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We construct a model of inflation in string theory after carefully taking into
account moduli stabilization. The setting is a warped compactification of
Type IIB string theory in the presence of D3 and anti-D3-branes. The infla-
ton is the position of a D3-brane in the internal space. By suitably adjusting
fluxes and the location of symmetrically placed anti-D3-branes, we show that
at a point of enhanced symmetry, the inflaton potential V can have a broad
maximum, satisfying the condition V

′′

/V ≪ 1 in Planck units. On start-
ing close to the top of this potential the slow-roll conditions can be met.
Observational constraints impose significant restrictions. As a first pass we
show that these can be satisfied and determine the important scales in the
compactification to within an order of magnitude. One robust feature is that
the scale of inflation is low, H = O(1010) GeV. Removing the observational
constraints makes it much easier to construct a slow-roll inflationary model.
Generalizations and consequences including the possibility of eternal infla-
tion are also discussed. A more careful study, including explicit constructions
of the model in string theory, is left for the future.
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1 Introduction

Inflation is an attractive idea that solves many important problems in cos-
mology. It is also in good agreement with current observational data. It is
therefore important to understand if inflation can arise in string theory.

Despite several attempts no satisfactory model of inflation in string theory
has been constructed as yet. This problem is closely tied to the issue of
moduli stabilization. It is well known that a very flat potential is required for
inflation. There are many light fields, called moduli, in string theory which to
first approximation have an exactly flat potential. So it might seem at first
that a slowly enough varying potential can be easily generated. However,
any attempt to generate such a potential typically runs into difficulty. One
finds that some very unstable direction develops, along which the potential
descends much too rapidly. As a result, the required flatness condition is
not met and inflation is not realized. Recently, there has been considerable
progress in moduli stabilization. So one can be hopeful that these obstacles
will be overcome.

In this paper we outline the construction of a model for inflation in string
theory. Our construction is based on the recent developments in moduli
stabilization. The setting is warped flux compactifications of type IIB string
theory, in the presence of D3-branes and anti-D3-branes. Using fluxes we fix
all the complex structure moduli of the Calabi-Yau space and the dilaton-
axion [1]. We also use a generic superpotential of the kind which arises
due to gaugino condensation to stabilize the volume modulus [2] (KKLT).
Our discussion of inflation is closely related to the recent attempt in [3]
(KKLMMT). In particular the inflaton in our model is a D3-brane modulus,
i.e., a scalar field which corresponds to the location of the D3-brane in the
internal Calabi-Yau space. In [3] it was argued that a superpotential of
the kind mentioned above leads to the D3-brane moduli acquiring a mass,
m2 = 1/6R, where R is the curvature scalar. This mass is too big and ruins
the required flatness of the potential.

We explore a small twist on this story here. Consider a Calabi-Yau space
with a Z2 symmetry1. A mobile D3-brane is located in the vicinity of the
Z2 symmetric point and experiences an attractive Coulomb force due to two
symmetrically located anti-D3-branes. In such a situation we show that
by adjusting the fluxes and the brane-anti-brane separation, the Coulomb
attraction can nearly cancel the effect of the curvature induced mass men-
tioned above. As a result the Z2 symmetric point turns into a maximum
of the potential. The near cancellation results in a broad maximum, with

1This Z2 symmetry need not be the one involved in the orientifold action.
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|m2|/H2 ≪ 1, where H , is the Hubble scale corresponding to the height of
the potential at the maximum. By starting close enough to such a maximum
the required conditions for slow-roll inflation can then all be met.

The observational constraints, especially the scale of density perturba-
tions, impose stringent restrictions on the model. We show that the con-
straints can be met and determine the important scales in the compactifi-
cation to within an order of magnitude2. A robust feature of our model,
independent of many details, is that the scale of inflation is low. The Hubble
scale, H , is of order 1010 GeV, which corresponds to a cosmological constant
of order 1014 GeV. Thus the production of tensor perturbations is highly sup-
pressed. The observation of gravity waves by the Planck experiment would
therefore rule out this model.

A more careful study of whether all the constraints can be met will require
concrete constructions of the model in string theory and is left for the future.
The non-perturbative superpotential we evoke, and the assumption that the
full potential can be obtained by adding the brane-anti-brane interaction to
the term coming from the superpotential3 also needs to be studied further.
The last two issues are common to many KKLT type constructions.

As a model for inflation our construction is incomplete in three ways. We
have not addressed how inflation ends, how it begins, and how the standard
model can be incorporated in it. Ending inflation successfully requires ade-
quate reheating. This depends on how the standard model is incorporated.
In terms of beginning inflation, it could be that the model does not depend
sensitively on initial conditions. It has been argued that a broad maximum of
the kind in this model gives rise to eternal inflation. Regions where quantum
fluctuations have driven the inflaton to the top of the potential hill grow ex-
ponentially more rapidly and soon dominate the universe, regardless of initial
conditions. The inflationary epoch discussed in this paper then arises when
fluctuations cause the scalar field to descend far enough from the top so that
the classical evolution becomes dominant. This is an appealing picture but
it needs to be understood better. We leave these issues for the future.

The important features of this model are quite general. They essentially
depend only on the existence of a broad maximum, with |m|2/H2 ≪ 1, and
are independent of most details. For example, we have emphasized the role

2More accurately, our estimates of some of the important energy scales involved is
uncertain by factors of order unity. Up to these uncertainties we show that the constraints
can be met.

3This assumption would be correct if the brane-anti-brane interaction arise from a D-
term. Evidence in support of this has been found in [42, 43]. We thank S. Kachru for
bringing these references to our attention.
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of a Z2 symmetry above. But the idea works more generally, even when there
is no such symmetry, for a D3-brane located between two appropriately posi-
tioned anti-D3-branes. More generally this construction can be viewed as an
existence proof for broad maxima in the landscape of string theory. It seems
reasonable to believe that there are many such maxima, with the complex
structure moduli or Kähler moduli also playing the role of the inflaton4. The
inflationary parameters, like the scale of density perturbations, or the tilt
in the spectrum of scalar perturbations, probably take many different values
at these maxima, most of which will not agree with observation. Further
progress in moduli stabilization will allow us to test this grim possibility.

This paper is organized as follows. Our basic set-up is discussed in section
2.1. The positive mass for the brane moduli due to the curvature coupling, is
reviewed in section 2.2. In section 2.3, we discuss the potential for a D3-brane
located between two symmetrically placed anti-D3-branes, and show that a
broad maximum can arise. The resulting inflationary scenario is discussed in
section 2.4. The constraints on the compactification which arise are analyzed
in section 2.5. We close with an extended discussion in section 3.

Before proceeding we should comment on some of the relevant literature.
The idea of brane inflation was first discussed by [4]. Other related papers
are [5], [6]. In particular, while not worrying about moduli stabilization, [7]
showed that a flat potential could be obtained by considered symmetrically
positioned branes. For a review, see [8]. Standard textbook references for
inflation are [9] and [10], see also [11]. Some relevant references for moduli
stabilization are [12] and [1] for general framework, and [13] for some ex-
amples. For recent progress towards meeting the conditions of the KKLT
construction, see [14]. [15] explores the KKLT construction further, [16] con-
siders inducing the anti-D3-brane charge on D7-branes. A variant of the
KKLT scenario which does not require the anti-D3-brane is [17]. An investi-
gation of de Sitter vacua using F-term potentials and additional light moduli
is in [18]. A recent attempt to overcome the problems faced in KKLMMT
involves the use of a shift symmetry [19]. It would be nice to see if shift sym-
metry is present in Calabi-Yau orientifolds or their F-theory generalizations,
which are required for controlled stabilization of all moduli and preserve only
N = 1 supersymmetry. For an attempt in the context of string theory to
use higher derivative terms for inflation see [20]. Inflation with a quadratic
potential of the kind we obtain here was studied earlier in [21], which ar-
rived at similar conclusions about the low energy scale during inflation etc5.
Two related papers on brane inflation appeared while our manuscript was
being readied. [44] uses additional D-terms obtained by adding the Standard

4S.P.T. thanks M. Douglas for emphasizing this point.
5We thank S. Sarkar for bringing this paper to our attention.
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Model fields in the KKLMMT set up and argues numerically that inflation
can be obtained, and [45] explores the possibility of inflation in the dynamics
of more than one anti-brane in a K-S throat.

Our conventions are as follows. M10 refers to the ten-dimensional Planck
scale. It is related to the string scale, α

′

, and the string coupling, gs, by
1

M8

10

= 1
2
(2π)7(α

′

)4g2
s . MP l refers to the four-dimensional Planck scale. It is

defined by M2
P l = 1

8πGN
and satisfies the relation, M2

P l = M8
10L

6, where L6 is
the volume of the six-dimensional internal space. Finally, the tension of the
D3-brane is given by T3 = 1

(2π)3(α
′
)2gs

.

2 The Model

2.1 Basic Set-up

Consider IIB string theory on a six-dimensional Calabi-Yau orientifold, with
the three forms H3, F3 turned on. More generally we can consider F-theory
on an elliptically fibered Calabi-Yau fourfold. The resulting compactification
is of the warped kind, [1],

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)gmndymdyn . (1)

The five-form F5 is non-zero, and determined. The three-forms give rise to
a superpotential for the complex structure moduli, [12],

W =

∫

G3 ∧ Ω , (2)

where G3 = F3−τH3, τ is the dilaton axion field, and Ω is the homomorphic
three-form on the Calabi-Yau space. This superpotential in general fixes all
the complex structure moduli and the dilaton-axion.

As was discussed in [1], such a construction can provide a compactifi-
cation of the Klebanov-Strassler (K-S) deformed conifold solution [22]. By
tunning the fluxes the complex structure moduli can be stabilized close to
a conifold singularity. An intuitive picture of the resulting compactification
is as follows. Roughly speaking, the compactification contains a small three-
sphere threaded by flux. The resulting backreaction is significant and causes
a “throat” to develop - this is a region where the warp factor, e2A(y), departs
significantly from unity. Unlike in the case of AdS5, the K-S throat termi-
nates on a three-sphere where the warp factor acquires its minimum value.
It is relevant to note for our purposes that if the Calabi-Yau manifold has
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discrete symmetries, more than one small three-sphere can be present when
the complex structure moduli are stabilized close to the conifold point. These
three-spheres would be symmetrically located about a point of enhanced sym-
metry and in turn would give rise to symmetrically located throat regions
where the warp factor departs significantly from unity.

In the subsequent discussion we restrict ourselves to Calabi-Yau orien-
tifolds with one Kähler modulus, the volume. As discussed in [23], non-
perturbative corrections to the superpotential, for example due to gaugino
condensation on wrapped D7-branes, can arise. These are dependent on the
volume and can stabilize it [2]. Additional anti-D3-branes at the bottom
of one (or more) K-S throats can lift these vacua to positive cosmological
constant giving rise to dS space.

Finally, mobile D3-branes can be present in the compactification. Their
interaction with anti-D3-branes can be calculated. The idea explored in
[3] was that the attractive potential between a mobile brane and an anti-
brane might give rise to a slowly varying potential suitable for inflation.
However, a detailed analysis of the resulting potential showed that when the
details of volume stabilization, as mentioned above, are included, the D3-
brane acquires a mass which is too big to allow for the slow-roll conditions
to be met.

The new element we consider in this paper is to take a Calabi-Yau space
with a Z2 symmetry and two symmetrically located K-S throats each con-
taining an anti-D3-brane. The mobile D3-brane is located in between in the
vicinity of the Z2 symmetric point. We will see that in such a situation the
positive mass term due to the curvature coupling, can be canceled to good
approximation by the brane-anti-brane potential, giving rise to a maximum
in the potential energy with a small mass, |m|2 ≪ H2. By starting close to
the maximum the requirements for slow-roll inflation can be met.

The rest of this section is organized as follows. We first briefly sketch
out how the curvature coupling and related positive mass term arises in [3].
Next we include the brane-anti-brane interaction and analyze the resulting
potential. A discussion of the resulting inflationary scenario follows in the
section 2.4. The constraints imposed on the compactification are discussed
in section 2.5.

2.2 The Curvature Coupling: A positive mass

It is useful to consider the dynamics of the mobile D3-brane in an effective
theory obtained by integrating out the complex structure moduli. This effec-
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tive theory contains four complex scalar fields (with their fermionic partners
to form chiral superfields). Φi, i = 1, · · · , 3, are three complex fields related
to the D3-brane location. ρ is an additional complex scalar, its real part is
related to the volume r by,

2r = ρ + ρ̄ − k(Φi, Φ̄i) . (3)

(More correctly r is proportional to the volume of the Calabi-Yau manifold,
in the notation6 of [1], r ∼ e4u). k(Φi, Φ̄i) is the Kähler potential of the
Calabi-Yau manifold.

The kinetic energy terms can be derived from the Kähler potential, [24],

K = −3 log(ρ + ρ̄ − k(Φi, Φ̄i)) . (4)

The superpotential (in the absence of the anti-branes) takes the form

W = W0 + Ae−aρ , (5)

where W0, A, a are constants in the effective theory. The first term above,
W0, arises by replacing the complex structure moduli with their vacuum
expectation values in eq. (2). The second term arises due to non-perturbative
effects. These could be, for example, due to gaugino condensation on D7-
branes wrapping four-cycles in the Calabi-Yau space, or due to Euclidean
D3-brane instantons, [23]. The prefactor A also depends on the expectation
values of the complex structure moduli. The superpotential, eq. (5), gives
rise to a potential energy,

V F =
1

6r

(

∂ρW∂ρW (1 +
1

2r
kij̄kikj̄) −

3

2r
(W∂ρW + W∂ρW )

)

. (6)

Including the effects of the anti-branes in this theory is subtle. It can be
shown (see appendix B of [3]) that the potential between a D3-brane and an
anti-D3-brane in a warped background takes the form7

V B(~r) = 2T3Z
4(1 − 1

2π3

Z4T3

M8
10|~r − ~r1|4

) . (7)

The first term on the r.h.s. is really the potential energy of the anti-brane.
The second term arises due to the attractive RR and gravitational potential

6r in this paper is related to the field ρ, in [1], appendix A.1, after eq. (A.2), as follows:
2r = −iρ.

7To relate this to eq. (3.9) of [3] at ~r = 0, we note that the redshift Z4 is denoted by
r4

0

R4 in [3], and from the conventions discussed in the introduction above, it follows that
1

2π3

T3

M8

10

= R4

N
= 4πgs(α

′

)2.
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between the brane and anti-brane, we will refer to it as the Coulomb term
below. T3 is the tension of the 3-brane, ~r, ~r1 refer to the locations of the
brane and anti-brane respectively, and Z4 = e4A(~r1) refers to the redshift at
the location of the anti-brane.

In eq. (7), we have assumed that the metric in the background Calabi-Yau
space is flat, i.e., gmn = δmn, eq. (1). More generally, in the the second term
on the r.h.s, the factor 1/|~r−~r1|4 will be replaced by the appropriate harmonic
function. If more than one brane and anti-brane are present, this formula is
generalized in a straight forward manner. The first term on the r.h.s. includes
the contributions of all the anti-branes with the appropriate redshift factor
at their locations. The second term includes all brane-anti-brane pairs with
the appropriate redshift factors and harmonic functions. We should also
mention that the Coulomb term above is valid only when the brane-anti-
brane separation is much bigger than the string scale, |~r− ~r1| ≫

√
α′ , and is

much smaller than the size of the compactification, L, i.e., |~r − ~r1| ≪ L. We
will see in the following discussion that these conditions are indeed met8.

To include the effects of the anti-branes we will then simply assume that
this potential due to the brane-anti-brane interactions can be added to V F

above in obtaining the full potential.

The resulting total potential then takes the form,

V = V F + V B . (8)

Keeping only the potential energy term of the anti-brane in eq. (7) and
neglecting the Coulomb term for now, we get eq. (5.14) of [3],

V =
1

6r

(

∂ρW∂ρW (1 +
1

2r
kij̄kikj̄) −

3

2r
(W∂ρW + W∂ρW )

)

+
D

(2r)2
. (9)

We should point out that this equation gives the potential in four-dimensional
Planck units. The second term above arises from the anti-brane potential
energy, and is given by summing over all the anti-D3-branes, 2T3

∑

i Z
4
i .

To convert to four-dimensional Planck units we use the relation T3/M
4
P l ∼

1/(2r)3. Finally, we use the fact that the redshift factor at the bottom of a
K-S throat scales like Z4 = e4A ∼ r for fixed integer fluxes. This gives the
term D/(2r)2 where the coefficient D is independent of the volume.

In the vicinity of a point in moduli space where k(Φi, Φ̄i) = ΦiΦ̄i one can
show that a dS minimum exists at ρ = ρc, Φ

i = Φ̄j = 0. The potential at the

8If |~r − ~r1| ∼ L, the Harmonic function in eq. (7) needs to be replaced by its compact
space version.
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minimum is denoted by V = V0(ρc). Expanding around it the potential can
be written as,

V =
V0(ρc)

(1 − ϕϕ̄/3M2
P l)

2 ≈ V0(ρc)

(

1 +
2

3

ϕϕ̄

M2
P l

)

. (10)

Here ϕ = Φ
√

3/(ρ + ρ̄) is the canonically normalized field as follows from
the Kähler potential (4), and we have inserted the appropriate factor of MP l

required by dimensional analysis. We see that the brane moduli acquire a
positive mass. It is easy to see that m2 = 2

3
V0(ρc)
M2

Pl

= 1
6
R, where R is the

curvature of the resulting dS space.

One more comment is in order before we proceed. The minima one gets
from V F alone are supersymmetric and have negative cosmological constant.
These are lifted to positive cosmological constant because of the anti-brane
contribution, the D/(2r)2 term in eq. (9). At a typical dS minimum the
contributions of the superpotential term and the anti-brane terms in eq. (9)
are roughly comparable and each is of order V0(ρc).

9 This fact will be useful
to bear in mind in the next subsection.

2.3 Symmetrically Located Throats

We are now ready to consider the new twist in this paper. Consider a sit-
uation mentioned above, where there are two K-S throats symmetrically lo-
cated about ~r = 0, at ±~r1. An anti-D3-brane is located at the bottom of
each throat. The D3-brane is located in the vicinity of the point of Z2 sym-
metry, at ~r = 0. See Figure 1. We are now ready to include the effects of the
Coulomb interaction in eq. (7) in such a set-up10. For simplicity we assume
that the metric gmn is flat and this is consistent with the form of the Kähler
potential assumed above in eq. (10).

The second term in eq. (7) is then given by

V I = −2T 2
3 Z8 1

2π3M8
10

(
1

|~r − ~r1|4
+

1

|~r + ~r1|4
) . (11)

Z4 = e4A is the redshift factor at the location of either anti-brane, and by
symmetry this is the same. Expanding to quadratic order, and using the

9The present day de Sitter phase would not be of this type, for this the two contributions
would have to cancel to a very good accuracy leaving a small positive residual cosmological
constant, but this is not the generic situation.

10Strictly speaking the Z2 symmetry is not essential for this model. The idea can work
for any two appropriately positioned throats, as will be discussed further in section 3,
when we consider generalizations.
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D3 D3

D3

Calabi−Yau

Figure 1: Two symmetrically located Klebanov-Strassler throats in Calabi-
Yau space. Anti-D3-branes are at the bottom of each throats and mobile
D3-brane is in between.

relation,
T 2

3

M8

10

= π we get,

V I = − 2Z8

π2r4
1

(1 +
2

r2
1

(
6r1mr1n

r2
1

− δmn)rmrn) . (12)

The first term on r.h.s. gives a correction to the vacuum energy. We will
see below that this correction is small. The second term is quadratic in the
displacement, ~r, and gives a contribution to the mass. If the anti-branes are
located along the y1 direction, it takes the form,

V I
quad = − 4Z8

π2r6
1

(5(y1)2 − (y2)2 − (y3)2 − (y4)2 − (y5)2 − (y6)2) . (13)

In particular the mass term associated with the y1 direction is negative, as
would be expected from the attractive nature of the force.

The kinetic energy terms for brane moduli can be derived from the DBI
action,

L = −T3

∫

d4x
√−g

1

2
gµν∂µy

i∂νy
i . (14)

From this we see that the canonically normalized field ϕi =
√

T3y
i.
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Requiring the negative mass term along the y1 direction to approximately
cancel the curvature induced term discussed in the previous section then gives
the condition,

2

3

V0(ρc)

M2
P l

≃ 40Z8

π2r6
1

1

T3

. (15)

As was mentioned above, up to a factor of unity, the de Sitter vacuum en-
ergy is of order the contribution of the anti-branes, V0(ρc) ∼ T3Z

4. Dropping
factors of order unit we then get,

T 2
3 Z4

M2
P l

∼ Z8

r6
1

. (16)

Using the relations, M2
P l = M8

10L
6, and T 2

3 /M8
10 = π, this leads finally to the

condition,
r1 ∼ Z2/3L . (17)

Note that since Z < 1, eq. (17) is consistent with requiring that the brane-
anti-brane separation is less than size of the compactification, r1 < L.

Let us make two comments before closing this subsection. First, as was
mentioned above, Z in eq. (17) scales with the volume. E.g., for a K-S throat,
Z4 = e4A ∼ L4

(α′ )2
exp(− 8πK

3gsM
), where, M and K are two integers which specify

the flux of F3 and H3 threading the vanishing S3 and its dual three-cycle
respectively [1, 22]. Including this in eq. (17) and requiring r1 < L, gives rise
to the condition,

e−( 4πK
9gsM ) <

(√
α′

L

)2/3

, (18)

which can be met for L >
√

α′ by choosing appropriate integers K, M . Thus
we see that by appropriately choosing the fluxes, the two contributions to
the mass, from the curvature coupling and the brane-anti-brane interaction,
can be made to approximately cancel. Second, we mentioned above that the
first term in eq. (12) makes a small contribution to the vacuum energy. We
can now verify this. We had mentioned above that the vacuum energy is of
order the anti-brane potential energy, i.e., V0(ρc) ∼ T3Z

4. So the required
condition is, T3Z

4 ≫ Z8

r4

1

. From eq. (17) this takes the form, 1
gs

L4

(α′ )2
≫ Z4/3,

where we have used the relation, T3 ∼ 1
gs(α

′ )2
. This is obviously met when,

gs < 1, L√
α′

> 1 and Z ≪ 1.

In the following discussion we will assume that the fluxes etc have been
chosen so that eq. (17) is met and the two contributions to the mass for the
inflaton approximately cancel, leaving a small residual negative (mass)2, for
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motion along the y1 direction. The point ~r = 0, is then a maximum of the
potential along this direction. In its vicinity the potential is given by,

V = V0 −
1

2
m2φ2 , (19)

where V0 ≡ V0(ρc), φ ≡ √
T3y

1 is the canonically normalized field, and m2

is the small residual mass. We will examine the inflationary scenario that
results when one starts close to this maximum next. Along all the other
directions the potential is stable. For simplicity we will assume that during
inflation the brane is at rest along these directions, at yi = 0, i = 2, · · · , 6.
Before proceeding let us note that inflation with a potential of the form
eq. (19) was studied earlier in [21]. This paper noted that the scale of inflation
would have to be low and also the tilt would be negative in accord with our
analysis in the next subsection.

2.4 The Resulting Inflationary Scenario

The potential for the inflaton was described in the previous section, eq. (19).
In the standard classification of inflationary models this is a canonical exam-
ple of “small field” inflation (in the classification of [27], see also [28]).

The Hubble scale during inflation is,

H2 =
V

3M2
P l

≃ V0

3M2
P l

. (20)

The last approximation follows from the fact that φ2 ≪ V 2

0

m2 , during inflation,
as we will see shortly. The two slow roll parameters are given by

ǫ ≡ 1

2

(

V
′

V

)2

M2
P l =

1

18

(

m2

H2

)2(
φ2

M2
P l

)

, (21)

and

η ≡ V
′′

V
M2

P l =
m2

3H2
. (22)

The condition for slow-roll inflation is that ǫ, η ≪ 1. We see that by taking

m2 ≪ H2 (23)

and starting at a small enough value of φ, both these conditions can be met.

Let us examine the observational constraints imposed in more detail now.
We will see that they determine the scale of inflation, independent of the
string coupling constant and the size of Calabi-Yau space in this model.
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The slow roll conditions stop holding in our model when the subleading
corrections to the potential become significant. We denote the value of the
inflaton when this happens by, φf . There are two sources for these correc-
tions. From eq. (11), we see that there are corrections11 of O( φ

√

T3r1

)2. These
will become important when

φ ∼
√

T3r1 . (24)

From eq. (10), we see that there are also corrections of O( φ
MPl

)2, these become

significant when φ ∼ MP l. It is easy to see that eq. (24) is more restrictive.
This follows from eq. (17) after noting that,

√
T3r1 ∼ √

T3Z
2/3L ≪ MP l =

M4
10L

3, for gs < 1, Z ≪ 1 and L/
√

α′ > 1. So we learn that inflation comes
to an end when φf ∼ √

T3r1. This condition of course makes good physical
sense. The anti-brane is located at φ =

√
T3r1, and we expect inflation to

have ended by the time the brane gets to the vicinity of the anti-brane.

Two comments are worth making at this stage. The two conditions,
φ ≤ φf ≪ MP l, and, eq. (23), imply that φ2 ≪ V0

m2 ≃ H2

m2 M
2
P l, as was

mentioned above eq. (21). Also, using these two conditions in eq. (21) and
eq. (22), we learn that ǫ ≪ η. The observed value of the tilt, as seen below
in eq. (28), then tells us that

η =
m2

3H2
∼ −10−2 < 0 . (25)

It is easy to see that the value of the inflaton, φ, Ne e-foldings before the
end of inflation, is given by

log

(

φf

φ

)

=
|m|2
3H2

Ne . (26)

The scale of the adiabatic density perturbations, [10], [11], is given by

δH =
1√
75π

1

M3
P l

V 3/2

|V ′| =
3

5π

H3

|m2φ| . (27)

Data tells us that δH = 1.9 × 10−5, see for example, [25]. The tilt in the
spectrum is given by

n = 1 − 6ǫ + 2η ≃ 1 + 2η . (28)

From eq. (25), we see that this is less than unity in our model. Observational
data indicates a non-zero tilt, with, n ≃ 0.97, [25], [26].

11Here we are using the fact that the canonically normalized field φ =
√

T3r.
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We are now ready to consider the constraint imposed by the density
perturbations, eq. (27). The observed anisotropy arises due to perturbations
which leave the horizon about 60 e-foldings before the end of inflation12.
From eq. (26), eq. (25), we learn that the value of the inflaton, 60 e-foldings
before the end of inflation, is given by, φ ∼ φf/1.8 ∼ √

T3r1/1.8. Substituting
this13 along with eq. (25), in eq. (27), then gives us,

H√
T3r1

∼ 1

1.8
× 10−4 |m|2

H2
∼ 3

1.8
× 10−4 |η| . (29)

Some more algebraic manipulation leads to a determination of the Hubble
scale during inflation. Using the relation, V0(ρc) ∼ T3Z

4, and eq. (20), one
gets,

1√
3

Z2

r1MP l
∼ 3

1.8
× 10−4 |η| . (30)

Next substituting eq. (17), in eq. (30), leads to the relation

1√
3

Z4/3

LMP l
∼ 3

1.8
× 10−4 |η| (31)

which determines the redshift factor, Z, in terms of the scale of compactifi-
cation L and MP l. Finally, putting this condition into the expression for the
Hubble constant yields,

H2

M2
P l

∼ T3Z
4

3M4
P l

∼ 0.8 × 10−11 T3

M4
10

|η|3 ∼ 1.4 × 10−17

( |η|
0.01

)3

, (32)

where we have used the relation, M2
P l = M8

10L
6, and T3

M4

10

=
√

π. Note

that various model dependent features like the scale of the compactification
of Calabi-Yau space and the value of gs drop out in this expression. The
resulting value of the Hubble scale is indeed low in this model. Eq. (32)
gives,

H ∼ 9.2 × 109

( |η|
0.01

)3/2

GeV . (33)

This corresponds to an energy scale

Λ ∼ 2.0 × 1014

( |η|
0.01

)3/4

GeV , (34)

12The number of e-foldings depends on the reheat temperature. While we leave this
matter for further study, it seems likely that the reheat temperature in this model will
turn out to be low, since the Hubble scale is quite low, H = 1010 GeV. This decreases Ne,
but does not change the estimates below significantly.

13Precisely speaking, this Ne e-foldings suppression factor 1.8 ≃ exp(Ne|η|) is dependent
on η, but this η-dependence is very weak so we will neglect this dependence in the following
discussion.
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which is small compared with the SUSY GUT scale, 1016 GeV.

The power in gravity wave perturbations is given by,

Pgrav =
1

2π2

H2

M2
pl

∼ 7 × 10−19

( |η|
0.01

)3

. (35)

It is clear that the production of gravity waves in this model is greatly sup-
pressed, much below the level of detection in future experiments.

To summarize, this model gives rise to an example of small field infla-
tion14. The inflaton varies by much less than the Planck scale during infla-
tion. The slow roll parameter ǫ is extremely small and the tilt is determined
by η which is negative. The Hubble scale during inflation is quite low, of order
1010 GeV, and the corresponding vacuum energy is of order 1014 GeV. As a
result, the observed anisotropy arises almost entirely due to adiabatic density
perturbations and the production of gravity waves is highly suppressed.

Let us end this section with some comments. The qualitative features
of the inflationary scenario in this model mainly arise from the broad max-
imum, with m2/H2 ≪ 1, and are quite insensitive to various details and
approximations. For example, we assumed at various points in the discus-
sion that the internal metric, eq. (1), is trivial, gmn = δmn. This is of course
an approximation valid only locally, since Calabi-Yau spaces are not flat.
For a non-trivial metric the Z2 symmetric point will still be an extremum. It
will always be a maximum of the attractive Coulomb potential eq. (11). In
addition if it is a minimum for the terms, eq. (9), the basic idea will work.
By adjusting the redshift factor, Z, as a function of the brane-anti-brane
separation, as in eq. (17), one can arrange a near cancellation, leading to the
condition m2/H2 ≪ 1. It could be that the corrections to the metric causes
inflation to end for a smaller value of φ than we estimated above. It follows
from eq. (29), that the resulting Hubble scale of inflation will be lower than
our estimate above, order 1010 GeV.

It is interesting to compare the inflationary parameters obtained above,
with those obtained in the KKLMMT model, with the curvature induced
mass term set to zero by hand, appendix C, [3]. In the latter case after
setting Ne = 60, one finds that δH directly determines the energy scale
during inflation, Λ, (C.12), [3]. Remarkably, the resulting value is the same
as that obtained above, 1014 GeV. The tilt parameter is directly determined
by Ne, and with Ne = 60, is in good agreement with the data, (C.19), [3]. In
contrast in the model above, we saw that the energy scale during inflation
and the tilt are relatively insensitive to Ne. Fixing the the value of m2/H2,

14This is an “A” type model in the classification of [26].
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so that the tilt agrees with observations, we found that δH determines the
energy scale during inflation.

2.5 Parameter Constraints

2.5.1. Meeting the Various Constraints:

There are four important parameters which characterize the compactifi-
cation, r1 - which governs the distance between the two K-S throats, Z, the
redshift at the bottom of each K-S throat, L, the size of the compactifica-
tion, and gs the string coupling. Here we will examine the various constraints
imposed on them. As we will see these turn out to be very stringent and
will restrict some of the parameters to within an order of magnitude or so.
Our estimates are uncertain by factors of order unity because of our lack of
knowledge about how to define some of the scales precisely. Within these un-
certainties, we will find that all the constraints can be met. This establishes,
as a first pass, that this model is viable. However, given the stringent nature
of the constraints one would like to do better. This requires an improved es-
timate of the numerical factors in the constraints and is not easy. For some
of the constraints one will probably need explicit string theory constructions
of the model. We leave this for the future.

The constraints on the parameters arise in three ways. First, the low-
energy supergravity theory, within which our analysis has been carried out,
must be valid. Second, the initial brane-anti-brane separation, r1, must
satisfy some conditions so that the form of the potential we assumed in
eq. (11) is valid and the resulting maximum is broad. Third, the observational
constraints discussed in section 2.4 must be met. We take these up in turn
now.

For the low-energy supergravity approximation to be valid, the α
′

and gs,
expansions must hold. These give rise to the conditions

L6 ≫ (α
′

)3 , (36)

and
gs ≪ 1 , (37)

respectively. In addition, the scale of supersymmetry breaking must be small
compared to the string scale. We take this condition to be

T3Z
4 ≪ 1

(2π)3(α′)2
. (38)
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The l.h.s. above arises because the scale of supersymmetry breaking is set by
the anti-brane tension. The r.h.s. has been chosen as follows. We expect the
supersymmetry breaking scale to be unacceptably large when gs = Z = 1.
The r.h.s. is the value of the D3-brane tension for this choice15 of gs, Z.
Eq. (39) can be then re-expressed as a condition on Z, gs alone, and takes
the form

Z4 ≪ gs . (39)

The initial brane-anti-brane separation r1 must satisfy three conditions.
First, it must be big enough so that no tachyon is present at the start of
inflation. The mass of the tachyon m2

T as a function of the initial separation,
r1, is given by

m2
T =

r2
1

(2πα′)2
− 1

2α′
. (40)

The requirement that no tachyon is present then takes the form,

r1√
α′

≫
√

2π . (41)

Second, r1 must be small enough compared to the size of the compactification,
L, so that the corrections to the harmonic function due to compact nature of
the internal space can be neglected. Third, the resulting maximum should be
broad, this gives eq. (17). In the analysis below we will assume that eq. (17),
is the more restrictive of the latter two constraints. In the particular examples
we consider we will see this is true.

The observed anisotropy gives the condition, eq. (31). Also, the tilt,
eq. (28), determines η and thereby m2/H2 by eq. (25). It is worth repeat-
ing here, that eq. (31) completely fixes the energy scale during inflation as
eq. (34), or equivalently, the SUSY breaking scale up to a factor of order
unity.

To summarize the four parameters, r1, Z, L, gs, mentioned above, must
meet the constraints, eq. (36), eq. (37), eq. (39), eq. (41), eq. (17), and,
eq. (31).

We are now ready to analyze these constraints in more detail.

2.5.2. Analysis of the Constraints:

We can view, eq. (31) as determining Z in terms of L, and then eq. (17)
as determining r1 in terms of L. This leaves L and gs undetermined. They

15The numerical factor, 1
(2π)3 , is less than unity and therefore makes eq. (38) more

stringent.
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must satisfy the remaining four constraints, eq. (36), eq. (37), eq. (39), and
eq. (41).

Since
M2

P l = M8
10L

6 , (42)

eq. (31) takes the form

Z4 ≃ 39/2

(1.8)3
× 10−12(M10L)12|η|3 . (43)

Eq. (39) then imposes the condition,

(LM10)
12 ≪ (1.8)3

39/2
× 1012 gs

|η|3 . (44)

Using the relation
1

M8
10

=
1

2
(2π)7(α

′

)4g2
s , (45)

eq. (36) takes the form,

(LM10)
12 ≫ 1

(26π7)3/2

1

g3
s

. (46)

Similarly, using eq. (45) and eq. (17), eq. (41) gives

(LM10)
12 ≫ (1.8)2

√
π

33 · 2
108

|η|2gs
. (47)

It is easy to see that for reasonable values of gs, eq. (47) is more restrictive
than eq. (46).

So we see that L, the size of the compactification, and gs, the string
coupling, must satisfy the conditions, eq. (44), eq. (47), and eq. (37).

We can express eq. (44) and eq. (47) together as,

1 × 1012
( gs

0.1

)

−1( |η|
0.01

)

−2

≪ (M10L)12 ≪ 4 × 1015
( gs

0.1

)( |η|
0.01

)

−3

. (48)

Since the upper and lower bounds in the above inequality are somewhat far
apart, for reasonable values of gs and η, we see that the required constraints
on L can be met.

To summarize, we saw in the analysis above that r1 and Z can be ex-
pressed in terms of L and |η|, using the relations eq. (17) and eq. (31). The
remaining two parameters, gs and L must then satisfy the condition eq. (37)
and eq. (48). We saw above that these can be met.
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2.5.3. Explicit Examples with Conclusions:

It is worth examining some explicit examples which meets all the con-
straints in more detail.

Scenario I

We take (M10L)12 = 1013, with gs = 0.1 and |η| = 0.01. Note that
(M10L)12 = 1013 lies between the two bounds in eq. (48). Using, eq. (42), we
now obtain, M10 = 1.4×1015 GeV, 1/L = 1.1×1014 GeV. The redshift factor
is then given by eq. (43). For |η| = 0.01 we get, Z4 = 2.4 × 10−4, Z = 0.12.
The brane-anti-brane separation, r1 given by eq. (17), to be 1/r1 = 4.5×1014

GeV. Using eq. (45), with α
′

= l2s , we get the string scale as 1/ls = 3.5×1015

GeV. Finally, as we mentioned above, the SUSY breaking scale, (T3Z
4)1/4, is

of order the vacuum energy during inflation, 2.0× 1014 GeV. These different
energy scales are summarized as follows:

Table I

physical quantities Scale (GeV)
Mpl 2.4 × 1018

1/ls 3.5 × 1015

M10 1.4 × 1015

1/r1 4.5 × 1014

Λ = (T3Z
4)1/4 2.0 × 1014

1/L 1.1 × 1014

H 0.9 × 1010

warped factor: Z = 0.12

gs = 0.1, |η| = 0.01

Scenario II

To get an idea of how these parameters change, we also consider the
another scenario where (M10L)12 = 1014 and gs = 0.1. For |η| = 0.01, the
resulting values for the parameters are summarized in Table II. One sees that
qualitatively the energy scales look similar, although some of them become
a little bit smaller.
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Table II

physical quantities Scale (GeV)
Mpl 2.4 × 1018

1/ls 2.0 × 1015

M10 7.7 × 1014

1/r1 1.4 × 1014

Λ = (T3Z
4)1/4 2.0 × 1014

1/L 5.2 × 1013

H 0.9 × 1010

warped factor: Z = 0.22

gs = 0.1, |η| = 0.01

Finally we note that some limited amount of variation is allowed for gs. In
general reducing gs tightens the constraints in eq. (48), increasing the lower
bound and decreasing the upper bound. E.g., taking gs = 0.01, the lower
bound in eq. (48) becomes 1 × 1013, and the upper bound be 4 × 1014.

From Table I and II, we see that the parameters are quite tightly re-
stricted by the constraints. While all the inequalities we discussed above
are indeed met, several relevant scales are close together. Thus, our analysis
does not conclusively establish that the required conditions have been met.
For example in Table II, 1/r1 = 1.4×1014 GeV, while 1/ls = 2.0×1015 GeV,

so that r1/(
√

2π
√

α′) = 3.1 > 1, as is needed for the absence of a tachyon.
However, since our estimate of r1 in eq. (17) is uncertain by a factor of order
unity, and the above ratio is not much bigger than unity, a more careful
estimate is needed to conclusively establish this point.

As we mentioned at the beginning of this subsection, a more careful study
is therefore needed to establish that the constraints are satisfied. This would
include a better understanding of the requirements for the low-energy su-
pergravity approximation to be valid. It would also need to be done in the
context of concrete constructions in string theory. In such constructions one
can hope to calculate the numerical factors in eq. (17) and eq. (31), and also
understand whether the brane-anti-brane potential is well approximated by
eq. (11). Finally, a better observational determination of the tilt parameter,
and therefore of η, will also help.

Let us end with some comments. From Table II we see that r1/L ≃
1/(2.7). Corrections to the potential, eq. (11), due to compact nature of the
internal space can be estimated roughly as arising due to “images”. These
contributions are small and do not affect eq. (16) since the harmonic function
falls like 1/r4 in six dimensions.
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We see from Table I and II that 1/L ≫ H , so that the internal space
has a size much bigger than the Hubble scale. This is consistent with our
four-dimensional description of inflation.

It is worth pointing out that the string scale in our model is close to the
SUSY GUT scale but slightly lower. This connection is interesting to explore
further. It will be interesting if successful inflation necessarily requires a
string tension of order the SUSY GUT scale.

We have assumed above that the parameters, Z, r1, L, gs, can in effect be
tunned independently to meet all the constraints. This needs to be checked
in explicit models. Here we only note that given the large number of fluxes
which we can turn on and dial, this seems plausible.

The important observational constraint in the analysis above comes from
the scale of density perturbations eq. (31). Requiring a small scale of density
perturbations make the r.h.s. of eq. (31) smaller, and the upper bound in
eq. (48) bigger. As a result the constraint eq. (48) becomes less severe16. It
therefore seems likely that even after a more detailed analysis along the lines
mentioned above, our model will remain viable as an example of slow-roll
inflation in string theory. By varying the different fluxes etc one can probably
implement the model in many different ways in string theory, giving rise to
inflationary scenarios with different values for the density perturbations, tilt
etc. Hopefully, some of these will agree with the data, although the vast
majority will probably not.

3 Discussion

1. Putting the Proposal on Firmer Footing:

Some important issues need to be studied further to put this model on a
firmer footing. Two of these are common to many KKLT type constructions.
First, non-perturbative effects, like gaugino condensation, responsible for
volume stabilization need to be understood better. Second, in deriving the
full potential we assumed that the brane-anti-brane potential can be simply
added to the contribution coming from the superpotential. This would be
true if the former arises through a D-term. For evidence in support of this
see [42, 43]. Finally, as mentioned above, explicit examples of Calabi-Yau

16One way to make it easier to get the required density perturbations would be to end
inflation earlier. Since δH ∼ H3/(m2φ), smaller φ gives bigger δH . This can be done if the
moving D3-brane encounters a D7-brane or some other feature which obstructs its motion
before it gets close to the anti-D3-brane.
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spaces need to be constructed, where all the constraints discussed above can
be met simultaneously. For all these reasons the construction discussed in
this paper should be thought of as a proposal rather than a concrete model
at the moment.

For recent progress towards meeting some of the requirements of the
KKLT construction see, [14].

2. Building a More Complete Model:

As a model of inflation our construction is incomplete in three important
ways. We have not addressed how inflation ends, and how it begins. And
we have not asked if the standard model can be satisfactorily incorporated
in this construction. Let us briefly comment on some of these issues here.

2a) Ending Inflation: This model is in fact an example of hybrid infla-
tion. When the brane-anti-brane separation gets to be of order the string
scale, a tachyon develops. What happens next is currently a matter of ac-
tive study. See for example [29, 30, 31, 32, 33, 34]. It seems reasonable to
believe that the energy in the brane-anti-brane pair is eventually converted
to light closed string modes like the graviton. Whether this energy can be
efficiently transferred to the standard model degrees of freedom, reheating
the universe satisfactorily, is dependent on how the standard model couples
to the degrees of freedom in the inflationary throat. This is tied to another
incomplete aspect of the model mentioned above, namely how the standard
model is incorporated in it, and needs to be studied further.

Cosmic strings, both of D and F type will be produced in this model
at the end of inflation due to D3 anti-D3-brane annihilation [35], [36]. If
these strings are metastable [37], their tension must meet the condition,
GNT1 ≤ 10−7, to avoid generating unacceptably large anisotropies. A D1-
brane at the bottom of the K-S throat has tension, TD1 = 1

2πgsα′ Z2, where

the Z dependence arises due to the redshift. The tension of the anti-D3
brane is given by T3Z

4 and is of order the vacuum energy during inflation
(2× 1014 GeV)4. Using the relation TD1 =

√

2πT3Z4/gs, TF1 =
√

2πT3Z4gs,
we get GN

√
TD1TF1 ≃ 6.5 × 10−10. This is lower than the bound mentioned

above. Interestingly, future observations might be sensitive to such low values
of the tension, [37], [38].

A small positive cosmological constant is needed after the end of inflation
to account for the acceleration of the present epoch. This could arise as
follows. The brane is drawn towards one of the throats and annihilates
the anti-brane at the bottom of it. But the anti-brane in the second throat
survives after inflation ends. The final resulting cosmological constant will get
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a contribution from this anti-brane’s tension and the superpotential terms,
eq. (6). These can nearly cancel leaving behind a small positive value.

2b) The Initial Conditions and Eternal Inflation

The scale of inflation in this model, Λ ∼ 1014 GeV, is considerably smaller
than the ten-dimensional Planck scale, and makes the question of initial
conditions all the more important.

We can only offer a few speculations about this here. It is possible that
the universe did not begin in a big bang, with temperatures of order the
Hagedorn temperature. Instead as has been suggested in [39, 40], it might
have begun by a tunneling event in the vicinity of the maximum of the
potential.

It could also be that the question of initial conditions is not very sig-
nificant in this model. It has been argued that a potential with a broad
maximum, of the kind we have here, will give rise to eternal inflation. If
the inflaton is close enough to the top of the potential of eq. (19) with
φ < φc ∼ H3/m2, quantum fluctuations can drive it up the hill at a faster rate
than the classical gradient term allows it to descend. Since the regions where
the cosmological constant is bigger also grow exponentially more rapidly, soon
the universe will be dominated by regions where the inflaton is at the top
of the hill, making the initial conditions irrelevant. The observed universe
in this picture would arise when fluctuations cause the inflaton to descend
far enough from the top so that the classical evolution discussed in section
2.4, becomes valid. This is an attractive and fairly plausible picture, but it
is somewhat speculative at the moment and needs to be understood better.

3. Generalizations of the Model:

3a) Asymmetric Throats:

As was mentioned towards the end of section 2.4, the inflationary scenario
implemented in this note is mainly dependent on the small curvature at the
maximum and independent of many details of the model. For example, we
have considered the Z2 symmetric model in our discussion above, but the Z2

symmetry is not essential. In general, the curvature couplings discussed in
section 2.2 will result in a potential for the inflaton. Suppose this potential
has a minimum at some point in the compactification. Two K-S-like throats
containing anti-branes at the bottom, not necessarily symmetrically located,
whose distance from the minimum is adjusted relative to the red-shift factors
and the number of anti-branes at the bottom of the throats, can then nearly
cancel the resulting mass giving rise to a maximum with a small curvature.
The resulting inflationary scenario will then be qualitatively unchanged, in

22



particular the scale of inflation will continue to be quite low.

3b) More Symmetry:

Conversely we can have situations with higher symmetry, with more than
two throats symmetrically located with respect to a point of enhanced sym-
metry. The term (6r1mr1n

r2

1

− δmn) in eq. (12), would then be replaced by the

quadrapole moment of the resulting configuration, Qmn. As long as Qmn does
not vanish, it will have some positive eigenvalues and a similar discussion can
go through. We note here that higher symmetries, e.g., a Z4 symmetry, could
lead to positive eigenvalues of Qmn along more than one direction. As a result
additional directions would be unstable in the potential and during inflation
the brane can roll along these additional directions as well.

4) The Landscape and Inflation:

4a) Broad Maxima:

It seems quite likely that maximum of the kind found in this paper, which
are broad with a small curvature, are more generally present in the string
theory landscape [41]. The unstable directions could be complex structure
moduli or Kähler moduli as well. This possibility can be examined further as
our understanding of moduli stabilization progresses. For complex structure
moduli in the KKLT type constructions, one needs a better understanding
of the non-perturbative corrections that are involved17. As far as Kähler
moduli are concerned, it seems difficult to get the required small mass with
only one Kähler modulus, since the canonically normalized field is logarithm
of the volume. But this might be possible with more than one Kähler mod-
uli, again this requires further developments in our understanding of moduli
stabilization.

Generically broad maxima in the landscape, which agree with observa-
tional constraints, will have a low scale of inflation18 H . 1012GeV. If

17In particular these contributions go like WNP = A(zi)e
−aρ. The prefactor, A(zi),

depends on the complex structure moduli, and one needs to know this dependence.
18To see this, let us write the potential as follows,

V = Λ4f(φ/MPl) = Λ4 − m2φ2 + O(1)
Λ4

M4
Pl

φ4 + · · · , (49)

where the ellipses denote higher powers of (φ/MPl). Typically the slow roll conditions
stop holding when the quartic terms come into play, i.e., when φ ∼ MPl

m
H

. Imposing
η = m2/3H2 ∼ 10−2, and the observed value of the density perturbations, eq. (27), then
leads to H ∼ 1012 GeV. The resulting power in gravity waves is Pgrav ∼ 10−14, which is
quite small even for future observations. In specific models, like the one considered in this
paper, inflation can end earlier and the resulting Hubble scale can be lower.
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inflation arises due to such a maximum in the landscape, gravity waves are
highly suppressed and will be difficult to observe in future experiments.

4b) The Landscape and Various Inflationary Scenarios:

So far in our discussion we have used the observational data and deduced
various constraints on the compactification. Once explicit constructions be-
come possible, we can turn this around and ask instead whether string theory
makes any predictions about the observational data. While it is premature
to speculate on this of course, it seems likely that in general the landscape
will have many broad maxima of various different types, and the resulting
values for the Hubble scale, H and the mass, m2/H2, will take various dif-
ferent values, resulting in many different possibilities for the scale of density
perturbations and the tilt. Most of these will probably not agree with obser-
vation.

Acknowledgments

We are grateful to Prasanta Tripathy for collaboration at early stages. S.P.T.
acknowledges conversations with Alan Guth and other participants during
the Cambridge workshop on Brane World Cosmology. He also acknowledges
discussions with participants of the String Theory and Cosmology workshop
at KITP, Santa Barbara, and with the participants of the Coorg Confer-
ence on CMBR. N.I. thanks people at Harish-Chandra Research Institute in
Allahabad for nice hospitality. S.P.T. acknowledges support from the Swar-
najayanti Fellowship, D.S.T., Govt. of India. This research is supported by
the generosity of the people of India, so we deeply thank them.

References

[1] S. B. Giddings, S. Kachru and J. Polchinski, “Hierarchies from
fluxes in string compactifications,” Phys. Rev. D 66, 106006 (2002)
[arXiv:hep-th/0105097].

[2] S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, “De Sitter vacua in
string theory,” Phys. Rev. D 68, 046005 (2003) [arXiv:hep-th/0301240].

[3] S. Kachru, R. Kallosh, A. Linde, J. Maldacena, L. McAllister and
S. P. Trivedi, “Towards inflation in string theory,” JCAP 0310, 013
(2003) [arXiv:hep-th/0308055].

[4] G. R. Dvali and S. H. H. Tye, “Brane inflation,” Phys. Lett. B 450, 72
(1999) [arXiv:hep-ph/9812483].

24

http://arXiv.org/abs/hep-th/0105097
http://arXiv.org/abs/hep-th/0301240
http://arXiv.org/abs/hep-th/0308055
http://arXiv.org/abs/hep-ph/9812483


[5] K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, “D3/D7 In-
flationary Model and M-theory,” Phys. Rev. D65 (2002) 126002,
hep-th/0203019; S. Alexander, “Inflation from D - Anti-D-Brane Anni-
hilation,” Phys. Rev. D65 (2002) 023507, hep-th/0105032; G. Dvali, Q.
Shafi and S. Solganik, “D-brane Inflation,” hep-th/0105203; G. Shiu and
S.H. Tye, “Some Aspects of Brane Inflation,” Phys. Lett. B516 (2001)
421, hep-th/0106274; B. S. Kyae and Q. Shafi, “Branes and inflation-
ary cosmology,” Phys. Lett. B 526, 379 (2002) [arXiv:hep-ph/0111101];
C. P. Burgess, P. Martineau, F. Quevedo, G. Rajesh and R. J. Zhang,
“Brane antibrane inflation in orbifold and orientifold models,” JHEP
0203 (2002) 052; M. Gomez-Reino and I. Zavala, “Recombination
of Intersection D-Branes and Cosmological Inflation”, JHEP 0209

2002 020, arXiv:hep-th/0207278; D. Choudhury, D. Ghoshal, D.P.
Jatkar, S. Panda, “Hybrid Inflation and Brane-Antibrane System,”
hep-th/0305104; J. Brodie and D. A. Easson, “Brane Inflation and
Reheating”, arXiv:hep-th/0301138; E. Halyo, “Inflation on fractional
branes: D-brane inflation as D-term inflation,” arXiv:hep-th/0312042;
L. Pilo, A. Riotto and A. Zaffaroni, “Old Inflation in String Theory,”
[arXive: hep-th/0401004].

[6] C. Herdeiro, S. Hirano and R. Kallosh, “String theory and hybrid in-
flation / acceleration,” JHEP 0112, 027 (2001) [arXiv:hep-th/0110271];
J. Garcia-Bellido, R. Rabadan and F. Zamora, “Inflationary scenarios
from branes at angles,” JHEP 0201, 036 (2002) [arXiv:hep-th/0112147].

[7] C. P. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G. Rajesh and
R. J. Zhang, “The inflationary brane-antibrane universe,” JHEP 0107,
047 (2001) [arXiv:hep-th/0105204].

[8] F. Quevedo, “Lectures on string / brane cosmology,” Class. Quant.
Grav. 19, 5721 (2002) [arXiv:hep-th/0210292].

[9] A.D. Linde, Particle Physics and Inflationary Cosmology, Harwood,
Chur, Switzerland (1990).

[10] A.R. Liddle and D.H. Lyth, Cosmological Inflation and Large-Scale
Structure, Cambridge University Press, Cambridge, England (2000).

[11] D. H. Lyth and A. Riotto, “Particle physics models of inflation and
the cosmological density perturbation,” Phys. Rept. 314, 1 (1999)
[arXiv:hep-ph/9807278].

[12] S. Gukov, C. Vafa and E. Witten, “CFT’s from Calabi-Yau four-
folds,” Nucl. Phys. B 584, 69 (2000) [Erratum-ibid. B 608, 477 (2001)]
[arXiv:hep-th/9906070].

25

http://arXiv.org/abs/hep-th/0203019
http://arXiv.org/abs/hep-th/0105032
http://arXiv.org/abs/hep-th/0105203
http://arXiv.org/abs/hep-th/0106274
http://arXiv.org/abs/hep-ph/0111101
http://arXiv.org/abs/hep-th/0207278
http://arXiv.org/abs/hep-th/0305104
http://arXiv.org/abs/hep-th/0301138
http://arXiv.org/abs/hep-th/0312042
http://arXiv.org/abs/hep-th/0401004
http://arXiv.org/abs/hep-th/0110271
http://arXiv.org/abs/hep-th/0112147
http://arXiv.org/abs/hep-th/0105204
http://arXiv.org/abs/hep-th/0210292
http://arXiv.org/abs/hep-ph/9807278
http://arXiv.org/abs/hep-th/9906070


[13] K. Dasgupta, G. Rajesh and S. Sethi, “M theory, orientifolds and
G-flux,” JHEP 9908, 023 (1999) [arXiv:hep-th/9908088]; S. Kachru,
M. B. Schulz and S. Trivedi, “Moduli stabilization from fluxes in a sim-
ple IIB orientifold,” JHEP 0310, 007 (2003) [arXiv:hep-th/0201028];
A. R. Frey and J. Polchinski, Phys. Rev. D 65, 126009 (2002)
[arXiv:hep-th/0201029]; P. K. Tripathy and S. P. Trivedi, “Com-
pactification with flux on K3 and tori,” JHEP 0303, 028 (2003)
[arXiv:hep-th/0301139].

[14] A. Giryavets, S. Kachru, P. K. Tripathy and S. P. Trivedi, “Flux
compactifications on Calabi-Yau threefolds,” arXiv:hep-th/0312104.
A. Giryavets, S. Kachru, P. K. Tripathy and S. P. Trivedi, In prepa-
ration.

[15] C. Escoda, M. Gomez-Reino and F. Quevedo, “Saltatory de Sitter string
vacua,” JHEP 0311, 065 (2003) [arXiv:hep-th/0307160].

[16] C. P. Burgess, R. Kallosh and F. Quevedo, “de Sitter string
vacua from supersymmetric D-terms,” JHEP 0310, 056 (2003)
[arXiv:hep-th/0309187].

[17] A. Saltman and E. Silverstein, “The scaling of the no-scale potential
and de Sitter model building,” [arXiv:hep-th/0402135].

[18] R. Brustein and S. P. de Alwis, “Moduli potentials in string compactifi-
cations with fluxes: Mapping the discretuum,” [arXiv:hep-th/0402088].

[19] J. P. Hsu, R. Kallosh and S. Prokushkin, “On brane inflation with vol-
ume stabilization,” JCAP 0312, 009 (2003) [arXiv:hep-th/0311077];
F. Koyama, Y. Tachikawa and T. Watari, “Supergravity analysis of
hybrid inflation model from D3-D7 system,” arXiv:hep-th/0311191;
H. Firouzjahi and S. H. H. Tye, “Closer towards inflation in string
theory,” arXiv:hep-th/0312020; C. Angelantonj, R. D’Auria, S. Fer-
rara and M. Trigiante, “K3 x T**2/Z(2) orientifolds with fluxes, open
string moduli and critical points,” Phys. Lett. B 583, 331 (2004)
[arXiv:hep-th/0312019]; J. P. Hsu and R. Kallosh, “Volume stabiliza-
tion and the origin of the inflaton shift symmetry in string theory,”
arXiv:hep-th/0402047.

[20] E. Silverstein and D. Tong, “Scalar speed limits and cosmology: Accel-
eration from D-cceleration,” [arXiv:hep-th/0310221].

[21] G. German, G. G. Ross and S. Sarkar, “Low-scale inflation,” Nucl. Phys.
B 608, 423 (2001) [arXiv:hep-ph/0103243].

26

http://arXiv.org/abs/hep-th/9908088
http://arXiv.org/abs/hep-th/0201028
http://arXiv.org/abs/hep-th/0201029
http://arXiv.org/abs/hep-th/0301139
http://arXiv.org/abs/hep-th/0312104
http://arXiv.org/abs/hep-th/0307160
http://arXiv.org/abs/hep-th/0309187
http://arXiv.org/abs/hep-th/0402135
http://arXiv.org/abs/hep-th/0402088
http://arXiv.org/abs/hep-th/0311077
http://arXiv.org/abs/hep-th/0311191
http://arXiv.org/abs/hep-th/0312020
http://arXiv.org/abs/hep-th/0312019
http://arXiv.org/abs/hep-th/0402047
http://arXiv.org/abs/hep-th/0310221
http://arXiv.org/abs/hep-ph/0103243


[22] I. R. Klebanov and M. J. Strassler, “Supergravity and a confining gauge
theory: Duality cascades and χSB-resolution of naked singularities,”
JHEP 0008, 052 (2000) [arXiv:hep-th/0007191].

[23] E. Witten, “Non-Perturbative Superpotentials In String Theory,” Nucl.
Phys. B 474, 343 (1996) [arXiv:hep-th/9604030].

[24] O. DeWolfe and S. B. Giddings, “Scales and hierarchies in warped
compactifications and brane worlds,” Phys. Rev. D 67, 066008 (2003)
[arXiv:hep-th/0208123].

[25] C. L. Bennett et al., “First Year Wilkinson Microwave Anisotropy Probe
(WMAP) Observations: Preliminary Maps and Basic Results,” Astro-
phys. J. Suppl. 148, 1 (2003) [arXiv:astro-ph/0302207].

[26] H. V. Peiris et al., “First year Wilkinson Microwave Anisotropy Probe
(WMAP) observations: Implications for inflation,” Astrophys. J. Suppl.
148, 213 (2003) [arXiv:astro-ph/0302225].

[27] S. Dodelson, W. H. Kinney and E. W. Kolb, “Cosmic microwave back-
ground measurements can discriminate among inflation models,” Phys.
Rev. D 56, 3207 (1997) [arXiv:astro-ph/9702166].

[28] M. Kamionkowski and A. Kosowsky, “The cosmic microwave back-
ground and particle physics,” Ann. Rev. Nucl. Part. Sci. 49, 77 (1999)
[arXiv:astro-ph/9904108].

[29] A. Sen, “Rolling tachyon,” JHEP 0204, 048 (2002)
[arXiv:hep-th/0203211].

[30] J. M. Cline, H. Firouzjahi and P. Martineau, “Reheating from tachyon
condensation,” JHEP 0211, 041 (2002) [arXiv:hep-th/0207156].

[31] N. Lambert, H. Liu and J. Maldacena, “Closed strings from decaying
D-branes,” arXiv:hep-th/0303139.

[32] D. Gaiotto, N. Itzhaki and L. Rastelli, “Closed strings as imaginary
D-branes,” arXiv:hep-th/0304192.

[33] A. Sen, “Open-closed duality at tree level,” Phys. Rev. Lett. 91, 181601
(2003) [arXiv:hep-th/0306137].

[34] A. Sen, “Remarks on tachyon driven cosmology,” arXiv:hep-th/0312153.

[35] A. Sen, “Non-BPS states and branes in string theory,”
arXiv:hep-th/9904207.

27

http://arXiv.org/abs/hep-th/0007191
http://arXiv.org/abs/hep-th/9604030
http://arXiv.org/abs/hep-th/0208123
http://arXiv.org/abs/astro-ph/0302207
http://arXiv.org/abs/astro-ph/0302225
http://arXiv.org/abs/astro-ph/9702166
http://arXiv.org/abs/astro-ph/9904108
http://arXiv.org/abs/hep-th/0203211
http://arXiv.org/abs/hep-th/0207156
http://arXiv.org/abs/hep-th/0303139
http://arXiv.org/abs/hep-th/0304192
http://arXiv.org/abs/hep-th/0306137
http://arXiv.org/abs/hep-th/0312153
http://arXiv.org/abs/hep-th/9904207


[36] N. T. Jones, H. Stoica and S. H. H. Tye, “The production, spectrum
and evolution of cosmic strings in brane inflation,” Phys. Lett. B 563,
6 (2003) [arXiv:hep-th/0303269]; S. Sarangi and S. H. H. Tye, “Cosmic
string production towards the end of brane inflation,” Phys. Lett. B
536, 185 (2002) [arXiv:hep-th/0204074];

[37] E. J. Copeland, R. C. Myers and J. Polchinski, “Cosmic F- and D-
strings,” arXiv:hep-th/0312067.

[38] R. R. Caldwell, R. A. Battye and E. P. S. Shellard, “Relic gravita-
tional waves from cosmic strings: Updated constraints and opportunities
for detection,” Phys. Rev. D 54, 7146 (1996) [arXiv:astro-ph/9607130];
T. Damour and A. Vilenkin, “Gravitational wave bursts from cusps
and kinks on cosmic strings,” Phys. Rev. D 64, 064008 (2001)
[arXiv:gr-qc/0104026].

[39] A. Vilenkin, “Creation Of Universes From Nothing,” Phys. Lett. B 117,
25 (1982).

[40] A. D. Linde, “Eternally Existing Selfreproducing Chaotic Inflationary
Universe,” Phys. Lett. B 175, 395 (1986); D. Linde, D. A. Linde and
A. Mezhlumian, “From the Big Bang theory to the theory of a stationary
universe,” Phys. Rev. D 49, 1783 (1994) [arXiv:gr-qc/9306035].

[41] L. Susskind, “The anthropic landscape of string theory,”
arXiv:hep-th/0302219.

[42] G. Dvali, R. Kallosh and A. Van Proeyen, “D-term strings,” JHEP
0401, 035 (2004) [arXiv:hep-th/0312005].

[43] P. Binetruy, G. Dvali, R. Kallosh and A. Van Proeyen, “Fayet-Iliopoulos
terms in supergravity and cosmology,” arXiv:hep-th/0402046.

[44] C. P. Burgess, J. M. Cline, H. Stoica and F. Quevedo, “Inflation in
Realistic D-Brane Models,” arXiv:hep-th/0403119.

[45] O. DeWolfe, S. Kachru and H. Verlinde, “The Giant Inflaton,”
arXiv:hep-th/0403123.

28

http://arXiv.org/abs/hep-th/0303269
http://arXiv.org/abs/hep-th/0204074
http://arXiv.org/abs/hep-th/0312067
http://arXiv.org/abs/astro-ph/9607130
http://arXiv.org/abs/gr-qc/0104026
http://arXiv.org/abs/gr-qc/9306035
http://arXiv.org/abs/hep-th/0302219
http://arXiv.org/abs/hep-th/0312005
http://arXiv.org/abs/hep-th/0402046
http://arXiv.org/abs/hep-th/0403119
http://arXiv.org/abs/hep-th/0403123

	Introduction
	The Model
	Basic Set-up
	The Curvature Coupling: A positive mass
	Symmetrically Located Throats
	The Resulting Inflationary Scenario
	Parameter Constraints

	Discussion

