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Abstract

We construct a model of quintessence in string theory based on the idea of axion

monodromy as discussed by McAllister, Silverstein and Westphal [1]. In the model,

the quintessence field is an axion whose shift symmetry is broken by the presence of

5-branes which are placed in highly warped throats. This gives rise to a potential for

the axion field which is slowly varying, even after incorporating the effects of moduli

stabilization and supersymmetry breaking. We find that the resulting time depen-

dence in the equation of state of Dark Energy is potentially detectable, depending

on the initial conditions. The model has many very light extra particles which live

in the highly warped throats, but these are hard to detect. A signal in the rotation

of the CMB polarization can also possibly arise.
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1 Introduction

Observational evidence shows that the universe is accelerating and therefore must be dominated,

at cosmological scales, by a mysterious form of energy called Dark Energy. Understanding its

nature is a central challenge that faces us today. The leading candidate for dark energy is the

cosmological constant. It is consistent with observations. Theoretically, we now know that a

positive cosmological constant can arise from a consistent theory of quantum gravity like string

theory and this gives us greater confidence in the idea being correct.

Another possibility for dark energy is quintessence, see [2–6] for reviews. In this case the

vacuum energy is not a constant but instead slowly relaxes due to the evolution of a scalar field.

This makes the resulting equation of state for dark energy time dependent. Observations in the

coming decade will attempt to determine the equation of state of dark energy and, hopefully

will allow us to decide between these possibilities.

In this paper we will construct a model of quintessence in string theory. One can view this

as a sort of “theoretical test” of this idea. If the idea fits in with string theory one would have

greater confidence in it, just as for the cosmological constant. One can also hope that such

constructions might ultimately lead to some interesting constraints which can then be tested

observationally.

The idea behind quintessence is quite similar to that in inflation. However, an important dif-

ference, which makes the construction of models of quintessence considerably more challenging,

is that the energy scale for quintessence is of order 1

Λ ∼ 10−3 eV (1.1)

and therefore is much smaller than the scale of supersymmetry breaking. This leads to two

important issues which any model of quintessence must confront. The first is to ensure that the

potential for the quintessence field has a scale of order Λ and not of order the SUSY breaking

scale; this issue is related to the cosmological constant problem. The second is to have a potential

for the quintessence field which meets the slow-roll conditions despite the relatively high scale

of supersymmetry breaking. In particular this requires that the mass of the quintessence field

is of order the Hubble constant today, H ∼ 10−33 eV, and therefore is much smaller than the

SUSY breaking scale, which must be at least MSB ∼ 1 − 10TeV and typically is much higher
2. Now, it is a famous fact, responsible for the hierarchy problem in the standard model, that

scalar fields tend to have their mass driven up to the SUSY breaking scale. Ensuring that the

quintessence field has a mass m ∼ H so that the ratio m/MSB is at least 10−45 if not smaller is

1We will use Λ throughout in the following discussion to denote this energy scale. In particular Λ will not

denote the cosmological constant in this paper. We hope this does not lead to any confusion.
2Here the supersymmetry breaking scale refers to the underlying scale at which the symmetry breaks, related

to the gravitino mass by, mg̃ ∼ M2

SB/MPl.
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therefore not easy.

In this paper we will, to begin, ignore the first question, related to the cosmological constant

question, and focus on the construction of a model which meets the second challenge of ensuring

that the slow-roll conditions are met despite the high scale of SUSY breaking. We will return to

a discussion of the cosmological constant question in §6. Within the context of a model of the

type we construct, we will argue that anthropic considerations could well result in the energy

density in dark energy being shared between the cosmological constant and the quintessence

field in a reasonably equitable fashion. As a result an evolving equation of state might well be

more natural from the point of view of anthropic considerations in such a model.

Before proceeding it is useful to phrase the requirement for a small mass for the quintessence

field in terms of restrictions on higher dimensional operators in the low-energy effective field

theory. Taking MSB ∼ 1TeV, and the mass m ∼ H , one finds that for the current value of

H ∼ 10−33 eV,

m2 ∼ H2 ∼ M8
SB

M6
P l

. (1.2)

This shows that upto dimension 10 operators which could contribute to the mass have to be

suppressed to construct a satisfactory model. For a higher scale of SUSY breaking the sup-

pression would have to be even more severe. The requirements of slow-roll are therefore indeed

quite restrictive 3. This estimate also illustrates why the construction of a quintessence model

is sensitive to Planck scale physics and can therefore be sensibly carried out only within a UV

complete theory of gravity such as string theory. In fact in the model we construct the canoni-

cally normalized quintessence field typically undergoes an excursion of order the Planck scale in

the course of its evolution and the potential needs to be flat for this whole range in field space.

Needless to say, ensuring this while working only in an effective field theory would be extremely

difficult.

Qualitatively, there are two possibilities within string theory for a quintessence field [7]. It

could be a modulus like the dilaton or the overall volume which runs off to infinity in field

space. In such a situation the coupling constants of the standard model, like the fine structure

constant or the four dim. gravitational constant, would also vary with time and one would

also need to ensure that this variation is small enough. Such models would be observationally

very interesting but are quite challenging to construct. Instead, we will opt here for a second

possibility which seems easier to implement. In our case the field will be an axion, which is a sort

of Goldstone boson, that runs to a finite point in field space where its potential is minimized.

We will take this finite point to be at the origin.

3The sensitivity to UV physics would be significantly reduced if we were sure that a global symmetry was left

intact by it and only broken at low energies giving rise to the mass. However, in general Planck scale physics

is expected to break global symmetries, so to be sure that the global symmetry is approximately unbroken one

needs the full UV theory. We thank L. McAllister for related discussion.
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It is well known that axion fields often arise in string compactifications. In our construction,

which is in IIB string theory, the axion of interest will arise from the RR sector. A general

argument then ensures that there is a shift symmetry, under which the axion shifts by a constant,

which is unbroken to all orders in the quantum loop expansion. This feature will be very helpful

in ensuring that the resulting potential is varying slowly enough and can be isolated from the

effects of supersymmetry breaking.

The shift symmetry will have to be broken of course, at some level, to generate a potential

for the axion. A natural possibility to consider is that the breaking arises from non-perturbative

effects like instantons. It turns out though that this does not lead to an acceptable model for

quintessence 4. In this case the resulting potential is a periodic function of the axion. The

slow-roll conditions then require the axion to have a decay constant of order the Planck scale or

higher whereas requiring the energy density in the axion to be of the right magnitude gives an

axion decay constant about two orders of magnitude smaller than the Planck scale [8, 9].

One therefore needs to explore other ways to break the shift symmetry. It turns out that

the shift symmetry can also be broken in the presence of branes 5. By placing these branes in

highly warped regions of the compactification one can make this breaking small 6. This idea

is referred to as “axion monodromy”, and was developed in [1, 10, 11] to construct a model of

chaotic inflation. The resulting potential one gets in this case is no longer periodic, in fact it

is approximately linear in the axion . As a result, we will find that the slow-roll conditions

and other requirements for quintessence can be met even with an axion whose decay constant

is smaller than the Planck scale.

Following [1] (see also [11]), we will add a pair of NS5-brane and NS5-brane in highly warped

regions of the compactification to break the axion shift symmetry. The axion, which is the zero

mode of the RR two-form C2 that arises due to a non-trivial two-cycle Σ, induces a D3-brane

charge on the 5-brane which wraps the two-cycle Σ. It also induces D3-brane charge on the

anti 5-brane 7. This results in additional 3-brane tension being induced on both the 5 and anti

5-branes which depends on the axion. The resulting potential turns out to be linear in the axion,

for large enough values of this field.

To examine the effects of SUSY breaking and moduli stabilization on the axion potential we

4With O(100) axions rolling coherently one can get a workable model [8]; at the very least this is an invitation

to seek other possible solution.
5For example, a Dp brane in the presence of the NS two-form B2 acquires an induced D(p − 2) form charge

and additional tension. This breaks the B2 shift symmetry although a symmetry still remains under which B2

and the world volume gauge field F2 both shift keeping B2 − F2 invariant. Similarly, the shift symmetry for C2

is broken in the presence of NS5-branes.
6At first sight this way of breaking the shift symmetry might seem rather contrived. But such branes or related

fluxes can in fact arise quite generically in flux compactifications. We thank E. Silverstein for a discussion on

this point.
7The anti 5-brane is actually a 5-brane wrapping cycle Σ but with opposite orientation.
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will consider the model of KKLT [12]. We will find that an additional important contribution

to the axion potential does arise from these effects. The axion affects the warp factor of the

geometry and this in turn changes the volume of the internal space. Once the volume is stabilized

this gives rise to an extra potential for the axion. The leading contribution of this type would

in fact be unacceptably big, but this can cancel exactly between the 5-brane and the anti 5-

brane which induce opposite 3-brane charge, provided the two throats where they are located

are related by a Z2 symmetry.

The subleading correction to the axion potential which survives cannot be calculated exactly,

given our present understanding of flux compactifications, but an estimate which is adequate for

the purposes of our discussion can be made following the discussion in [13–15]. This estimate

tells us that the subleading effect is still important enough to be the dominant contribution to

the axion potential, but it too is suppressed by the warp factor at the bottom of the throats

where the 5-branes are located 8. By making this warp factor small enough one then finds that

a satisfactory model of quintessence can indeed be constructed.

The bottom-line then is that a workable model for quintessence in string theory, based on

the idea of axion monodromy, can be constructed by placing a 5-brane and anti 5-brane pair

in highly warped throats in the presence of an axion. When the canonically normalized axion

field has a expectation value which is of order the Planck scale, the slow-roll conditions are met,

and the quintessence field evolves with an equation of state which can deviate significantly from

that for the cosmological constant.

This paper is structured as follows. Some general considerations for models based on a non-

perturbative potential and a linear potential are discussed in §2. The quintessence model we

construct is then discussed in greater detail in §3. Additional terms which can arise once the

dynamics of moduli stabilization is included are discussed in §4. §5 contains a more complete

look at the final model including all important terms in the potential, and discusses the resulting

energy scales in more detail. Some general features of the model are discussed in §6. These

include the many very light particles which arise due to the highly warped throats in which the

5-branes are placed, the absence of tracker behavior and its relation to the cosmological constant

issue, and a potentially interesting signal due to the rotation of the E mode of the CMB into

the B mode. We end with conclusions in §7.
Let us end this introduction by commenting on some additional papers of relevance. A model

of quintessence based on a linear potential was considered in [16], and was explored further

in [17, 18] 9. The idea that quintessence might arise from many axion due to the effects of flux

induced mixing was explored in [19]. The possibility of many light axions and the constraints

8Although the suppression is by two powers of the warp factor, whereas the 3-brane tension contribution

mentioned above is suppressed by four powers of this factor.
9We thank A. Linde for bringing these references to our attention.
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that can be placed on them was discussed in [20, 21]. Finally [22], which appeared recently,

discusses how additional fields can lead to flattened potentials.

2 Axions: General Considerations

The possibility of using an axion in string theory as the quintessence field, with the shift sym-

metry being broken by non-perturbative effects, has been considered in the past and has some

well known difficulties. We begin by reviewing this case first.

Consider a canonically normalized axion field φ with action,

S =

∫

d4x
√−g

[

−1

2
(∂φ)2 + V

(

φ

fa

)]

. (2.1)

The axion potential in this case is a periodic function with a period of order fa - the axion decay

constant. For example, a typical form for the potential is

V = µ4 cos

(

φ

fa

)

, (2.2)

where the scale µ4 goes like,

µ4 ∝ e−c Sinst, (2.3)

with Sinst being the action of the instanton which gives rise to the potential, and c being a

constant of order unity.

For the axion field to play the role of quintessence its potential must be slowly varying on

cosmological scales and therefore should meet the well-known slow roll conditions. This gives

rise to the requirements that

V ′′

V
M2

P l . 1,

(

V ′

V

)2

M2
P l . 1. (2.4)

For a periodic potential, e.g., of form eq.(2.2), it is easy to see that V ′′/V ∼ (V ′/V )2 ∼ 1/f 2
a .

So the slow-roll conditions give the constraint

fa & MP l. (2.5)

Now axions which arise in string theory typically satisfy the condition, [8, 9, 23, 24],

fa ≤
MP l

Sinst

, (2.6)

where Sinst is the action of the instanton which gives rise to the axion potential.
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For the axion potential V in eq.(2.2), with eq.(2.3), to be of order Λ4, eq.(1.1), requires an

action, [8],

Sinst ∼ 200− 300. (2.7)

Thus we see that string constructions lead to an axion decay constant fa, eq.(2.6), which

is about two orders of magnitude smaller than the value required by the slow-roll conditions

eq.(2.5).

With N axions evolving together the mismatch does improve. The slow-roll conditions now

lead to

f 2
a >

M2
P l

N
. (2.8)

However, agreement with eq.(2.6), eq.(2.7), requires, [8],

N & 104 − 105, (2.9)

which is a large number indeed.

In the kind of construction we explore, the key new element is that the resulting axion

potential is not a periodic function. Instead it is approximately a linear function of the axion
10 [1]. The potential we get has the form

V (φ) = µ4a =
µ4

fa
φ, (2.10)

where µ is a mass scale and we have expressed the canonically normalized field φ in terms of

the dimensionless axion a as

φ = faa. (2.11)

The resulting action relevant for the late time evolution of the universe in our model is then

Saxion =

∫

d4x
√−g

[

M2
P lR− 1

2
f 2
a (∂a)

2 − µ4a

]

. (2.12)

For the potential eq.(2.10) the slow roll conditions eq.(2.4) give,

φ > MP l. (2.13)

In terms of the dimensionless axion a this condition is,

a >
MP l

fa
. (2.14)

10The more correct form of the potential will be described in later sections. The linear approximation is a

good one when the axion takes values in an appropriate range and otherwise is still a good approximation for

making parametric estimates, which is our main purpose in this section.
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The second condition we must impose is that the potential energy in the axion today is of

order the total energy density in the universe,

µ4a ∼ Λ4 ∼ 10−12 (eV)4 (2.15)

From eq.(2.14) this gives rise to a condition on the scale of the potential µ,

µ4 .
fa
MP l

Λ4. (2.16)

These are in fact the only two important conditions that need to be imposed. As long as

a model can be constructed with a linear potential, with a scale µ which meets the condition

eq.(2.16), and in which the axion around the current epoch of the universe meets the condition

in eq.(2.14), one would have a workable model of quintessence. Note in particular, that the

slow-roll conditions, eq.(2.14), can be met in this model even when fa ≤ MP l by choosing a

large enough value of the axion.

Some additional points are also worth making at this stage.

First, the rolling axion gives rise to a stress energy of the perfect fluid form with an equation

of state,

p = ωaρ (2.17)

where

ωa =
φ̇2/2− V

φ̇2/2 + V
∼ ǫ/3− 1

ǫ/3 + 1
(2.18)

where ǫ is the slow roll parameter,

ǫ =
M2

P l

2

(

V ′

V

)2

=
M2

P l

2φ2
. (2.19)

When φ ∼ O(MP l) we see that ωa can be significantly different from −1, the value for the

equation of state of the cosmological constant.

Second, the value obtained for the equation of state parameter (from WMAP+BAO+H0 +

D∆t +SN) in [25] is

ωDE(z) = w0 + w1
z

1 + z
, ω0 = −0.93± 0.13, ω1 = −0.41+0.72

−0.71. (2.20)

Fitting to the central value in our model leads to the value,

φ ∼ 2.14MP l. (2.21)

The time-dependent constraint ω1 is also satisfied.

Third, the axion satisfies the equation

φ̈+ 3Hφ̇+ V ′ = 0. (2.22)
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When the slow roll conditions are satisfied,

3Hφ̇+ V ′ = 0, (2.23)

the total change in the axion field during the evolution of the universe, upto the current epoch,

can be estimated as

δφ ∼ φ̇H−1 ∼ V ′

V
M2

P l ∼
M2

P l

φ
. (2.24)

For φ of order the Planck scale we see that the total change in the axion during the evolution

of the universe is also of order the Planck scale.

For a workable model, the potential must be slowly varying for this entire range of variation

of the axion field. In particular, in our case the linear approximation with a slow enough rate

of variation, should be valid for the entire range of evolution of the axion. This is a significant

constraint to meet. As was discussed in the introduction it would be difficult to ensure this while

working within a low-energy effective field theory alone. For once the axion shift symmetry is

broken one would expect quadratic and higher terms to typically appear

V =
µ4

fa
φ+m2φ2 + · · · φ

n+4

Mn
P l

(2.25)

thereby ruining the flatness conditions required for slow-roll behavior. By embedding this con-

struction in string theory we can go beyond general field theory considerations though and as we

discuss below, we will find that in some models these corrections do not arise and the potential

remains of linear form, with small corrections, for the entire range of O(MP l) variation in the

canonically normalized axion.

3 More Details on the Model

We now turn to a more detailed description of the model.

We will work with flux compactifications in IIB string theory. This is a reasonably well

studied corner of string theory by now, e.g, see [26,27]. One starts with a Calabi-Yau manifold

and carries out a suitable orientifolding to allow for the presence of flux. Then turning on flux

and/or adding branes gives rise to a warped Calabi-Yau internal space.

The axion field we will consider arises in this setup from the zero-mode of a two-form field.

There are two-possibilities, the NS two-form, B2, or the RR two-form C2. In the C2 case we

start with the ten-dim. action,

S =
1

(2π)7α′4

∫

d10x
√−g

[

1

g2s
R− 1

12
∂µCab∂

µCa′b′g
aa′gbb

′

+ · · ·
]

(3.1)

where µ = 0, 1 · · ·3 labels non-compact directions and a, b, a′b′ label the six compact directions.

We then reduce to get the four-dim. action.
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This gives,

S =

∫

d4x
√−g4

[

M2
P l

2
R− f 2

a

1

2
(∂a)2

]

(3.2)

where the four-dim. Planck scale is,

M2
P l =

2L6

(2π)7g2sα
′

(3.3)

and the volume of the internal space is

V = L6(α′)3, (3.4)

with L being the dimensionless modulus. Keeping only the dependence on the overall volume

modulus and the dilaton in the axion kinetic energy terms we get,

f 2
a ∼ g2sM

2
P l

L4
. (3.5)

As a simple model we can take the internal space to be a six-torus with equal size circles. The

axion comes from the zero mode of say the T 2 spanned by the first two internal directions. This

gives,

a = C12 (3.6)

with,

f 2
a =

g2sM
2
P l

6L4
. (3.7)

In the more general situation of a Calabi-Yau orientifold with several moduli, other moduli

will also enter in determining fa but the dependence on the overall volume and gs should still

be parametrically of the form eq.(3.5). Since the volume modulus in particular gives some of

the more stringent constraints we will neglect these additional moduli in our discussion below.

A more complete analysis will have to include them of course. The case where all the complex

structure moduli are much heavier and decouple due to a tree-level superpotential, and the

Calabi-Yau has only one Kähler moduli, will essentially map to the case above 11.

In the discussion above we have considered the case of a RR axion. For an NS axion the only

difference is that the factor of g2s on the RHS will be missing in eq.(3.5). As we will see below,

it will be advantageous for our purposes to take the axion to arise from the RR field. For this

reason we mostly present the formulae for the RR case in our discussion.

11One situation which can be qualitatively different is if the axion arises from a two-cycle which is localized in

a highly warped region. In this case fa is suppressed and goes like, fa ∼ eAtop , which is roughly the maximum

value of the warp factor along the localized 2-cycle. As a result meeting the slow-roll conditions requires large

values of a. We do not pursue this possibility any further below.
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We see from eq.(3.5) that for gs < 1, L > 1, fa < MP l, in keeping with the general expecta-

tions in string theory discussed above 12. To meet the slow roll conditions for a linear potential

we saw above that eq.(2.14) needs to be met. From eq.(3.5) we see that the axion has to satisfy

the requirement,

a >
L2

gs
. (3.8)

It is well known that the NS and RR axions have an approximate shift symmetry in string

theory. For example the NS two-form has a coupling on the world-sheet,

Sw.s. =

∫

d2σBAB
dXA

dσi
∧ dXB

dσj
ǫij , (3.9)

where A = 0, 1, . . . 9 denote all space-time directions. Now for a two-form, BAB, which has no

field strength, H = dB = 0, it is easy to see that the right hand side in eq.(3.9) is a total

derivative and must vanish in the absence of any boundary for the world sheet. In this way we

see that there cannot be a potential which arises for an axion coming from the zero-mode of B2.

Similarly, for the RR fields it is well known that the vertex operator corresponds to the field

strength rather than the gauge potential, thereby again leading to no potential.

The argument in the previous paragraph is in fact true to all orders in the α′ and the gs

expansion. For the NS case they fail once non-perturbative corrections in α′ are introduced

and world-sheet instantons can give rise to corrections which generate a potential for the axion.

For the RR case space-time instantons carrying the charges of the relevant Euclidean D1 brane

are needed. The argument can also fail in the presence of branes. In the presence of a Dp-

brane for example, it is well known that a constant B2 field 13 leads to additional charges for

the brane (corresponding to Dp-branes with smaller p) and correspondingly additional tension.

This happens in particular for a D5 brane, which in the presence of non-zero B2 can acquire

D3-brane charge. By S-duality, and this will be particularly relevant for our model, it follows

then that this can also happen for an NS 5-brane in the presence of a C2 field.

Our basic strategy will be to break the approximate shift symmetry, which prevents a poten-

tial for the axion, by including branes in a highly warped region of the compactification. This

will lead to a potential, but one which is suppressed by the warping.

3.1 The Basic Setup

Before discussing the breaking of the shift symmetry in more detail let us give some more details

about the basic setup of the model. This consists of a Calabi-Yau manifold in Type IIB string

12More precisely, an instanton contribution which breaks the shift symmetry for a would arise from a ED1 brane

wrapping the T 2 spanning the first two directions. This would have action Sinst ∼ L2/gs, so that fa ∼ MPl/Sinst

which agrees with eq.(2.6).
13More correctly one means B − F where F is the world volume gauge field.
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theory with three-form and five-form fluxes turned on [26]. An orientifold projection is needed

to be able to turn on the fluxes, more generally one works with an F-theory compactification.

The orientifold projection retains states invariant under (−1)FLΩσ, where σ is a Z2 symmetry

of the Calabi-Yau manifold. The Kähler moduli arise from non-trivial two-cycles. If there are

2 non-trivial two-cycles Σ1,Σ2 then there are correspondingly two Kähler moduli in the parent

Calabi-Yau. Now if these two-cycles are exchanged by σ, then after orientifolding only one

Kähler modulus, corresponding to the even combination, survives, see [28] for more details.

Similarly zero modes, related to the 2 non-trivial two-cycles, arise for the B2, C2 two-forms and

the C4 four- form. For C4, after orientifolding the even combination survives, while for B2, C2 the

odd combination survives. The orientifold symmetry breaks the supersymmetry down to N = 1.

The zero mode for C4 and the Kähler modulus which both arise from the even combination of

the 2 two-cycles give rise to one chiral superfield which we denote by T . The zero modes from

B2, C2, denoted by b, a, respectively, which arise from the odd combination give rise to another

chiral superfield denoted by G = b− τa, where τ = C0 + i/gs is the dilaton axion field.

In general there will be several T and G moduli. In the discussion below for clarity, we

will simplify and only consider the case where there is one pair of two-cycles and therefore one

resulting T and G moduli each. In this case the real part of T is related to the overall volume

modulus eq.(3.4) by

Re(T ) ∼ L4. (3.10)

Besides the various moduli mentioned above additional ones arise from complex structure

deformations as well. Once the fluxes are turned on these complex structure moduli along with

the dilaton-axion will acquire a mass at tree-level [26,29]. In the KKLT model after integrating

out these moduli there is a resulting superpotential of the form,

W = W0 + Ae−αT (3.11)

which will stabilize the overall volume and the C4 axion.

SUSY breaking in the KKLT scenario occurs by adding D3-branes. Let us denote by Umod

the scalar potential which is generated for moduli stabilization. Then the SUSY breaking scale

MSB in the KKLT model is of order,

M4
SB ∼ Umod. (3.12)

3.2 Breaking The Shift Symmetry

We now turn to breaking the axion shift symmetry. In our model the parent Calabi Yau manifold

has two “throats”, or highly warped regions. Later on we will see that it is safest to have a Z2

discrete symmetry R, present under which the manifold is invariant and which exchanges the
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two throats. This Z2 symmetry is in addition to the symmetry σ involved in the orientifolding,

and acts non-trivially on the Calabi-Yau orientifold.

The two-cycles Σ1,Σ2, descends into each of the two throat. A 5-brane is located at the

bottom of the first throat, where the warp factor acquires its minimum value, and wraps a com-

bination of the 2 two-cycles that is invariant under the orientifold symmetry. In the presence of a

non-zero value for the axion the 5-brane acquires charge, and additional tension, corresponding

to D3-branes which are filling all the non-compact directions and are point-like in the internal

space In addition, an anti 5-brane is located at the bottom of the second throat and again wraps

an orientifolding-invariant combination of the two -cycles. The anti 5-brane can be thought of

the 5-brane wrapping the two-cycles with opposite orientation. As a result D3-brane charge is

induced on the anti 5-brane in the presence of the axion and correspondingly it acquires addi-

tional 3-brane tension. The net configuration is not supersymmetric. For additional details see

also [1].

Note that the presence of the anti 5-brane is important for charge cancellation. The total

D3-brane charge must cancel by Gauss’s law. Without the anti brane the additional 3-brane

charge induced on the 5-brane would either not have been allowed at all or at least would not

be allowed to relax with time.

For a D5-brane in the presence of B2 the D3 charge arises due to the WZ term on its world

volume,

SWZD5 =

∫

B2 ∧ C4 (3.13)

and the additional tension comes from the DBI term,

SDBID5 = − 1

(2π)5gsα′3

∫

d6x
√

− det(g +B2) (3.14)

For an NS 5-brane, it then follows by S-duality that there is a WZ coupling and DBI term

involving C2

SWZNS5 =

∫

C2 ∧ C4 (3.15)

SNS5 = − 1

(2π)5g2sα
′3

∫

d6x
√

− det(g + gsC2). (3.16)

In the latter case this gives rise to a potential for the axion,

V = 2ǫ
1

(2π)5g2sα
′2

√

L4 + g2sa
2. (3.17)

Here, aα′ =
∫

Σ
C2. The factor of 2 is because of including both the 5-brane and anti brane. And

as in our discussion of the kinetic energy for the axion above, we have only shown the parametric

dependence on the overall volume modulus and suppressed the dependence on other moduli.
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The parameter ǫ in eq.(3.17) arises from the warped geometry. Consider a warped compact-

ification with metric,

ds2 = e2A(y)dxµdx
µ + e−2A(y)gabdy

adyb (3.18)

where the warp factor at the location of the 5-brane is eA0 . Then ǫ is given by

ǫ = e4A0 . (3.19)

It is useful to consider the limit where the axion has a large value,

a ≫ L2

gs
. (3.20)

In this case the potential becomes linear 14

V = 2ǫ
1

(2π)5gsα′2
a. (3.21)

Comparing with eq.(2.10) we see that

µ4 = ǫ
2

(2π)5gsα′2
(3.22)

and eq.(3.19) implies that

µ4 ∝ e4A0 . (3.23)

When eq.(3.20) is met the 5-brane tension itself is insignificant compared to the contribution

due to the 3-brane charge. And one can think of the setup as essentially consisting of a stack

of 3-branes in one throat with another stack of anti 3-branes in the Z2 image throat. As the

axion evolves the induces 3-brane charge decreases and along with it the induced tension of the

3-branes also decreases.

The linear potential eq.(3.21) is a good approximation when a ≫ L2/gs, but as noted above

the slow-roll conditions only require that a & L2/gs. When this later more general condition

is met, we must use the full form of the potential in eq.(3.17). Our analysis will be mostly

parametric in nature and to simplify the algebra we will mostly use the linear form below.

Two conditions need to be met for a workable model, these are summarized in eq.(2.14) and

eq.(2.16). In the limit, eq.(3.20) we see from eq.(3.5) that the slow-roll condition eq.(2.14) is

met. In addition if the warp factor is small enough the axion energy density

ρ ∼ ǫ
2

(2π)5gsα′2
a ∼ Λ4 (3.24)

can also be of the required small value.

14We will take the axion a > 0, for simplicity.
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To investigate this last condition, let us use eq.(3.3) and express the string scale α′2 in terms

of MP l and the moduli L, gs. This gives

ǫ ∼ 2L12

(2π)9ag3s

(

Λ

MP l

)4

(3.25)

Taking L = 10, gs = 1 and a ∼ L2 and with (Λ/MP l)
4 ∼ 10−123 we get

ǫ ∼ 10−120. (3.26)

While this is a small number the point to remember is that ǫ is determined by the warp factor

at the bottom of the throat, eq.(3.19) and this is often exponentially sensitive to fluxes, as for

example happens in the Klebanov-Strassler [30] case. Thus modestly small ratios in flux can

give the required large hierarchy between the energy density in the quintessence field and the

Planck scale and eq.(3.24) can be met while taking the values of L, gs to be quite reasonable.

In summary, we see that, as a first pass, breaking the shift symmetry by placing 5-branes in

highly warped throats allows us to meet the requirements for a model of quintessence.

4 Other Terms in The Potential

This is by no means the end of the story, however, for we have not included the effects of

supersymmetry breaking and moduli stabilization as yet. As was emphasized in the introduction

these are expected to impose stringent constraints on any model. We will now turn to examining

these constraints within the KKLT model for moduli stabilization 15. The conclusion will be

that an additional term in the axion potential does indeed arise and typically dominates over

the one we have kept above. However this term is also linear in the axion and by adjusting the

warp factor at the bottom of the two throats our model will be viable after all.

4.1 Other contributions to the Axion Potential

The first comment to make in studying the interplay of the moduli stabilization potential and

the axion is that the tree-level potential which arises in the presence of flux in IIB theory does

not give rise to a potential for the C2 and B2 fields. This is in agreement with our general

considerations about the shift symmetry not being broken at this order.

There are two main possibilities to consider next. First, in the KKLT model non-perturbative

effects are used to stabilize Kähler moduli. These effects might give rise to a potential for the

axion. Second, such a potential could arise due to the effects of the warp factor. The additional

15Another possibility is to use α′ corrections for stabilizing moduli [31]. We leave an investigation of our model

using such a mechanism for moduli stabilization for the future.
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D3-brane charge that the axion gives rise to in turn back reacts on the geometry and can produce

a change in the compactification volume. Since the volume modulus has been stabilized such a

change will come at a cost in energy. We examine these two possibilities in turn below.

Before doing so, let us ask in general terms when an additional contribution to the axion

potential, δV can be neglected compared to the term we have already discussed, eq.(3.17).

Clearly the additional contribution should be small compared to the term we keep,

δV ≪ V. (4.1)

In addition the added term should not change the validity of the slow-roll conditions, eq.(2.4).

If the corrections are polynomial in the axion, this is true automatically once eq.(4.1) is met and

the slow roll conditions are imposed for the leading term. E.g., one of the slow-roll conditions

gives
(

δV ′

V

)2

M2
P l ∼

(

δV

V

)2
M2

P l

φ2
≪ 1. (4.2)

The slow-roll conditions due to leading term requires that eq.(2.13) is valid. Eq. (4.2) then

follows from eq.(4.1). If the corrections are periodic in the axion, the same slow-roll condition

gives
(

δV

V

)2
M2

P l

f 2
a

≪ 1. (4.3)

Using eq.(3.5) we see that this condition is more restrictive than eq.(4.2) at weak coupling, when

gs < 1, L > 1. In the discussion below we will find that the corrections which can be neglected

can be made sufficiently small so that their effects in both eq.(4.1) and on the slow-roll conditions

will be small.

4.2 Contributions From Moduli Stabilization

4.3 Corrections to the Superpotential

As was mentioned above in a KKLT model type situation the potential for the volume and other

Kähler moduli arise from non-perturbative effects [12]. Keeping only the overall volume this

takes the form,

Wnp = Ae−αT . (4.4)

Corrections to this superpotential which depend on the axion would generate an addition po-

tential for it. We turn to examining them next.

The non-perturbative effects responsible for eq.(4.4) could arise from Euclidean D3-brane

(ED3) instantons or they could arise due to gaugino condensation in a 3 + 1 dim. non-Abelian

gauge theory obtained as the low-energy limit on a stack of 7-branes which wrap a 4-cycle in the

16



Calabi-Yau. For the ED3 case it is possible that there are additional contributions which arise

from bound states of Euclidean D1 branes and D3-branes. These do not seem to be suppressed

(at large volume) compared to the leading answer above 16. Including them would therefore

result in a superpotential of the form,

W = Be−αT ec1G (4.5)

where a, c1 are coefficients. The resulting contribution to the axion potential would then be

δV ∼ Umod a ∼ M4
SB a (4.6)

which is unacceptably large.

To avoid this possibility it was suggested in [1] that one consider the other possibility in

KKLT models and take models where the non-perturbative corrections arise only due to gaugino

condensation on wrapped 7-branes. This ensures that additional contributions which can depend

on the axion are highly suppressed.

The suppression arises due to holomorphy and non-renormalization arguments involving RR

axions. Let us recount the argument give in [1] here for completeness. The non-perturbative

superpotential in the Yang-Mills theory is

W = Ae−αS (4.7)

where S is the holomorphic gauge coupling. At large volume

S = T. (4.8)

Corrections to eq.(4.8) which can induce a dependence on the C2, B2, axions must vanish at large

volume, and therefore must be suppressed by inverse powers of Re(T ). But by holomorphy this

means they must also depend on the C4 field which is the partner of the Kähler modulus. Now

this C4 field is also a type of an axion which arises from the RR sector and such a correction

term would break the shift symmetry of this field. As we have argued above this cannot happen

in perturbation theory. This means any correction to eq.(4.8) must be exponentially suppressed

in T and this in turn would lead to a further exponential suppression in the superpotential for

the axion dependent terms compared to the leading contribution in eq.(4.7).

The resulting contribution to the quintessence potential from such a contribution would be

δV ∼ Umode
−βRe(T )a. (4.9)

16The ED1 charge can arise, for example, from induced world-volume flux along a non-trivial two-cycle con-

tained in the four-cycle wrapped by the ED3. For fixed flux quanta the extra cost in energy for exciting this

world volume flux vanishes as L → ∞ suggesting that there is no extra suppression.
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Requiring that this correction is subdominant compared to eq.(3.21), gives,

Umode
−βRe(T )a < Λ4 (4.10)

From eq.(3.12) we get

e−βRe(T )a <

(

Λ

MSB

)4

≤ 10−60 (4.11)

where we have used the fact that MSB ≥ 1TeV. While the RHS is indeed small the exponential

sensitivity of the LHS on the volume means this constraint can be easily met for the required

range of the axion, a ∼ L2/gs, by taking modestly big values of L and thus Re(T ).

4.4 Corrections in the Kähler potential

The potential depends on both the Kähler potential and the superpotential so another source

for additional terms in the axion potential comes from corrections to the Kähler potential.

In fact the Kähler potential in the tree-level theory itself involves mixing between the T and

G modulus [28] and as we see below this typically gives rise to an unacceptably big contribution

to the potential if the axion arises from a B2 zero mode. This is why we are safer in using an

axion coming from C2, for which no such mixing arises at tree-level, as the quintessence field.

The tree-level Kähler potential in the case we are considering with one T and G modulus

is [28],

K = −3 log

[

T + T̄ +
3

2
e−φCbb

]

, (4.12)

where C is a coefficient determined by the triple intersection numbers of four-cycles. Note that

only the b field which arise from B2 appears in the Kähler potential which is independent of the

a component coming from C2. Typically this mixing will give rise to a quadratic term for the b

axions,

δV ∼ Umod b
2. (4.13)

The slow-roll conditions requires b > L2 so δV & M4
SB and will therefore be much too big. Since

the mixing terms do not involve the C2 axions they are safe in this respect.

The Kähler potential will generically receive corrections beyond tree-level and these can

break the C2 shift symmetry. Since this symmetry can only be broken through quantum non-

perturbative effects these effects must involve Euclidean D1-branes wrapping a two-cycle in the

appropriate homology class. The resulting correction in the potential will be of the form given in

eq.(4.9) and will have a further exponential suppression in the volume. As discussed in eq.(4.11)

such corrections can be made small enough by taking a modestly big value of Re(T ).
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4.5 Warping Effects

Next we turn to warping effects. As we will see these will give rise to significant corrections.

The essential physics here is that the extra 3-brane charge which arises due to the presence of

the axion gives rise to additional warping, and this warping in turn changes the overall volume

of the compactification 17 [32] (for the warping corrections in Kähler potential, see also [33–35]).

Since the volume has been stabilized already this change comes at a cost in energy which depends

on the warping and thus the axion.

A precise calculation capturing this effect is difficult to carry out, at least with our current

knowledge of flux compactifications. In the KKLT like scenario we are considering here, the

potential for moduli stabilisation arises from non-perturbative effects. To obtain it one uses as

input a Kähler potential and a superpotential, with the non-perturbative effects being incor-

porated in the superpotential. However once the 5 anti 5-brane system are included, SUSY is

neccessarily broken and it is not so clear if the resulting warping effects caused by the axion can

be included in this manner anymore. A first principlies calculation of the resulting changes in

the potential is even more challenging.

While a precise calculation seems hard, a rough estimate which captures the essentially

physics above can be made as follows. Let the change in the internal volume, VI , caused by

warping due to the axion induced 3-brane charge be δVI . Then the resulting potential for the

axion can be estimated to be of order

δV ∼ Umod
δVI

VI
(4.14)

At first sight one might think that the change in the potential should be quadratic in the change

in δVI and not linear in it, since the moduli have been stabilized and one is expanding around a

minimum for them. However, a little more thought shows that this is not going to be typically

true. The reason is that the warping will not affect all terms in the potential in the same manner.

As a result the potential itself changes once the effects of the warping are included.

4.5.1 A Subtlety

Actually there is one subtlety regarding the definition of the internal volume which we should

address before proceeding. For a warped compactification of the type we are dealing with here

with metric

ds2 = e2A(y)dxµdx
µ + e−2A(y)g̃abdy

adyb, (4.15)

the internal volume is

V ′

I =

∫

d6y
√

g̃e−6A(y). (4.16)

17And more generally the size of all four-cycles.
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However, the four dim. Planck scale, M2
P l, when expressed in terms of the string scale and gs is

not proportional to V ′

I . Rather, due to the warped nature of the geometry, we get

M2
P l ∼

1

α′g2s

∫

d6y
√

g̃e−4A(y). (4.17)

This suggests that the natural variable for gravitational purposes, whose fractional change de-

termines the change in the potential in eq.(4.14) is is really VI defined by

VI ≡
∫

d6y
√

g̃e−4A(y) (4.18)

which appears on the RHS in eq.(4.17). Henceforth, this is the assumption we will make in

computing the corrections to the potential in eq.(4.14) 18. It is worth noting that the warp

dependent corrections to the Kähler potential calculated for SUSY situations in [32] result in a

correction are of the type in eq(4.14), with this definition of VI .

Now note that the internal metric in eq.(4.15) is invariant under a rescaling, e2A → λ2e2A,

g̃ab → λ2g̃ab. While this keeps the volume V ′

I unchanged it changes VI . This is because the

warped metric eq.(4.15) with this rescaling also changes lengths as measured in the non-compact

directions, and therefore rescales MP l. Since we are only interested in using VI to compute the

fractional change δVI

VI

in eq.(4.14) though, any such ambiguity will cancel out in our calculation.

In fact it will be safest for our purposes to fix this rescaling ambiguity by setting the volume

of the unwarped metric to be unity in string units,
∫

d6y
√

g̃ = (α′)3. (4.19)

Then working with the resulting expression for e−4A, which is now well defined, we can calculate

VI and its change.

To get going first consider a situation where we ignore any effects of warping. e−4A is then

a constant,

e−4A = C1. (4.20)

The internal volume from eq.(4.16), eq.(4.19), eq.(4.20) is

V ′

I = C
3/2
1 (α′)3. (4.21)

Using our previous notation, eq.(3.4), we get,

C
3/2
1 = L6. (4.22)

From the definition eq.(4.18) we then get that

VI = C1 = L4(α′)3. (4.23)

18Taking the fractional change in the volume V ′

I instead does not change the central conclusions because it

does not change the dependence on the warp factor eA0 for the resulting corrections.
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4.5.2 The Leading Effect

We are now ready to estimate the change in VI due to warping effects. Consider a simple model

first of a stack of N D3-branes at some location in the internal space. For simplicity we take

the internal geometry to be flat, i.e., a torus. The geometry is of the form,

ds2 = e2Adxµdx
µ + e−2A(dr2 + r2dΩ2

5). (4.24)

The change in the warp factor produced by the D3-branes is,

δe−4A =
R4

r4
, (4.25)

where r is a radial coordinate in the internal space measuring distance from the branes and R

is the AdS5 radius,

R4 = 4πgsNα′2. (4.26)

Since we have set the unwarped volume to be unity in string units, eq.(4.19), the radial variable

r in eq.(4.24) has a range 0 ≤ r . O(
√
α′). The correction to the warp factor are well described

by eq.(4.25) for r ≪ O(
√
α′), when the effects of the “image ” stacks needed to implement the

boundary conditions on the torus are not important. Near the stack of branes, as r → 0, the

constant term is relatively unimportant and e−4A is given by eq.(4.25) resulting in AdS5 × S5

space.

The change in the internal volume caused by the warp factor can now be calculated as

δVI =

∫

d6y
√

g̃δe−4A (4.27)

Using, eq.(4.25) gives,

δVI ∼ R4α′ ∼ 4πgsNL2α′3. (4.28)

Now actually in our model what we are interested in is the change in volume caused by the

axion. The D3 charge that the axion induces is

∆N ∝ a. (4.29)

From eq.(4.23) and eq.(4.28) we see that the fractional change in VI caused by the axion is then,

δVI

VI

∼ gs
a

L4
. (4.30)

The resulting contribution to the potential this gives is

δV ∼ Umod gs
a

L4
. (4.31)
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It is easy to see that this is unacceptably large. Requiring that

δV < Λ4 (4.32)

gives the condition

Umodgs
a

L4
< Λ4. (4.33)

Let us set gs ∼ O(1), with Umod ∼ M4
SB, and a ∼ L2, eq.(4.33) then gives,

L >
M2

SB

Λ2
∼ 1030

(

MSB

1TeV

)2

. (4.34)

Now L = 1030 leads to a huge internal space and it is easy to see that the resulting string scale

is ridiculously low.

4.5.3 Incorporating The D3-branes

Our analysis is in fact incomplete for one obvious reason. We have so far only included the

effect due to the NS5-brane where the axion induces D3-brane charge and tension. In the actual

situation at hand there is also the anti 5-brane where D3-brane charge and tension is induced.

Including its effect can cancel the contribution found above to leading order, but not exactly, as

we will see.

It is best to work in a situation where the ambient N units of 3-brane charge in the throats

in which the 5-branes are placed is much bigger than the 3-brane/anti 3-brane charge induced

by the axion. One can then estimate the effects of the axion to leading order in a/N . The

presence of the ambient 3-brane charge and related five-form flux breaks the symmetry between

the backreaction effects of the induced 3-brane charge on the 5-brane and the anti 3-brane charge

induced on the anti 5-brane, as we will see.

It is useful to estimate the contributions of the D3-brane charge and tension in two steps.

The effects of the D3-branes arise from localized sources in the metric and five-form equations.

The charge of an D3-brane is opposite to that of a D3-brane while its tension is the same. It

is helpful in making our estimates to think of the ∆N D3-branes as a sum of two kinds of

sources [36]. The first kind is ∆N 3-branes with both charge and tension opposite to that of a

D3-brane. In terms of sources these can be thought of as −∆N D3-branes. The second kind

of source are ∆N pairs of D3 and D3-branes, with each pair together having no net charge and

twice the tension of a D3-brane. We will see that the leading effect arises due to the first kind of

source and this is exactly canceled, in a symmetric situation, by the contribution coming from

the D3-branes in the other throat.

This leaves the contribution from the ∆N pairs of 3 and anti 3-branes. The system of D3-

brane D3-brane pairs placed at the bottom of a KS throat was studied in [13–15], see also [37–39].
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Figure 1: A schematic diagram of the internal space showing the two throats related by the Z2 R symmetry

containing the NS5-brane and the NS5-brane respectively.

One important change is that the geometry is no longer of the type eq.(4.15) with g̃ab being

the metric of the Calabi-Yau manifold. Rather the backreaction in this case distorts the metric

by more than an overall warp factor. The ambient five-form flux, it was found, screens the

effects of these pairs at large distance. As a result their resulting contribution is suppressed and

subdominant.

Below we first discuss the contribution due to the −∆N D3-branes, and then turn to the

effect of the pairs later.

Including both the ∆N D3-branes located at x0 and the −∆N D3-branes, which originate

from the D3-branes and are taken to be at x̃0, leads to the equation for the warp factor,

∇̃2δe−4A = C1∆N

(

δ6(xi − x0)
√

g̃(x0)
− δ6(xi + x0)

√

g̃(x̃0)

)

. (4.35)

The opposite relative sign mean that they contribute oppositely to the change in the VI , eq.(4.18).

In general the contributions will not exactly cancel, the residual contribution would then typi-

cally still be of order eq.(4.31) and unacceptably big. However if there is a Z2 symmetry R as

in figure 1, of the Calabi-Yau space, under which the two throats are exchanged, which is also

respected by the ambient flux and if this symmetry is then only broken by the brane-anti brane

pair, then it is easy to see that the two contributions will exactly cancel. This was the reason

for assuming such a symmetry when we described the basic setup in19 20 §3.

4.5.4 The Subleading Effect Due to pairs

The subleading effect is due to the ∆N brane-anti brane pairs. The resulting change in the

geometry was calculated in [13] for UV of the KS throat, and [14,15] for IR. As was mentioned

19Ref. [11] also discusses the use of a Z2 symmetry for similar purposes.
20Another possibility, not shown in Figure 1, is that the two throats are themselves contained in a warped

region - the “parent” throat. In the IR the parent throat splits into the two 5-brane containing throats.
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it is not simply of the warped form, eq.(4.15). Nevertheless an estimate of the resulting change

in volume can be obtained by just keeping the change in the warp factor.

In the region far from the tip of the KS geometry where the pairs are located, the geometry

is essentially AdS5 × S5 and the perturbation goes like,

δe−4A ∼ ∆Ne4A0R4 gsα
′2

|r|8 (4.36)

where the e4A0 factor arises from the warping at the tip of the throat. Note the 1/|r|8 fall off

which is much faster than the 1/|r|4 fall-off for a D3-brane source 21. The important point

here is that the brane-anti brane pairs give rise to a normalizable deformation in the asymptotic

AdS5×S5 region, which falls like 1/|r|8, this deformation is suppressed by e4A0 because the warp

factor at the bottom of the throat suppresses the energy density of the pair in this manner. While

some of the discussion in [13] is in the context of the KS geometry their main result is more

general and should apply to other situations as well which are asymptotically AdS5 × S5, with

the warped throat terminating in a region where the warp factor attains a minimum value eA0 .

The resulting change in VI that eq.(4.36) leads to can be calculated from eq.(4.18). Since our

purpose is to make a rough estimate we may as well approximate the geometry to be a region of

AdS5 × S5 with the AdS5 being cut-off both in the UV and the IR; i.e., of the type considered

in the RS1 model, with metric,

ds2 =
r2

R2
(dxµdx

µ) +
R2

r2
(dr2 + r2dΩ2

5) (4.37)

where the radial coordinate has range rmin ≤ r ≤ rmax. This metric has the form, eq.(4.15),

with

g̃ab = δab (4.38)

being the flat-space metric. The warp factor at the bottom of the cut-off AdS region is r2min/R
2

which in this crude model should be equated with e2A0 at bottom of the KS-like throat giving,

r2min = R2e2A0 . (4.39)

The brane anti brane pair located at the bottom of the throat produces a change in the warp

factor eq.(4.36) and we interested in the change in VI this leads to. Integrating eq.(4.18) using

eq.(4.38) gives,

δVI ∼ ∆Ne4A0R4α′2 gs
r2min

, (4.40)

21Actually there is a log(r) factor on the RHS but we neglect this below. This factor arises because the total

D3 charge increases in the KS solution as one goes to large r. For our crude estimate we can neglect this effect.

Instead we model the total flux in the throat to be roughly constant and of order say N . R which appears on

the RHS then is related to this flux by eq.(4.26).

24



where we have taken rmax → ∞ since the integral converges in the UV. Next using eq.(4.39)

gives,

δVI ∼ ∆Ne2A0R2α′2. (4.41)

So far we have only estimated the contribution from the region far from the tip of the throat

where the pairs of 3-branes are located. We can also try to estimate the contribution from the

region near the tip as follows. Let us continue to crudely model the throat as a cut-off AdS5×S5

geometry, eq.(4.37) with the pairs located at rmin. Very close to the sources, it seems reasonable

to estimate that the change produced in the warp factor by a D3-D3 pair is of order the change

produced by a single D3-brane. This results in a change in the warp factor,

δe−4A ∼ δN
gsα

′2

r4
(4.42)

and a change in VI

δVI ∼ δNgsα
′2R2e2A0 , (4.43)

where in obtaining eq.(4.43) this time, since we are interested in the region close to the brane,

we cut off the integral before r gets too large at r ∼ rmin. Note, that this result is parametrically

of the same form as the contribution from the region far from the tip eq.(4.41). Adding the

effects of the near-and far regions we would therefore expect an answer of the form eq.(4.41).

To complete our analysis we now calculate the resulting term in the axion potential. Since

∆N ∝ a we get from eq.(4.41), eq.(4.23),eq.(4.14) that the extra potential generated for the

axion is

δV ∼ Umode
2A0

R2

α′L4
a. (4.44)

The estimate for the near-region can be improved in the context of a KS throat using the

results of [14,15]. This more careful analysis gives results which essentially agree with eq.(4.43),

eq.(4.44).

In the above discussion we have not kept track of signs and coefficients. The contribution

due to warping eq.(4.41), we will see below, will typically lead to a contribution in the axion

potential that dominates over other contributions, including the term due to the induced tension

of the D3, D3-branes we first considered in eq.(3.21). It will be important for the axion model

to work that this net contribution is positive. Our analysis above is too preliminary to allow us

to determine this sign. Physically one would expect the net contribution to be positive, since

otherwise the added D3-brane charge on the 5-brane anti 5-brane would reduce the energy of

the system and this energy would decrease as the charge increased. However, one should clearly

try to determine this from a first principles calculation, along with improving the other aspects

of this calculation as well. We leave this for future investigation.
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4.5.5 Final Conclusions

The changes in VI , eq.(4.18), that arise due to warping could possibly manifest themselves in

corrections to the superpotential and/or the Kähler potential. For example, Re(T ) ∼ L4 in the

unwarped case and it is more generally related to the size of the non-trivial four-cycle. Thus

T could change once warping effects are included causing in turn changes in the superpotential

and the Kähler potential 22. The warping induced changes might also lead to effects that cannot

be incorporated into supersymmetric data in such a ready fashion, since the induced D3-brane

charge breaks SUSY. Either way the resulting corrections to the axion potential will be given

by eq.(4.44), which is the main result from this subsection.

4.6 An Additional Contribution

Before concluding this section let us discuss one additional contribution which will turn out to

be unimportant.

There is a correction to the axion potential which arises due to the interaction between the

5-brane and the anti brane in the two different throats. In the limit where the induced D3-brane

tension dominates over the 5-brane tension this is simple to estimate. The potential reduces to

that calculated between D3 and D3-branes calculated in [38]. This gives a result,

δV ∼ a2

|r1 − r2|4
ǫ2, (4.45)

where the two throats are located at radial coordinates r1, r2 and for simplicity we have taken

the internal space to be flat. Here, ǫ = e4A0 , is the warp factor at the bottom of the throat. We

see that this contribution is suppressed by an extra factor of ǫ compared to the tension term

calculated in eq.(3.17). Since ǫ is very small, as the preliminary analysis which actually under-

estimates ǫ already found in eq.(3.26), we see that this contribution will be highly suppressed

compared to the ones we keep.

5 The Model: A More Complete Look

To summaries, we started with a potential of the form, eq.(3.21),

V0 = c1
1

α′2gs
e4A0a. (5.1)

22We thanks L. McAllister for a discussion on this issue.
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Then we found that corrections will generate an additional term, eq.(4.44). Using the relation

eq.(3.12) this can be written in terms of the SUSY breaking scale MSB as,

V1 = c2M
4
SBe

2A0

(

R2

α′L4

)

a. (5.2)

Here L6 is the volume in string units, and R is roughly speaking the radius of the AdS-like throat

regions in which the 5-brane and anti brane’s are placed 23. In the supergravity approximation

R2/α′ > 1. (5.3)

We also note that eA0 in eq.(5.1), eq.(5.2), is the warp factor at the bottom of the throat.

The total potential is then linear in the axion and the sum of the two terms,

V = V1 + V1 = µ4a (5.4)

where the final expression on the RHS can be taken to be the definition of the scale µ4.

We should also note that eq.(5.1) and eq.(5.2) are valid only for a > 0 and also for sufficiently

large values of a. The more correct form for V0 is in eq.(3.17), we will return to a discussion of

corrections to the linear form of the potential in §6.3.

5.1 The Energy Scales

To understand which of the two terms, eq.(5.1) or eq.(5.2) is bigger let us start by first setting

gs = L = 1. This also sets 1/α′2 ∼ M2
P l. Also we set R2

α′
= 1. Since we have not been able to

calculate c2 anyways, we also neglect any dependence on the coefficients c1, c2. Finally we set

a ∼ O(1) so that a ∼ L2 as is needed for the slow-roll conditions to be met eq.(3.8). Setting the

moduli stabilization contribution V1 to be of order the vacuum energy density, we then get,

V1 ∼ M4
SBe

2A0 ∼ Λ4. (5.5)

This gives V0 to be

V0 ∼
M4

P lΛ
4

M8
SB

Λ4. (5.6)

Now if the SUSY breaking scale is MSB ∼ 1TeV,

M4
P lΛ

4

M8
SB

∼ O(1). (5.7)

Thus V0 ∼ V1 and both make roughly an equal contribution to the vacuum energy. However,

as the moduli stabilization scale and SUSY breaking scale are raised we see that V0 begins

23 More correctly if the throats are of KS type [30] the five-form flux changes along them and R can be taken

to be an appropriate average for this radius.
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to become smaller than V1 and less important. For example, when MSB ∼ 1010GeV, the

intermediate scale, V0 is much smaller,

(V0)
1/4 ∼ 10−17 eV. (5.8)

Let us keep track of the dependence on the volume L and gs also now. We set a ∼ L2/gs,

eq.(2.14). Setting V1 to be of order the energy density gives,

V1 ∼ M4
SB(R

2α′)e2A0
a

L4
∼ M4

SB(R
2α′)e2A0

1

L2gs
∼ Λ4. (5.9)

Solving for e2A0 gives,

e2A0 ∼
(

Λ4

M4
SB

)

gsL
2

(

α′

R2

)

. (5.10)

Using the fact that M2
P l ∼ L6/(αg2s) and substituting in eq.(5.1) then gives,

V0 ∼
g4s
L6

(

α′

R2

)2(
M4

P lΛ
4

M8
SB

)

Λ4. (5.11)

For our approximation of classical supergravity to be valid, gs < 1, L > 1, and R2 > α′. This

means even for Umod ∼ (TeV)4, V0 < Λ4 and thus V0 will be subdominant. Increasing L,R2, or

decreasing gs will make V0 even smaller. Similarly increasing Umod will also reduce V0.

Our conclusion is that the second term V1, which arises due to the interplay of moduli

stabilization and warping caused by the axion getting turned on, is typically the dominant

contribution. We must caution the reader that we have not kept track of numerical coefficients,

some of these could be large, and our statements here are really only parametric nature.

The warped down string scale at the bottom of the throats where the 5-branes are present

is,

ms ∼
1√
α′

eA0 ∼ MP lgs
L3

eA0 , (5.12)

where in obtaining the last relation we have used eq.(3.3). Supergravity modes (KK modes in

the throat region) have a mass which is even lower by a factor of
√
α′/R0 where now R0 is the

radius of curvature at the bottom of the throat 24.

For the case we discussed first above, around eq.(5.6), with gs ∼ L ∼ a ∼ R0

√
α′ ∼ O(1)

and MSB = 1TeV we see that the warped down string modes and KK modes have a mass of

order 10−3 eV. As MSB rises the mass becomes even lower. For gs ∼ L ∼ a ∼ R0

√
α′ ∼ O(1)

and MSB ∼ 1010GeV this mass is of order 10−17 eV. Thus there are many very light particles

which arise due to string modes and KK modes in the highly warped region. We will have more

to say about these light particles in §6.1.
24This might well be smaller than R as defined above.
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5.2 The Constraints

It is also worth summarizing the constraints on the various parameters of the model.

The slow-roll conditions require that the axion satisfy the condition, eq.(3.8). Our estimate

for the V1 term in the potential is valid only when the charge contributed by the axion is a small

fraction of the total charge supporting each throat, this gives the condition,

a ≪ N, (5.13)

Using eq.(3.8) and eq.(4.26) this give,

L2 ≪ R4/α′2. (5.14)

Finally the total volume of the internal space is L6(α′)3, this must be bigger than the volume

of each warped throat ∼ R6, leading to

L4 ≫ R4/α′2. (5.15)

The summary is that the conditions,

L2 < gsa ≪ R4/α′2 ≪ L4 (5.16)

must all be met. They are mutually compatible so there is no obstruction to doing so. In

addition the scale µ4 defined in eq.(5.4) must meet the condition

µ4a = Λ4 (5.17)

where Λ is defined in eq.(1.1). This does require µ to be a very small energy, but as was

emphasized in §3.2, where a preliminary estimate for µ was carried out by neglecting V1, this

can be arranged by choosing a modestly small ratio of fluxes which results in an exponentially

small value of eA0 .

5.3 Additional Comments

Let us end this section with two comments.

First, it could be that despite our best attempts at being careful we have missed some impor-

tant additional contributions to the axion potential. The following general reasoning suggests

that even if this were true, incorporating such effects would probably lead to a workable model

within the kind of setup we have explored. One would expect that any additional contribution

is linear in a/N , as long as a ≪ N . Also, since the shift symmetry is broken by the 5-branes

whose effects are suppressed by eA0 , such a term should also be suppressed by a positive power
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of eA0. If this power is smaller than 2, then this additional contribution could dominate over

the terms we have kept. However in this case we can simply adjust the warp factor so that

the resulting scale µ in eq.(5.4), after accounting for this term, has the correct value. This will

typically make eA0 even smaller and thus the particles as the bottom of the warped throats even

lighter, but, as we will see in §6.1, this is an acceptable price to pay since these particles do not

lead to any observable signals anyways.

Second, in the KKLT construction the negative vacuum energy density that arises after

moduli stabilization is canceled by the addition of D3-branes which are placed in a warped

throat. It is natural to ask whether in our model one can dispense with these D3-branes and

their attendant throat, and instead cancel the negative vacuum energy by the axion dependent

contributions, eq.(5.4).

A simple calculation shows though that this would require too many units of flux N stabi-

lizing the 5-brane throats. Let the negative energy generated by moduli stabilization be −C,

including it in the total potential gives,

V = µ4a− C. (5.18)

The constant C can be absorbed by shifting the axion

a → a +∆a (5.19)

with

∆a = C/µ4. (5.20)

The resulting analysis in terms of the shifted axion then exactly agrees with what we had done

earlier, when C = 0. Since the shifted axion must satisfy the condition, eq.(3.8), (to get a model

of quintessence) equating V with Λ4 now will again lead to the conclusion that

µ4 < Λ4, (5.21)

for L > 1, gs < 1. The resulting shift is therefore

∆a =
Umod

µ4
>

(TeV)4

Λ4
= 1060, (5.22)

where we have used the fact that C = Umod ≥ O(TeV)4. The linear potential we have used

though is valid only when eq.(5.13) is true and this condition involves the total value of the

axion including its shift. Thus the large value of ∆a would require a large amount of flux N ,

which makes this idea implausible.

Our model therefore must incorporate the two throats with the 5-branes and at least one

additional throat (or perhaps two which are related by the Z2 symmetry) to contain the D3-

branes of the KKLT setup.
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6 Some Features of The Model

We now turn to discussing some general features of the model.

6.1 Many Light Particles:

The model has many light particles. We saw that the warped down string scale at the bottom of

the two throats where the 5-branes are located is at least 10−3 eV and typically is much lighter

for a scale of SUSY breaking MSB > 1TeV . Thus there are many very light particles in the

theory which come from string modes and Kaluza Klein modes localized in the warped region.

One might be worried that so many light particles would be in conflict with observation.

However, this is not so. The model is in fact closely related to the Randall-Sundrum II model

(RS II) [40] in which there is only one brane called the Planck brane. More accurately it is

akin to a Randall Sundrum I model (RS I) [41] but with the warped down energy scale at the

“Standard Model” brane being 10−3 eV or much lower. The RS II model can be thought of

as a limit of RS I where the standard model brane is moved away to infinity resulting in a

non-compact dimension.

We take the standard model degrees of freedom to not live in the two throat regions where

the 5-branes are located. In terms of the RS model they are then degrees of freedom on the

Planck brane. The four-dim. graviton is a non-normalizable mode in AdS5 and is localized

on the Planck brane as well. The first thing to note is that the throat regions make a finite

contribution, of order R6, to the volume of the internal space where R is given in eq.(4.26) and

N are the number of five-form flux units supporting the throat. As a result the 4 dim. Newton’s

constant is finite and as we have discussed above can take the required value consistent with

the other constraints of the model. In addition the couplings of the matter fields with the

KK modes in the throat are suppressed so that corrections to Newton’s gravitational law due

to KK exchange and corrections to energy loss in gravitational radiation are suppressed by a

factor of (pR)2 compared to the leading answers which neglect these KK modes, where p is the

characteristic energy scale involved. Now in the model the flux units N and thus R has to be

big enough to meet the condition eq.(5.16), however this can be typically arranged by taking R

to be not very different from the Planck scale. As a result this suppression is very significant

and results in no detectable signal. E.g., taking N ∼ 1000, gs ∼ O(1), eq.(5.16) can be met

for L ∼ O(10), and a ∼ O(100). In this case, R−1 ∼ 1016GeV so that the suppression is of

order (p/1016GeV)2 and is indeed very significant. Finally as argued in [40] the interactions

between the four-dim. graviton and KK modes are also highly suppressed, because the four-dim.

graviton is localized on the Planck brane and a typical KK mode is localized deep inside the

AdS region.
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Besides light particles in the two throats, there are also moduli, not localized in the throats,

which are stabilized by Umod (e.g., the overall volume). These have a mass

m2
moduli ∼

Umod

M2
P l

. (6.1)

For Umod ∼ TeV4 this is also a mass of order 10−3 eV. As the scale of moduli stabilization is

increased the masses of these moduli increase, while, as we have seen above, typically the masses

of the warped down string states and the KK states move down.

In constructing a complete cosmological model one would have to deal with the moduli

problem [42, 43] that arises due to all these light modes. Perhaps after high-scale inflation one

can arrange so that the KK and string modes in the warped throats are not significantly excited

and the moduli like the overall volume which are spread out over the whole CY are either heavy

enough to not cause a problem, or are rendered unproblematic by symmetry considerations, [44],

or by thermal inflation [45].

In particular it is important to ensure that the two throats are not excited to even small

finite temperature. This would cause a black brane metric to replace the throat geometry at the

tip, the two NS5-branes would then fall into the horizon of the black brane and the resulting

equation of state would be more akin to a thermal gas and unsuitable for quintessence. This is

especially a concern because of the low warped down energy scale at the bottom of the throat.

If reheating after inflation results in entropy being dumped into standard model fields, this

can probably be ensured. The suppressed interactions with the throat excitations will then

prevent the throat degrees of freedom from coming into equilibrium with the standard model

degrees as long as the temperature after reheating is somewhat lower than the GUT scale, and

this can prevent the formation of a black brane horizon 25.

6.2 Rotation of The CMB Polarization

It is well known that an axion a, which is a pseudoscalar, can couple to the photon through the

∆L = ζaF F̃ (6.2)

term in the Lagrangian causing the E mode of the CMB to be rotated into the B mode [20,46,47].

Here ζ is a constant coefficient. Such a coupling also causes the direction of linearly polarized

light to rotate in the course of propagation from a distant source [48].

The extent of rotation of the E mode to the B mode is parameterized by an angle

∆α ∼ ζ∆a (6.3)

25We thank S. Kachru for discussion in this regard.
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where ∆a is the total change in the axion due to its time evolution.

CMB experiments put a bound on ∆α. The bound in [25] is

∆α = −1.1 deg±1.3 deg(stat.)± 1.5 deg(syst.) (68% CL) (6.4)

which is currently consistent with ∆α vanishing.

A significant limitation of this paper is that we have not discusses how the standard model

arises in our construction. As a result we do not know whether a coupling of the type in eq.(6.2)

in fact arises26. In fact it is more or less clear that such a coupling cannot arise in a SUSY

preserving manner. For that to happen the SUSY partner of the axion would have to play

the role of the QED coupling constant. Typically this happens only if the axion partner is a

non-compact scalar. In our model where the axion arises from C2, however, its partner arises

from B2 and therefore is a compact scalar.

The coupling to electromagnetism could arise though in a SUSY non-invariant way and this

could well be allowed if SUSY is broken at a sufficiently high scale. In particular, such a coupling

would arise if the U(1) gauge group of the SM arose from a D5-brane wrapping the same two

cycle 27 which gives rise to the zero mode for the axion. On the world-volume of the D5-brane

would be the couplings,

S = (2πα′2)T5

[
∫

d6x
√−g

1

4
FµνF

µν +
1

2

∫

C2 ∧ F ∧ F

]

. (6.5)

Reducing to 4 dimensions gives,

S = (2πα′3)T5

[

L2

∫

d6x
√−g

1

4
FµνF

µν +
1

2
a

∫

F ∧ F

]

. (6.6)

Now redefining Fµν so that the gauge kinetic term is canonical we see that the coupling ζ in

eq.(6.2) is

ζ =
1

L2
. (6.7)

As a result

∆α ∼ 1

L2
δa. (6.8)

Using the observed limits in eq.(6.4) (converted to radians) we then get

∆a

L2
< 10−2. (6.9)

The canonically normalized field is φ = faa ∼ a gsMP l/L
2 as in eq.(3.7). The change in φ is

given in eq.(2.24), using eq.(6.9) this gives,

MP l

φ
. 10−2gs . 10−2, (6.10)

26Such a coupling between the axion of interest and SU(3) color gauge field must be absent otherwise the

resulting QCD induced potential for the axion would be much too big.
27Or rather the same appropriate orientifold even combination of two-cycles.

33



where we have used the fact that gs < 1. This tells us that to be in agreement with the

bound eq.(6.4) the canonically normalized field must have a value which is at least two orders

of magnitude bigger than the Planck scale. As a result the axion field will evolve very little in

the course of the universe’s evolution. The slow roll parameter ǫ, eq.(2.19), for example would

satisfy the condition

ǫ . 10−4. (6.11)

This makes the equation of state for quintessence essentially indistinguishable from the cosmo-

logical constant.

In summary, we do not know for certain whether the axion couples to electromagnetism in

the form of eq.(6.2). Such a coupling would arise if the U(1) gauge field originates on a D5-brane

wrapping the same two-cycle from which the axion zero mode also arises. In this case the bound

on the rotation put by CMB data is very significant. It requires the canonically normalized axion

field to change very little during the course of the evolution of the universe, thereby making the

equation of state for quintessence essentially like the cosmological constant. In such a situation

our best hope for telling quintessence apart from the cosmological constant would be to look for

a signal in the rotation for the CMB polarization itself.

6.3 The Linear Potential

The linear nature of the axion potential is valid for an appropriate range of axion values, we

took this form in our discussions above to simplify the analysis.

The V0 contribution in eq.(5.1) comes from the induced 3-brane tension and its more accurate

form is in eq.(3.17) with ǫ = e4A0 , as noted in §3.2. As the axion runs towards its minimum at

a → 0 the correction due to the L4 term within the square root in eq.(3.17) will become more

important.

Also, if we allow for both negative and positive values of the axion, a in eq.(5.1), eq.(5.2)

should be replaced by |a|. E.g, the more correct form for V1 is

V1 = c2M
4
SBe

2A0

(

R2

α′L6

)

|a|, (6.12)

which arises because the change in the volume induced by the warping only depends on |a|.
With c2 > 0 (which makes physical sense) the total potential V0+V1 is positive. Now actually

there is an overall constant C in the potential, related to the cosmological constant, which we

have not worried about. Including this we get the potential to be,

Vtotal = V0 + V1 + C. (6.13)

It is worth emphasizing here that the V1 contribution is linear in the axion only in the limit

when |a| ≪ N where N is the total five -form flux supporting the warped throats where the 5
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branes are placed. Once |a| becomes larger there will be corrections and one does not expect

the potential to remain linear in the axion, for example the warp factor eA0 at the bottom of the

throat will itself begin to depend on a. As was noted in §4.3 with todays’ knowledge of warped

compactifications we have at best been able to estimate the linear corrections, calculating the

higher order terms is even harder. For now, we note the possibility that including these terms

might well give a more rapidly varying axion potential for |a| > N , and the more rapidly varying

potential might actually help improve the tracker behavior of this model, to which we turn next.

6.4 Tracker Behavior

It is well known that many quintessence models exhibit tracker behavior, see e.g., [3]. The

tracker solution is an attractor, and at least for some range of initial conditions the system is

drawn to the tracker solution regardless of initial conditions.

Here let us consider the linear potential case, with the net potential being given by eq.(5.4).

The equation of motion for the axion is given by

φ̈+ 3Hφ̇+
µ4

fa
= 0 (6.14)

Let us assume that the universe is radiation dominated, then

H =
1

2t
. (6.15)

The general solution to eq.(6.14) is

φ = c1 −
µ4

5fa
t2 + c2t

−
1

2 (6.16)

where c1, c2 are integration constants. We see that the axion runs to the origin, where its energy

is minimized in a time determined by c1.

Let us take the solution with c2 = 0 and some fixed value of c1 and examine perturbations

around it. There are two kinds of such perturbations. One is time independent and simply

shifts c1, the second dies like t−
1

2 . Since the first perturbation is constant in time we see that

this solution is not really a tracker.

Working instead in an epoch which is matter dominated sets H = 2/3t, the essential features

of the axion solution found above continue to be the same in this case as well.

6.5 The Cosmological Constant

The lack of tracker behavior means that our model does not solve the coincidence problem. The

initial value for the axion, c1, must be chosen to be just right so energy in the axion field is of

the right order of magnitude today when the Hubble constant has value H0.
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In fact this feature is tied to the issue of the cosmological constant in this model which

we have mostly ignored so far. Including the constant C in the total potential, eq.(6.13), and

working with the linear potential as an approximation we have,

Vtotal = µ4|a|+ C (6.17)

where we now keep track of the fact that the potential really depends on |a|.
It is now clear that changing the initial conditions for the axion in effect changes C. Another

way to say this is that shifting a and then changing C appropriately can keep Vtotal and in fact

the full axion Lagrangian eq.(2.12) invariant 28.

An important idea, for which the landscape of string theory has now provided considerable

evidence, is that the cosmological constant takes its small value due to anthropic considerations,

see, e.g., [49–51]. Let us consider how such anthropic considerations might work in our model
29. Let us take the constant C and the initial condition for the axion c1 as the two variable

which can be varied. One possibility is that the axion sits at its minimum at a = 0 and dark

energy is entirely due to the cosmological constant with C taking the value Λ4 due to anthropic

considerations. But the more general possibility is that the total energy in dark energy is

shared more equitably between the cosmological constant and the axion field with both C and

µ4|a| being of order Λ4. In this latter case, the equation of state for dark energy could show

significant time variation. In fact, knowing nothing better, one would tend to believe that

this latter possibility is more likely, simply because it is more general. Of course deciding this

issue more systematically would require a well motivated probability measure in the space of all

possibilities, which we lack at the moment.

Let us emphasize that it was important in the discussion of this subsection that the axion

potential is slowly varying. Instead suppose the scale in the potential eq.(5.4) is, µ4 ∼ M4
SB,

which is the SUSY breaking scale. Then starting with c1 ∼ MP l and taking fa ∼ MP l for

simplicity, we find that the axion field runs to its minimum in time t ∼ MP l/M
2
SB which is of

order the Hubble constant at the time of SUSY breaking. This is too fast to be of any relevance

today.

7 Conclusions

In this paper we have constructed a model for quintessence in string theory. The model is based

on the idea of axion monodromy. An axion plays the role of the quintessence field, its shift

symmetry is broken by the presence of 5-branes which are located in highly warped throats.

28This is related to some of the discussion in §5.3.
29In fact anthropic considerations for quintessence with a linear potential were studied in [17,18]. A probability

distribution for the parameters of this model, partly based on eternal inflation, was assumed in the analysis.
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We show that even after including the effects of moduli stabilization and SUSY breaking, the

resulting potential for the axion can be made slowly enough varying to result in a workable

model of quintessence. If the canonically normalized axion field has an initial expectation value

of order the Planck scale, the equation of state of dark energy shows significant time variation

during the evolution of the universe.

Our model has many light particles which arise due to the highly warped throats in which

the 5-branes are placed. The energy scale at the bottom of these throats is at least 10−3 eV and

typically is much lower. The light particles arise from warped down string modes or KK modes

and are analogous to the light particles in the Randall Sundrum II model which has only the

Planck brane with a non-compact extra direction. The couplings of these particles to standard

model fields and to the four dimensional graviton are highly suppressed, making them difficult

to detect.

We have not attempt to construct a complete model of cosmology, including for example

inflation at early times. We have also not attempted to explicitly incorporate the standard

model fields in the kind of construction we used. This latter issue especially deserves further

attention because a coupling of the axion to electromagnetism would lead to a rotation of the E

mode of polarization of the CMB to the B mode, with potential observable consequences. We

show how such a coupling can arise in our model when the photon is the gauge field living on a

D5-brane and calculate the resulting rotation effect.

The cosmological constant question is still left open in our discussion. Anthropic consider-

ations could well be responsible for its smallness. We suggest that these considerations, in the

context of our model, would probably lead to the conclusion that the axion field is not exactly

at its minimum. Rather, it is more likely to be rolling and carrying a reasonable fraction of

the total dark energy, thereby causing the equation of state for dark energy to vary. Models of

the type we present here, where the potential for the quintessence field is slowly enough vary-

ing, might therefore tilt the “betting odds” in favor of quintessence, even though they lack an

explanation for the cosmological constant along conventional, as opposed to anthropic, lines.
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