Goldstone bosons and hadrons

containing a heavy quark. Heavy Hadron Chiral Perturbation Theory (HHCPT) has been

most widely applied to processes involving charm and bottom hadrons that correspond to

ground state mesons and baryons in the nonrelativistic quark model. It is however straight-

forward to incorporate orbital or radial excitations into the formalism and to study their

transitions as well. Experimental information on such excited mesons and baryons is at

present much less plentiful than for the lowest lying heavy hadrons. However, data on ex-

cited charm hadrons is currently being collected at CLEO [6–8] and Fermilab [9], and future

experiments are expected to fill in many of their basic properties. The phenomenology of

these new particles will provide valuable tests of several basic HQET ideas.

Of all the possible excited heavy hadrons, P-wave mesons are among the simplest.

They are characterized in the quark model as heavy quark-light antiquark bound states

carrying one unit of orbital angular momentum. Such mesons have been included into

the heavy hadron chiral Lagrangian in refs. [10] and [11]. The Lagrangian was then used

to study single and double pion decays of D0∗∗ and D+∗∗
for which the greatest amount

of experimental data is currently available. In this article, we would like to extend these

previous investigations and focus instead upon Ds
∗∗ states. As we shall see, isospin consid-

erations significantly restrict the decays of excited strange charmed mesons and can lead

to qualitatively different results.

Our paper is organized as follows. In section 2, we review the incorporation of P-wave

mesons into HHCPT. We then focus in section 3 upon D∗∗
s states and discuss their single

kaon decay modes. We derive a model independent prediction for the Ds2 width, and we

use experimental limits on Ds1 to constrain the S-wave component in D0
1 decays. We then

investigate single and double pion decay channels in section 4 and discuss prospects for

finding a particular D∗∗
s state that belongs to a class of P-wave mesons which has never

been seen. Finally, we close in section 5 with a summary of our results.
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2. The Heavy Meson Chiral Lagrangian

We begin by recalling the fields which enter into the heavy meson chiral Lagrangian.

The Goldstone bosons resulting from the chiral symmetry breakdown SU(3)L×SU(3)R →
SU(3)L+R appear in the pseudoscalar meson octet

πππ =
8

∑

a=1

πaT a =
1√
2











√

1
2π0 +

√

1
6η π+ K+

π− −
√

1
2π0 +

√

1
6η K0

K− K
0 −

√

2
3
η











(2.1)

and are conventionally arranged into the exponentiated matrix functions Σ = e2iπππ/f and

ξ = eiπππ/f . These matrix functions transform under the chiral symmetry group as

Σ → LΣR†

ξ → LξU†(x) = U(x)ξR†
(2.2)

where L and R represent global elements of SU(3)L and SU(3)R while U(x) acts like a

local SU(3)L+R transformation. Chiral invariant terms describing Goldstone boson self

interactions may be constructed from the fields in (2.2) and their derivatives.

Mesons with quark content Qq absorb and emit light Goldstone bosons with no ap-

preciable change in their four-velocities in the infinite mass limit of their heavy quark

constituents Q. They are consequently represented by velocity dependent fields. We ab-

sorb square roots of meson masses into these fields’ definitions so that one particle states

are normalized as

〈p, s|p′, s′〉 = 2v0(2π)3δ(3)(~p − ~p ′)δs s′ . (2.3)

The velocity dependent fields then have mass dimension 3/2.

The ground state JP = 0− and JP = 1− mesons which result from coupling together

the heavy quark and light antiquark spins in an S-wave bound state are annihilated by the

pseudoscalar and vector meson operators Pi(v) and P ∗
iµ(v). Their individual components

are given by (P1, P2, P3) = (D0, D+, Ds) and (P ∗
1µ, P ∗

2µ, P ∗
3µ) = (D0∗, D+∗

, Ds
∗) when the

heavy quark inside the meson is taken to be charm. In the infinite quark mass limit, it is

useful to combine the degenerate JP = 0− and JP = 1− states into the 4 × 4 matrix field

[1,12]

Hi(v) =
1 + v/

2

[

−Pi(v)γ5 + P ∗
iµ(v)γµ

]

. (2.4)
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The superfield H carries a heavy quark spinor index and a separate light antiquark spinor

index, and it transforms as an antitriplet under flavor SU(3)L+R and doublet under spin

symmetry SU(2)v.

In P-wave excited mesons, the antiquark spin can pair with one unit of orbital angular

momentum to form states with light angular momentum jℓ = 1/2 or jℓ = 3/2. Coupling

with the heavy quark spin then yields two pairs of two degenerate states. In the first

case, the resulting JP = 0+ and JP = 1+ mesons are annihilated by the operators P ∗
i (v)

and P ′
iµ(v). In the second case, the JP = 1+ and JP = 2+ mesons are associated with

Piµ(v) and P ∗
iµν(v). When the heavy quark is charm, we identify the individual SU(3)

components of all these operators with the excited meson states as follows: 1

(P ∗
1 , P ∗

2 P ∗
3 ) = (D0

0 , D
+
0 , Ds0)

(P ′
1µ, P ′

2µ, P ′
3µ) = (D0′

1 , D+′

1 , D′
s1)

(P1µ, P2µ, P3µ) = (D0
1 , D

+
1 , Ds1)

(P ∗
1µν , P ∗

2µν , P ∗
3µν) = (D0

2 , D
+
2 , Ds2).

(2.5)

The scalar P ∗
i and axialvector P ′

iµ operators may be assembled into the superfield

Si(v) =
1 + v/

2

[

−P ∗
i (v) + P ′

iµ(v)γµγ5
]

(2.6)

which is just the parity reversed analog of H. The axialvector Piµ and traceless, symmetric

tensor P ∗
iµν operators may be combined into a third superfield [10]

Tµ
i =

1 + v/

2

[

P ∗µν
i (v)γν −

√

3

2
Piν(v)γ5

(

gµν − 1

3
γν [γµ − vµ]

)]

. (2.7)

S and Tµ transform exactly like H under SU(3)L+R and SU(2)v.

It is important to note that H, S and Tµ obey the following constraints which restrict

the form of interactions that one can write down for these fields:

1 + v/

2
H(v) = H(v)

1 + v/

2
S(v) = S(v)

1 + v/

2
Tµ(v) = Tµ(v)

H(v)
1 − v/

2
= H(v)

S(v)
1 + v/

2
= S(v)

Tµ(v)
1 − v/

2
= Tµ(v).

(2.8a)

(2.8b)

(2.8c)

1 In the absence of a universally accepted nomenclature for P-wave mesons, we adopt the

convention of labeling states with total angular momentum subscripts and electric charge super-

scripts. In the course of the text, we also frequently follow the common albeit informal practice

of denoting P-wave mesons with double asterisk superscripts.
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Multiplication on the left by the projection operator P+ = (1 + v/)/2 simply picks out the

two heavy quark degrees of freedom in all the meson superfields. Multiplication on the

right by P± effectively projects out two light degrees of freedom. These two conditions

account for a total of four degrees of freedom within H and S corresponding to one J = 0

and three J = 1 meson states. The Tµ superfield obeys two additional auxiliary constraints

[13]

vµTµ(v) = Tµ(v)γµ = 0 (2.9)

that reduce its degrees of freedom to eight. Tµ thus precisely accommodates three J = 1

and five J = 2 states.

Interactions involving the meson superfields are further constrained by reparameteri-

zation invariance [5,14]. Recall that the decomposition p = Mv + k of a heavy particle’s

four-momentum in terms of its four-velocity v and residual momentum k is somewhat ar-

bitrary. To O(1/M), no physical result should be altered if these parameters are redefined

as
v → v + ǫ/M

k → k − ǫ
(2.10)

where v · ǫ = 0. This change of variables leaves the total four-momentum p invariant and

induces only an O(1/M2) correction to v2 = 1. In Heavy Hadron Chiral Perturbation

Theory, the parameter redefinitions generate shifts in the meson superfields

H → H + δH

S → S + δS

Tµ → Tµ + δTµ

(2.11)

which are fixed by the constraints in (2.8) and (2.9) and by a superfield normalization

condition. For instance, varying the relations v/H = H and Hv/ = −H which follow from

(2.8a) yields
(

v/ +
ǫ/

M

)(

H + δH
)

= H + δH

(

H + δH
)(

v/ +
ǫ/

M

)

= −
(

H + δH
)

.

(2.12)

Solving these equations along with the normalization constraint Tr(HH) = Tr
[

(H +

δH)(H + δH)
]

for δH, one readily deduces that it is proportional to a commutator:

δH =
[ ǫ/

2M
, H

]

. (2.13)
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In a similar manner, we find the variations in the S and Tµ superfields

δS =
{ ǫ/

2M
, S

}

and δTµ =
[ ǫ/

2M
, Tµ

]

− ǫνT ν

M
vµ. (2.14)

The requirement that the effective theory remain invariant under the transformations in

(2.10) and (2.11) then forbids certain terms such as Tr(HiDµSγµ) and Tr(HiDµTµ) from

appearing in the chiral Lagrangian [10].

With the meson superfields in hand, one can readily write down the leading order

effective chiral Lagrangian that describes the low energy interactions between Goldstone

bosons and mesons in the infinite heavy quark mass limit. The lowest order terms must

be hermitian, Lorentz invariant and parity even. They must also respect the light chiral

and heavy quark spin symmetries and be consistent with reparameterization invariance:

L(0)
v =

∑

Q=c,b

{

−Tr
[

Hiv · DH
]

+ Tr
[

S(iv · D − ∆MS)S
]

+ Tr
[

Tµ(iv · D − ∆MT )Tµ
]

+ g1Tr
[

HHA/γ5
]

+ g2Tr
[

SSA/γ5
]

+ g3Tr
[

TµTµA/γ5
]

+ f1Tr
[ (

HS + SH
)

v · Aγ5
]

+ f2Tr
[ (

STµ + T
µ
S

)

Aµγ5
]

}

.

(2.15)

The splittings ∆MS = MS − MH and ∆MT = MT −MH between the excited and ground

state multiplets are independent of heavy quark flavor and do not vanish in the infinite

quark mass limit. They are consequently included into the kinetic part of the zeroth order

Lagrangian. In the interaction terms, the Goldstone fields couple to the mesons through

the axial vector combination Aµ = i(ξ†∂µξ − ξ∂µξ†)/2. They also communicate via the

vector field Vµ = (ξ†∂µξ + ξ∂µξ†)/2 which resides within the covariant derivatives

DµH = ∂µH − H(Vµ)

DµS = ∂µS − S(Vµ)

DµT ν = ∂µT ν − T ν(Vµ).

(2.16)

The heavy meson chiral Lagrangian may be used to study strong interaction transitions

among states within the H, S and Tµ superfields. We will focus upon the decays of P-wave

D∗∗
s mesons in the following sections.
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3. Kaon Decays of D∗∗
s Mesons

The simplest D∗∗
s decay processes involve emission of a single Goldstone boson which

must emerge in an even partial wave to conserve parity. Single pion decay of these I = 0

states violates isospin, and eta decay is either severely phase space suppressed or kinemati-

cally forbidden. The single Goldstone boson which these strange charmed mesons therefore

mainly eject is a kaon whose mass is comparable to the splittings between the excited and

ground state multiplets.

If kinematically allowed, the strange members of the S multiplet predominantly decay

through an ℓ = 0 partial wave down to states in H via the term proportional to f1 in

(2.15). As guaranteed by heavy quark spin symmetry [15], the rates for the two charged

kaon modes

Γ
(

Ds0 → D0K+
)

=
f2
1

4π

( MD0

MDs0

)E2
K |~pK |
f2

K

(3.1a)

Γ
(

D′
s1 → D∗0K+

)

=
f2
1

4π

(MD∗0

MD′

s1

)E2
K |~pK |
f2

K

(3.1b)

are equal to lowest order in the 1/mc expansion. The same is true for the neutral kaon

decays Ds0 → D+K0 and D′
s1 → D∗+K0. The equality among rates is broken however by

formally subleading but phenomenologically important spin and flavor symmetry violating

effects. We therefore choose to input actual meson masses into the kaon energies EK =

MD∗∗

s
− MD(∗) and three-momenta |~pK | =

√

E2
K − M2

K in (3.1). We similarly set the

Goldstone boson decay parameter f equal to fK = 113 MeV rather than fπ = 93 MeV in

the kaon decay rates.

Single Goldstone boson transitions between the Tµ and H multiplets must proceed

through an ℓ = 2 partial wave to conserve angular momentum. None of the dimension-4

terms in the leading order chiral Lagrangian can contribute to such processes. However

at next-to-leading order, there exists a unique dimension-5 operator which does mediate

D-wave decays: 2

L(1)
v =

∑

Q=c,b

{ ih

Λχ
Tr

[ (

HTµ + T
µ
H

)

γνγ5
](

DµAν + DνAµ

)

+ · · ·
}

. (3.2)

2 There is no operator analogous to the one in (3.2) with the symmetric Goldstone expres-

sion DµAν + DνAµ replaced by DµAν − DνAµ since the antisymmetric combination identically

vanishes. Consequently, there exists only one independent dimension-5 operator which mediates

T
µ
→ Hπππ and not two as claimed in ref. [10].
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Using the spin sums

3
∑

I=1

ǫ(I)
µ (v)∗ǫ(I)

ν (v) = − gµν + vµvν

5
∑

I=1

ǫ(I)
µν (v)∗ǫ

(I)
αβ(v) = − 1

3
(gµν − vµvν)(gαβ − vαvβ)

+
1

2
(gµα − vµvα)(gνβ − vνvβ) +

1

2
(gµβ − vµvβ)(gνα − vνvα)

(3.3)

to average and sum over initial and final state polarizations, one finds the following rates

for the allowed Tµ → HK transitions [10]:

Γ
(

Ds1 → D∗K
)

=
5

15π

( h

fKΛχ

)2( MD∗

MDs1

)

|~pK |5 (3.4a)

Γ
(

Ds2 → DK
)

=
2

15π

( h

fKΛχ

)2( MD

MDs2

)

|~pK |5 (3.4b)

Γ
(

Ds2 → D∗K
)

=
3

15π

( h

fKΛχ

)2( MD∗

MDs2

)

|~pK |5. (3.4c)

As predicted by general spin symmetry arguments. these results occur in the ratio 5:2:3

in the infinite charm mass limit.

The coupling constant h multiplying the dimension-5 operator in (3.2) can be fixed

from the decay rates of the JP = 2+ flavor partners of Ds2. Their single pion and eta

widths are simply related by SU(3) to the kaon expressions in (3.4b, c). We set the sum

of the rates for D0
2 → D+π−, D0π0, D0η, D∗+π− and D∗0π0 equal to the total width

Γ(D0
2) = 28+8+6

−7−6 MeV recently reported by CLEO [7]. Solving for h then yields the

reasonable coupling constant value h/Λχ = (0.23 ± 0.04)/1000 MeV. Once h is fixed, we

can predict the width of Ds2 as a function of its mass by summing the partial widths for

Ds2 → D0K+, D+K0, Dsη, D∗0K+ and D∗+K0. The results for the central value and

one-standard deviation of Γ(Ds2) are plotted in fig. 1. As can be seen in the figure, the

Ds2 width lies in the 5-15 MeV range.

We should comment upon the uncertainties associated with our width prediction.

The two basic ingredients that have gone into this result are SU(3) and heavy quark spin

symmetry. SU(3) relates Γ(D0
2 → Dπ) to Γ(Ds2 → DK) and Γ(D0

2 → D∗π) to Γ(Ds2 →
D∗K). Spin symmetry on the other hand relates the partial widths Γ(D0

2 → DK) and

Γ(D0
2 → D∗K). The CLEO collaboration has recently reported an updated measurement

for the ratio of the SU(3) analogues of these last two decay rates [7]:

R =
Br(D0

2 → D+π−)

Br(D0
2 → D+∗π−)

= 2.1+0.6+0.6
−0.6−0.6. (3.5)
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The HHCPT value R = 2.2 for this ratio agrees remarkably well with the CLEO mea-

surement and bolsters one confidence in the effective theory. Moreover if we simply adopt

the experimental number in (3.5), then we do not in fact need to invoke spin symmetry

to predict Γ(Ds2). Our width result consequently only depends upon SU(3). Since this

flavor symmetry is generally violated at the 30% level, we expect corrections of this order

to Γ(Ds2) beyond the one-standard deviation shown in fig. 1 which originates from the

experimental uncertainty in Γ(D0
2). A more precise estimate for the magnitude of SU(3)

corrections could in principle be determined by working at next-to-leading order in the

chiral expansion. But unfortunately, a full subleading order analysis would introduce so

many new operators with unknown coefficients that all predictive power would be lost.

We next turn to consider single Goldstone boson decays of axialvector P-wave mesons

which are complicated by mixing among the JP = 1+ states in the S and Tµ multiplets.

In the infinite heavy quark mass limit, the superfields’ light angular momenta quantum

numbers jℓ = 1/2 and jℓ = 3/2 are exact and preclude intermultiplet mixing. However for

mQ 6= ∞, the physical mass eigenstates are annihilated by linear combinations

QL

iµ = cos θP ′
iµ + sin θPiµ

QH

iµ = − sin θP ′
iµ + cos θPiµ

(3.6)

of the axialvector operators inside S and Tµ. We identify the observed D0
1 , D+

1 and Ds1

mesons with QH

1 , QH

2 and QH

3 respectively.

Ds1 is the only excited strange charmed meson which has been seen so far. Its

width however has not yet been experimentally resolved, and only a 90% CL upper bound

Γ ≤ 2.3 MeV on its total decay rate has been set [7]. We can use this limit to restrict the

magnitude of the S-wave component to the meson’s width. The constraint translates into

an upper bound on the coefficient f1. The results are listed in Table I for three different

values of the mixing angle θ:

θ ΓS(QH

3 )max / MeV ΓD(QH

3 ) / MeV (f1)max

1◦ 2.166 0.134 3.82

5◦ 2.167 0.133 0.77

10◦ 2.170 0.130 0.38

8



Table I

As can be seen in the last column, the maximum limits on f1 are all of order unity. They

are thus consistent with one’s general expectations for a dimensionless coupling appearing

in the leading order chiral Lagrangian.

With f1 constrained, we can use SU(3) symmetry to bound the ratio of S and D

partial widths for the nonstrange D0
1 meson. In the past, mixing between the JP = 1+

states in the S and Tµ multiplets has been thought to induce a large S-wave component

to the total width of the physical D0
1 mass eigenstate. Since the S-wave decay rate is

significantly greater than the D-wave’s, even a small ℓ = 0 admixture was believed to

generate a sizable width enhancement and to account for most of the measured total

width Γ(D0
1) = 20+6+3

−5−3 MeV. (“A small grapefruit can be larger than a typical apple”

[16].) Our bounds however for the S/D ratio lead to the opposite conclusion. (“A tiny

grapefruit is smaller than a typical apple.”) As can be seen from the entries in Table II,

the ℓ = 2 component of the total width actually dominates over the ℓ = 0 contribution for

reasonable values of θ: 3

θ ΓS(QH

1 )max / MeV ΓD(QH

1 ) / MeV Γtot(Q
H

1 )max / MeV

1◦ 3.35 7.41 10.76

5◦ 3.36 7.35 10.71

10◦ 3.36 7.19 10.54

Table II

The S-wave component therefore does not explain the 2σ discrepancy between theory and

experiment for the total D0
1 decay rate. The source of this disagreement remains poorly

understood.

3 The CLEO and E687 collaborations have reported that they see no evidence for any S-wave

contribution to D
0

1 decay [7,9]. Their conclusion relies however upon the questionable assumption

of no final state interactions.
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4. Pion Decays of D∗∗
s Mesons

The rates for single kaon decay of D∗∗
s mesons depend critically upon the precise

splittings among all the strange states in H, S and Tµ. At this time, only the mass

M = 2535.1± 0.6 MeV of Ds1 has been measured [7]. Assuming that its JP = 2+ partner

has an equal or greater mass, both of the states associated with Tµ predominantly decay

via kaon transitions. The situation for the strange members of the S multiplet however

is less clear and more interesting since their masses are unknown. Several attempts have

been made to estimate the energy levels of Ds0 and D′
s1 using the quark model. Ds0 is

generally predicted to be heavy enough so that kaon decay is kinematically possible. On

the other hand, the variation in results from different quark model calculations for the

D′
s1 mass is sufficiently great that one cannot conclusively determine whether single kaon

decay is allowed [17]. It is consequently possible that this strange meson must decay via

other channels.

The first alternative to consider is the isospin violating transition D′
s1 → D∗

sπ0. The

basic characteristics of this mode are very similar to those for D∗
s → Dsπ

0 which has

recently been studied in ref. [18]. It proceeds at tree level through emission of a virtual

eta that subsequently mixes into a neutral pion. The intermediate η propagator effectively

renders the amplitude inversely proportional to the strange quark mass which is smaller

than a typical hadronic scale. The isospin violation factor associated with D′
s1 → D∗

sπ0

[19]

(md − mu)/
(

ms − (mu + md)/2
)

≃ 1/43.7 (4.1)

is therefore not so suppressed as one might have thought. Setting the Goldstone boson

decay parameter f equal to fη = 121 MeV, we find the rate

Γ(D′
s1 → D∗

sπ0) =
f2
1

32π

( MD∗

s

MD′

s1

)[ md − mu

ms − (mu + md)/2

]2 E2
π|~pπ|
f2

η

(4.2)

for the single pion process.

Isospin conserving double pion emission represents the next most important decay

mode for strange charmed P-wave mesons. Unlike their nonstrange counterparts [10],

I = 0 D∗∗
s mesons cannot undergo double pion decay via pole graphs in which two I = 1

pions are sequentially emitted. The two pions must instead emerge in an isospin zero

combination from higher order terms in the chiral Lagrangian. At dimension-5, there exist

10



just two such operators which mediate the superfield transitions S → Hππ and Tµ → Hππ

and preserve heavy quark spin symmetry:

L(1)
v =

∑

Q=c,b

{ h1

Λχ
Tr

[ (

HS+SH
)

vµγν
]

Tr[AµAν ]+
h2

Λχ
Tr

[ (

HTµ+T
µ
H

)

vν
]

Tr[AµAν ]+· · ·
}

.

(4.3)

At O(1/mc), additional spin symmetry violating operators can participate as well. We will

focus however upon the leading terms in (4.3).

Working in the two pion center of mass frame, we can readily decompose the

D∗∗
s → D

(∗)
s ππ decay amplitudes into S-wave and D-wave components. After squaring

the amplitudes, we find the following S → Hππ differential decay rates for these partial

waves and their interference term:

dΓ
(

Ds0 → D∗
s

3
∑

i=1

πiπi
)

S,D,SD
=

3

2

( h1

f2
πΛχ

)2

(FS,D,SD)dΦ3 (4.4a)

dΓ
(

D′
s1 → Ds

3
∑

i=1

πiπi
)

S,D,SD
=

3

2

( h1

f2
πΛχ

)2
(1

3
FS,D,SD

)

dΦ3 (4.4b)

dΓ
(

D′
s1 → D∗

s

3
∑

i=1

πiπi
)

S,D,SD
=

3

2

( h1

f2
πΛχ

)2
(2

3
FS,D,SD

)

dΦ3. (4.4c)

For completeness, we also quote the corresponding Tµ → Hππ differential widths even

though they are in reality very small compared to the Tµ → HK rates in (3.4):

dΓ
(

Ds1 → Ds

3
∑

i=1

πiπi
)

S,D,SD
=

3

2

( h2

f2
πΛχ

)2
(2

9
FS,D,SD

)

dΦ3 (4.5a)

dΓ
(

Ds1 → D∗
s

3
∑

i=1

πiπi
)

S,D,SD
=

3

2

( h2

f2
πΛχ

)2
(1

9
FS,D,SD

)

dΦ3 (4.5b)

dΓ
(

Ds2 → D∗
s

3
∑

i=1

πiπi
)

S,D,SD
=

3

2

( h2

f2
πΛχ

)2
(3

9
FS,D,SD

)

dΦ3. (4.5c)

As required by heavy quark spin symmetry, the differential widths in (4.4a, b, c) and

(4.5a, b, c) occur in the ratios 3 : 1 : 2 and 2 : 1 : 3 respectively in the infinite charm

mass limit [15].

The functions FS, FD and FSD entering into (4.4) and (4.5) may be conveniently

expressed in a manifestly Bose symmetric form in terms of the energies E1 and E2 of the
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two pions measured in the decaying D∗∗
s rest frame, the pion pair invariant mass s, and

the mass splitting ∆M between the initial and final heavy mesons:

FS =
1

9

∆M2

s2
(∆M2 − s)(s + 2m2

π)2

FD =
1

4

[

(∆M2 − 4E1E2)
2 +

(

1 − 2

3

∆M2

s

)(

∆M2 − 4E1E2

)

(s − 4m2
π)

+
1

9

∆M2

s2
(∆M2 − s)(s − 4m2

π)2
]

FSD = −1

3

∆M2

s
(s + 2m2

π)
[

∆M2 − 4E1E2 −
1

3

(∆M2

s
− 1

)

(s − 4m2
π)

]

.

(4.6)

The three body phase space factor can also be simply written in terms of these variables:

dΦ3 =
1

64π3
δ(∆M − E1 − E2) dE1 dE2 ds. (4.7)

Recall that in a charm or bottom hadron decay, the heavy body in the final state must

generally recoil in order to conserve momentum. However, it carries away no kinetic energy

in the limit of its mass tending towards infinity. The energy conserving delta function in

dΦ3 therefore constrains the two final state pions to take away all of the kinetic energy

released by the original D∗∗
s meson.

The double pion decay rates in (4.4) and (4.5) can be used to test basic HQET ideas.

The extent to which these differential widths will agree or disagree with future experi-

mental measurements provides some measure of the importance of O(1/mc) spin-flavor

violating effects. Since the presumption that the charm quark is truly heavy represents

the weakest point in most HQET applications, it is important to test this hypothesis in as

many different settings as possible. Our P-wave meson decay expressions provide such an

opportunity.

The differential two pion rates may be integrated to obtain the corresponding total

partial wave widths. Integrating the functions in (4.6) over s between its upper and lower

limits for fixed E1 and E2

s± = 2
[

m2
π + E1E2 ±

√

(E2
1 − m2

π)(E2
2 − m2

π)
]

, (4.8)
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we find

∫ s+

s−

dsFS =
4

9
∆M2

{

[

∆M2 − 5m2
π − 2E1E2

]

√

(E2
1 − m2

π)(E2
2 − m2

π)

+ m2
π(∆M2 − m2

π) log
m2

π + E1E2 +
√

(E2
1 − m2

π)(E2
2 − m2

π)

m2
π + E1E2 −

√

(E2
1 − m2

π)(E2
2 − m2

π)

}

∫ s+

s−

dsFD =
4

9
∆M2

{

[

∆M2 − 2m2
π +

(

18
m2

π

∆M2 − 8
)

E1E2 + 18
(E1E2)

2

∆M2

]

√

(E2
1 − m2

π)(E2
2 − m2

π)

+ m2
π

(

∆M2 − m2
π − 6E1E2

)

log
m2

π + E1E2 +
√

(E2
1 − m2

π)(E2
2 − m2

π)

m2
π + E1E2 −

√

(E2
1 − m2

π)(E2
2 − m2

π)

}

∫ s+

s−

dsFSD = −8

9
∆M2

{

[

∆M2 + m2
π − 5E1E2

]

√

(E2
1 − m2

π)(E2
2 − m2

π)

+ m2
π(∆M2 − m2

π − 3E1E2) log
m2

π + E1E2 +
√

(E2
1 − m2

π)(E2
2 − m2

π)

m2
π + E1E2 −

√

(E2
1 − m2

π)(E2
2 − m2

π)

}

.

(4.9)

We perform the remaining integrations over pion energies numerically.

We should note that final state interactions have been neglected here. The OZI rule

leads one to expect that such interactions between the strange heavy meson and the two pi-

ons are small. Furthermore, experimentally measured pion scattering phase shifts indicate

that the interactions between the pions themselves are also small in the D-wave. However,

S-wave pion final state interactions are known to be important over much of the kinematic

regime for D∗∗
s → D

(∗)
s ππ transitions. So although we expect our S-wave differential decay

rates to be accurate for invariant dipion masses near s = 4m2
π, its integrated rate cannot

really be trusted to provide much more than an order of magnitude estimate. Final state

interactions could be incorporated into our results by altering the S-wave amplitude calcu-

lated here to include the pion scattering phase shift in a manner consistent with unitarity

[20].

We plot the total integrated double pion width for D′
s1 as a function of its mass

in fig. 2. The meson’s single kaon and single pion decay rates are also illustrated for

comparison. We have set the unknown coupling constant f1 which enters into Γ(D′
s1 →

D∗K) and Γ(D′
s1 → D∗

sπ0) equal to unity. On the other hand, we have set h1 = 0.1 in

Γ(D′
s1 → D

(∗)
s

∑

i πiπi) since it is OZI suppressed. Given the substantial uncertainties

in these couplings, the curves in fig. 2 provide only qualitative information. However,

it is obvious from the figure that the kaon transition completely dominates over the pion

processes if it is kinematically allowed. This is not surprising since the two body kaon decay

13



is mediated by a dimension-4 operator in the leading order chiral Lagrangian whereas the

single pion mode violates isospin while the double pion transition involves three bodies in

the final state and proceeds only at next-to-leading order. It is also likely that the D′
s1

state will never be observed if single kaon emission is indeed kinematically possible since

its width would be very broad. But if its mass turns out to be less than 2504 MeV, then

the D′
s1 width should be quite narrow. In this situation, it will hopefully be possible to

observe this strange P-wave meson in the future through its single or double pion channels.

Indeed, we believe this scenario represents the best prospect for ever finding any of the S

multiplet mesons.

5. Conclusion

Our study of Goldstone boson decays of strange charmed P-wave mesons has yielded a

number of results which can be experimentally tested. Our model independent prediction

for the width of Ds2 lies in an experimentally accessible range. We are consequently

optimistic that this JP = 2+ state will soon be observed. On the other hand, detecting the

D′
s1 partner of Ds1 is much more uncertain. Single kaon emission must be kinematically

forbidden in order for this D′
s1 state to ever be seen. We believe however that it is

worthwhile to search for this resonance through its single and double two pion decay

modes.
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Figure Captions

Fig. 1. Total predicted width of Ds2 plotted as a function of its mass. The dashed curves

lying above and below the solid curve delineate the one-standard deviation region

about the width’s central value. Additional uncertainties due to SU(3) violation

are not pictured.

Fig. 2. Single kaon, single pion and double pion D′
s1 decay rates plotted as a function

of the heavy meson’s mass. The dashed curve denotes Γ(D′
s1 → D∗0K+) +

Γ(D′
s1 → D∗+K0), while the dotdashed curve corresponds to Γ(D′

s1 → D∗
sπ0).

The solid curve represents the sum of the widths Γ(D′
s1 → Ds

∑

i πiπi)+Γ(D′
s1 →

D∗
s

∑

i πiπi). We have assumed the dimensionless coupling constant values f1 =

1.0 and h1 = 0.1 in this plot.
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