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Abstract: We study charged dilaton black branes in AdS4. Our system involves

a dilaton φ coupled to a Maxwell field Fµν with dilaton-dependent gauge coupling,
1
g2

= f 2(φ). First, we find the solutions for extremal and near extremal branes

through a combination of analytical and numerical techniques. The near horizon

geometries in the simplest cases, where f(φ) = eαφ, are Lifshitz-like, with a dynamical

exponent z determined by α. The black hole thermodynamics varies in an interesting

way with α, but in all cases the entropy is vanishing and the specific heat is positive

for the near extremal solutions. We then compute conductivity in these backgrounds.

We find that somewhat surprisingly, the AC conductivity vanishes like ω2 at T = 0

independent of α. We also explore the charged black brane physics of several other

classes of gauge-coupling functions f(φ). In addition to possible applications in

AdS/CMT, the extremal black branes are of interest from the point of view of the

attractor mechanism. The near horizon geometries for these branes are universal,

independent of the asymptotic values of the moduli, and describe generic classes of

endpoints for attractor flows which are different from AdS2 ×R2.
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1. Introduction

1.1 Extremal dilaton black holes in string theory

Extremal black holes have been a fruitful source of theoretical questions and enigmas

for several decades. In the context of black hole mechanics, for instance, they provide

examples where the thermodynamic description breaks down and one is forced to

think about the microphysics of the system in order to make sense of the extremal

limit [1, 2].

∗On leave of absence from Department of Physics and SLAC, Stanford University.
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The earliest charged black hole solutions to low-energy string theory were found

by Garfinkle, Horowitz and Strominger [3] (and had appeared earlier in families of

solutions constructed in [4]). Those authors studied the Einstein-Maxwell action

with the gauge coupling controlled by a scalar dilaton φ:

S =

∫
d4x
√
−g
(
−R + 2(∇φ)2 + e−2φF 2

)
. (1.1)

This action admits remarkably simple extremal magnetically charged black hole so-

lutions:

ds2 = −(1− 2M

r
) dt2 + (1− 2M

r
)−1 dr2 + r(r − Q2e2φ0

M
) dΩ2 , (1.2)

with dilaton profile

e−2φ = e−2φ0 − Q2

Mr
(1.3)

and with gauge field

F = Q sin(θ) dθ ∧ dϕ . (1.4)

Here, θ and ϕ are standard angular coordinates on the S2 spatial slices in (1.2), and

φ0 is the asymptotic value of the dilaton. The action and the black hole solution

are motivated by the low-energy α′ expansion of heterotic string theory; one may

obtain an equally simple electrically charged solution by exchanging φ→ −φ, while

simultaneously exchanging the field strength F with its dual F̃µν = 1
2
e−2φε λρ

µν Fλρ.

The thermodynamics of these black holes, with general dilatonic coupling e−2αφF 2

for α ≥ 0, was discussed extensively in [1, 2]. The black hole solutions in these the-

ories, for arbitrary values of α 6= 0, all share the striking property that the entropy

at extremality vanishes. This leads one to suspect that the thermodynamic descrip-

tion may be breaking down; and this breakdown can be made precise, arising from

two different sources for α < 1 and α ≥ 1. The basic point is that the number of

thermally accessible states of the extremal hole is too small to justify a statistical

description, but the root cause is different in the two cases [2]:

• For α < 1, these flat-space black holes have positive specific heat and vanishing tem-

perature as they approach extremality. (In all cases but α = 0, the extremal Reissner-

Nordström case, they also have vanishing entropy). Thermodynamics breaks down

because there are very few excitations in the relevant thermal interval as T → 0.

The famous zero temperature successes of statistical physics happen in the infinite

volume limit, while these black holes are fixed objects of a certain size.

• For α ≥ 1, the temperature remains finite (for α = 1) or even diverges (α > 1)

as extremality is approached. However, the black hole develops a mass gap which

prevents the absorption of sufficiently small amounts of energy (in units of kBT ) to

justify a thermal description. This is evident in the calculation of grey-body factors

for the hole, or equivalently, in the effective Schrödinger-like equation which governs

absorption and reflection of radiation by the hole.
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In summary, the physics of extremal charged dilaton black holes (like that of ex-

tremal Reissner-Nordström black holes) exhibits a breakdown of the thermodynamic

description. However, the conceptual reasons for the breakdown depend on details;

the relevant physics can be quite different for different values of α.

Let us end this subsection with one more comment. The dilaton e2φ blows up at

the horizon of the extremal magnetically charged black hole (M =
√

2Qeφ0), eq.(1.2),

eq.(1.3), which lies at

r =
Q2e2φ0

M
. (1.5)

Therefore quantum loop corrections will become important close to the horizon. In

the electrically charged case in contrast the dilaton vanishes. However, now the string

frame curvature blows up at the horizon and therefore higher derivative corrections

will get important close to the horizon. This feature is quite common in dilatonic

black holes/branes. Near the horizon either the string loop corrections or the higher

derivative corrections usually become significant and these corrections bedevil any

attempt to calculate properties which depend sensitively on the geometry close to

the horizon. One way to tame this problem is to consider a slightly non-extremal

black hole. For fixed charge and φ0 the non-extremal hole has a horizon at a slightly

larger value of r and as a result the dilaton does not run to either infinity or zero

value at its horizon. Starting with a large enough charge one needs a temperature

which is much smaller than the charge to control the behavior of the dilaton in this

way. The properties of the resulting near-extremal black hole can then be reliably

calculated in the classical supergravity approximation.

1.2 Why pursue their AdS generalization?

It is of interest to generalize our knowledge of these charged black holes in theories

with α 6= 0 to similar holes with AdS asymptotics for several reasons. Perhaps the

most pressing is the recent realization that AdS/CFT may provide a powerful tool

for studying strongly-coupled toy models of condensed matter systems (for excellent

reviews with rather different flavors see [5, 6, 7, 8]). At this stage in the development

of this AdS/CMT correspondence, it seems useful to widen the range of qualitative

behaviors seen in simple and potentially relevant gravity models. In flat space,

the extremal dilaton black holes exhibit several features quite different from their

extremal Reissner-Nordström cousins. This suggests that their AdS generalizations

should be relevant to capturing holographic phases of matter which are distinct from

those yet explored.

Of particular interest to us at the start of this investigation was the fact that,

unlike the extremal Reissner-Nordström solutions, these solutions may have vanishing

entropy at extremality. The large ground state degeneracy of the Reissner-Nordström

AdS black branes is in tension with the third law of thermodynamics, and suggests to
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some that they may be highly atypical holographic states of matter 1,2. Since abelian

gauge fields with dilatonic couplings parameterized by various values of α are fairly

common in string compactifications, these may provide one generic class of simple

bulk theories where the charged black holes do not have an undesired macroscopic

ground-state entropy.3

Another motivation is that the phenomena discussed in [1, 2] for flat-space

charged dilaton black holes strongly suggest that, at least for some values of the

parameters, charged dilaton black branes in AdS may provide novel holographic

duals of insulators. While the bulk theory clearly has excitations at arbitrarily low-

energy (after all, it has uncharged Schwarzschild black brane solutions), in the sector

with non-trivial charge density, there may be a gap to charged excitations in analogy

with [1, 2]. We will find that this is not so, at least in the absence of a dilaton po-

tential and for the well-motivated simple forms of the gauge coupling function that

we consider. We will, however, find some other surprises.

A final motivation for this investigation comes from the study of extremal black

hole/branes solutions. It is well known by now that these extremal configurations

exhibit the attractor mechanism regardless of supersymmetry; their near-horizon

geometry is universal and independent of the asymptotic values taken by the moduli.

Different kinds of attractors correspond to different kinds of universal behavior. In

the context of AdS/CFT characterizing the different kinds of attractors tells us about

the different kinds of IR behavior which can arise in the dual CFT which is at zero

temperature but is now deformed by the addition of a chemical potential (or charge).

This is clearly of interest as we develop the AdS/CFT dictionary further. From the

point of view of possible connections to condensed matter physics, an early and

important paper on the subject, [15], noted that the optical conductivity of the

dual CFT in 2 + 1 dimensions at finite temperature (and zero chemical potential)

is actually independent of frequency and temperature and thus very universal. The

attractor mechanism tells us that there should be some considerable universality as

we deform the CFT along the chemical potential direction instead of temperature

as well. And the extent of allowed variation should be determined by the different

classes of attractors. Understanding the different classes of attractors is therefore of

interest from this point of view too. A comment on the literature is worth making

here. There is by now considerable literature on the attractor mechanism. The

seminal paper is [16]. For a recent review with a good collection of references, see

1S. Kachru acknowledges several interesting discussions about this at the June 2009 KITP work-

shop on “Quantum Criticality and the AdS/CFT Correspondence.”
2The large degeneracy is almost certainly an artifact of the large N approximation. SPT ac-

knowledges discussions with A. Dabholkar and A. Sen in the course of preparing [9], and also with

T. Senthil, in this regard.
3In the context of holographic superconductors [10, 11], another class of black branes with

vanishing entropy at T = 0 was recently found in [12, 13, 14].
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[17]. Some references on attractors without supersymmetry are [18, 19, 20, 21, 22].

In this paper, we will study extremal and non-extremal black branes in dilatonic

gravity. In §2, we find the form of the near-horizon geometry for electrically charged

extremal dilaton black branes as a function of α. We use this geometry to compute

the entropy and specific heat as a function of α, and see that the extremal branes

have vanishing entropy and positive specific heat for all α ≥ 0. We also discuss

other thermodynamic quantities. In §3, we compute the conductivity in a controlled

approximation as one approaches the extremal limit, using techniques similar to those

in [14]. We find that somewhat surprisingly, in the simple cases we check (including

the electrically charged black branes for all values of α), the result is that σ(ω) ∼ ω2

at T = 0 and low frequency. We conclude with a discussion of the interpretation of

our results, and of promising directions for future work, in §4. In the appendix, we

show that one can numerically extend our near-horizon solutions of §2 to provide full

black brane solutions with AdS asymptotics.

While this paper was being readied for submission, the papers [23, 24], which

have some overlap in motivations with our work, appeared.

2. Near-horizon behavior of extremal electrically charged brane

2.1 Near-horizon solution

While the full black-brane solutions with AdS asymptotics did not admit a simple

analytical form that we could find, we are able to provide an analytical description

of the near-horizon geometry for the extremal charged dilaton branes 4. We use

a notation and formalism similar to that in [21], in describing these near-horizon

solutions.

For our bulk action, we take

S =

∫
d4x
√
−g
(
R− 2(∇φ)2 − e2αφF 2 − 2Λ

)
. (2.1)

The maximally symmetric vacuum solution is then of course AdS space with AdS

scale L determined by Λ = − 3
L2 . We consider a metric of the form

ds2 = −a(r)2 dt2 + a(r)−2 dr2 + b(r)2 (dx2 + dy2) (2.2)

and a gauge field of the form

e2αφF =
Q

b(r)2
dt ∧ dr. (2.3)

4By the near-horizon region we mean the region of spacetime “close to” where the gtt component

of the metric vanishes.

– 5 –



That is, we are looking for electrically charged black branes.5

The equations of motion can be easily inferred from (107)-(110) of [21]. We find

that

(a2b2)′′ = −4Λb2 (2.4)

b′′

b
= −(∂rφ)2 (2.5)

∂r(a
2b2∂rφ) = −αe−2αφQ

2

b2
, (2.6)

together with the first order constraint,

a2b′2 +
1

2
a2
′
b2
′
= φ′2a2b2 − e−2αφQ

2

b2
− b2Λ. (2.7)

Even though we will be interested in the near-horizon limit, it is important to

keep the cosmological constant term on the right-hand side of (2.4); the black brane

(unlike the black hole) has vanishing curvature along the x, y spatial slices, so the

cosmological constant does provide the most significant source in some of the Einstein

equations. As was mentioned above, the radius of AdS space is given by

L =
√
−3/Λ . (2.8)

In the discussion below unless specified otherwise we will set L = 1. When needed

the dependence on L can be determined by dimensional analysis.

To find the near-horizon limit, we proceed with a scaling ansatz. Define the

near-horizon variable w = r− rH where rH is the radius of the horizon. Let us make

the ansatz that the near-horizon scalings of the functions a, b, φ are given by

a = C2w
γ, b = C1w

β, φ = − K log(w) + C3 , (2.9)

where C1, C2, C3 are constants. A little algebra then shows that an exact solution

to the equations (2.4), (2.5), (2.6) and the constraint eq.(2.7) is obtained if the

exponents take the values

γ = 1, K =
α
2

1 + (α
2
)2
, β =

(α
2
)2

1 + (α
2
)2
. (2.10)

The constant C2 is determined to be

C2
2 =

6

(β + 1)(2β + 1)
. (2.11)

5Related work finding charged black brane solutions in dilaton gravity with a Liouville-type

potential appears in e.g. [25].
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By rescaling w, t, x and y appropriately the constant C3 can be set to zero and C1

to unity. One then gets that Q is determined in terms of α by

Q2 =
6

(α2 + 2)
(2.12)

The final values of the metric components are then

a = C2w, b = wβ, φ = − K log(w) . (2.13)

Note that since a vanishes linearly with w, the metric component gtt has a second

order zero at w = 0, as is needed for an extremal solution. In the extremal solution

found above the gauge coupling gU(1) ∼ e−αφ becomes arbitrarily weak at the horizon,

as φ→∞. Conversely, when w →∞ the gauge coupling becomes very strong.

The scaling exponents that characterize the solution actually indicate that in

the near-horizon region, the metric takes the form characterizing a Lifshitz fixed

point with anisotropic scaling [26] (see also [27]). The dynamical critical exponent is

fixed to z =
(1+(α

2
)2)

(α
2
)2

= 1/β. The scaling symmetry is not exact, it is broken by the

logarithmic dependence of the dilaton on w.

As was mentioned above the scaling solution eq.(2.9), eq.(2.10), eq.(2.12), is an

exact solution to the equations of motion. However for our purposes it does not have

the correct asymptotic behavior.6 We are interested in solutions which asymptote

to AdS4. In the §2.4 and in appendix A, we will discuss how a new solution can

be obtained after adding a perturbation to the above solution. This solution is

asymptotically AdS4 and has an asymptotically constant dilaton. After a coordinate

transformation we see that the charge Q is fixed to a universal value in the scaling

solution, eq. (2.12). In contrast in the asymptotically AdS4 case the charge Q will

be directly related to the number density in the dual theory 7, and has physical

significance. In addition the AdS4 solution will also depend on φ0 – the asymptotic

value of the dilaton. The asymptotically AdS4 solution will therefore be characterized

by two parameters, Q and φ0.

The solution we have discussed above, with a Lifshitz-symmetric metric, was in

fact already found in §3 of [29], where however the focus was on black brane solutions

with different (Lifshitz instead of AdS) asymptotics 8.

2.2 Attractor behavior

Note that the solution in eq.(2.13) has no free parameters. The exponents β,K, and

the constant C2 which appear in it are determined in terms of the parameter α, as in

6Solutions of similar systems with this kind of asymptotic behavior will appear in [28], where

they can be interpreted in terms of a microscopic dual theory with Schrödinger symmetry.
7This follows directly from the gauge field eq. (2.3) and the AdS/CFT dictionary.
8Other interesting examples of black hole solutions which asymptote to 4D Lifshitz metrics with

various values of the dynamical exponent z have appeared in [30].
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eq. (2.10) and eq. (2.12). We remind the reader that α appears in the Lagrangian,

eq. (2.1), and determines the gauge coupling in terms of the dilaton. Similarly the

parameter Q which appears in the gauge field eq. (2.3) is not a free parameter in the

scaling solution and is also determined in terms of α, eq. (2.12). In contrast the full

solution which is asymptotically AdS4 has two free parameters which are needed to

specify it, the charge Q and the asymptotic value of the dilaton, φ0, as was mentioned

above and as we will see in greater detail in section 2.4. We see that regardless of

the values both of these parameters take in the full solution, the near-horizon region

of the solution takes a universal form. This universality is a result of the attractor

mechanism, although now at work in a somewhat less familiar situation where the

attractor geometry does not have an AdS2 factor giving rise to an SO(2, 1) isometry.

Let us elaborate on this connection with the attractor mechanism further. The

equations of motion, eq.(2.4), eq.(2.5), eq.(2.6), can be obtained from a one dimen-

sional action,

S =

∫
dr
(
− 2a2bb′′ − 2a2b2(∂rφ)2 − 2

Veff
b2

+
6b2

L2

)
(2.14)

with the effective potential Veff being

Veff = e−2αφQ2. (2.15)

In addition the constraint eq.(2.7) must also be satisfied. In terms of Veff this is the

condition,

a2b′2 +
1

2
a2
′
b2
′
= (φ′i)

2a2b2 − Veff
b2

+ 3
b2

L2
. (2.16)

Consider a more general situation now with a four dimensional Lagrangian of

the form,

S =

∫
d4x
√
−g
(
R− 2Λ− 2(∂φi)

2 − fabF aF b − 1

2
f̃abεµνρσF

a
µνF

b
ρσ

)
(2.17)

which has i = 1 · · ·N scalars with standard kinetic energy terms and a = 1, · · ·M
gauge fields.9 And take a case where both the electric and magnetically charges are

excited. One finds in a coordinate system of the form, eq.(2.2) that the gauge fields

are given by

F a = fab(Qeb − f̃bcQc
m)

1

b2
dt ∧ dr +Qa

mdx ∧ dy (2.18)

with Qa
m, Qea being constants that determine the electric and magnetic charges of the

system and fab being the inverse of the gauge coupling function fab. The equations

9Incorporating a more general kinetic energy term for the scalars, as would arise from a general

Kähler potential in a supersymmetric theory, is straightforward but we do not discuss it further

here.
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of motion for the metric and scalars can be obtained by varying the action eq.(2.14)

with the effective potential now being given by

Veff = fab(Qea − f̃acQc
m)(Qeb − f̃bdQd

m) + fabQ
a
mQ

b
m. (2.19)

Similarly the constraint takes the same form eq.(2.16) with this new effective poten-

tial.

In the standard attractor situation, Veff has a critical point at some finite point

in moduli space. The resulting extremal black brane has a horizon where the scalars

are drawn to their critical values, φi∗, regardless of their asymptotic values at infinity.

The metric component a2 has a second order zero at the horizon, while the metric

component b2 attains a non-zero value b2h at the horizon. As a result the near-horizon

geometry is of the form AdS2 × R2 and has an SO(2, 1) isometry which arises from

the AdS2 factor. The entropy density of the black brane s ∼ b2h. From the constraint

eq.(2.16) it follows that b2h is determined by the effective potential at the critical

point,

b4h =
L2Veff (φi∗)

3
. (2.20)

In contrast in the situation we have encountered above eq.(2.1) the effective

potential is of “run-away” form, with a critical point which lies at infinity. Also

the critical value of the effective potential vanishes, and this value is obtained ex-

ponentially rapidly in the dilaton. As a result of these properties the near horizon

geometry is of the scaling type found above, where the scalar runs towards but never

quite gets to its critical value and where the entropy vanishes. It is easy to see that

from the equation of motion, eq.(2.4)-eq.(2.7) that the full solution for the metric

(which is asymptotically AdS4) only depends on the combination Q2e−2αφ0 , where

φ0 is the asymptotic value of the dilaton. But the attractor mechanism implies that

the near-horizon metric is independent of the dilaton φ0. It then also imples that the

scaling solution is independent of the charge parameter Q, which is consistent with

our previous explicit result eq.(2.13).

The scaling solution we have obtained can arise as an attractor in other situations

as well.10 For example, consider a situation with several scalars, and a run-away

potential which depends on a linear combination of these scalars,

Veff = V0e
−αiφi . (2.21)

After a field redefinition this maps to the single scalar case above. As another

example consider an effective potential which has a critical point at a finite value

10Actually here we will only show that the same scaling solution can arise in other systems as well.

Whether this happens starting in the near-horizon region of a solution with say AdS4 asymptotics

is a more involved question that the comments below will not address. This is also true about our

comments below when we discuss other kinds of attractors.
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in field space for all but one of the scalars. The one remaining scalar runs away to

infinity driving the potential to zero in an exponentially rapid fashion. In this case

the same attractor geometry, eq.(2.9), with appropriate scaling exponents, will arise.

Finally consider a situation where there are several scalars with a potential

Veff =
∑
i

Vie
−2αiφi (2.22)

with all Vi > 0. Again the near horizon region takes the same form as in eq.(2.9)

a ∼ w, b ∼ wβ, φi ∼ −Ki log(w) + Ci , (2.23)

now with:

β =
1

(1 + 4
∑

1
α2
i
)

(2.24)

Ki =
2β

αi
. (2.25)

2.2.1 Other kinds of attractors

To complete this discussion let us also consider other possible attractor solutions

which can arise. We list some of these possibilities below. We work in the coordinate

system eq.(2.2) below with w = r − rh. In all the cases we consider below a ∼ w

in the near horizon region, so that the gtt component has a second order zero at

w = 0. As was mentioned above, the scaling solution eq.(2.9) is an exact solution to

the equations of motion. In contrast the solutions we write down below will not in

general be exact, rather we will give the leading behaviour in the near horizon region

for the metric and dilaton in these cases.

1) Suppose the effective potential takes the form,

Veff = V0 + V1e
−2αφ (2.26)

where V0, V1 > 0. This results in a run-away situation, but the critical value of V is

now V0 and does not vanish. In this case one finds that

b = bh +
C1

log(w)
(2.27)

b4h =
L2V0

3
(2.28)

φ =
1

2α
log(− log(w)). (2.29)

Since a ∼ w and bh 6= 0 the near horizon geometry is AdS2×R2. Interestingly though

the scalar does not become a constant in the near-horizon region going instead to

infinity as w → 0.
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2) Next consider the case where the potential vanishes at the critical point but

as a power-law rather than an exponential:

Veff =
V0
φp
. (2.30)

Now one finds

b ∼ 1

log(w)
p
8

(2.31)

φ ∼ (− log(w))1/2 . (2.32)

The power law nature of the potential results in b and φ varying more slowly than

in the scaling solution eq.(2.9).

3) We can also contrast this with a potential that vanishes more rapidly than an

exponential:

V = Q2e−A(e
αφ). (2.33)

One finds now that

b ∼ w +
C1w

log(w)
(2.34)

φ ∼ 1

α
log

(
− 1

A
log (h(w))

)
(2.35)

h(w) =
3

2Q2α2
w4(− log(w))−2 + . . . (2.36)

The metric component b is almost linear in w resulting in the near horizon

geometry being approximately AdS4, with a very slowly varying scalar.

4) Finally one can consider a situation where the four-dimensional theory one

starts with has a potential which depends on the scalar field. We write the one

dimensional Lagrangian as

S =

∫
dr

(
−2a2bb′′ − 2a2b2(∂φ)2 − 2

Veff
b2

+ 6
b2

L2
− 2V1(φ)b2

)
(2.37)

where V1(φ) is the extra field-dependent potential. There are now several possibilities.

Let us only discuss one of these here.

An AdS2 × R2 solution arises, where the metric component b2, eq.(2.2), takes a

constant value b2h and the scalar takes a constant value φ∗, if bh and φ∗ can be found

which solve the two equations,

∂φVeff (φ∗)

b2h
+ ∂φV1(φ∗)b

2
h = 0 (2.38)

and

(
3

L2
− V1(φ∗))b4h = Veff (φ∗). (2.39)
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2.3 Thermodynamics of the near-extremal solution

A generalization of the scaling solution can be found for the action eq.(2.1) [29]. It

has a metric

ds2 = C2
2w

2(1− m

w2β+1
)dt2 +

dw2

C2
2w

2(1− m
w2β+1 )

+ w2β(dx2 + dy2), (2.40)

which now depends on the parameter m. The constant C2 takes the same value as in

eq.(2.12). The dilaton and gauge field are unchanged from their values in the scaling

solution and are given in eq.(2.13), eq.(2.3), eq.(2.12), respectively. Asymptotically,

as w → ∞, this solution reduces to the original scaling solution eq.(2.13). The

behavior close to the horizon though is different. The gtt component of the metric

now has a first order zero, with non-vanishing surface gravity, and as a result the

resulting temperature in non-zero. The scaling solution in eq.(2.13) corresponds

to the near-horizon of an extremal black brane. We therefore expect that the new

solution above corresponds to the near-horizon region of a slightly non-extremal black

brane.

The horizon in the solution eq.(2.40) is located at wh, where wh satisfies

w2β+1
h = m. (2.41)

The resulting temperature which can be obtained in the standard fashion by contin-

uing to Euclidean space [31] is

T ∼ wh. (2.42)

And the entropy density is then

s ∼ w2β
h ∼ T 2β. (2.43)

As was mentioned above the solution eq.(2.40) arises as the near horizon limit of

a slightly non-extremal black brane solution. The entropy density can be expressed

as a function of two dimensionful parameters for the non-extremal solution, the

temperature T and the chemical potential µ. Both of these are intensive variables

with dimensions [Mass]1. It follows from eq.(2.43) and dimensional analysis that

the entropy density of a slightly non-extremal black brane is given by

s ∼ T 2βµ2−2β . (2.44)

The entropy can be found from the classical action eq.(2.14) evaluated on-shell.

This action can be calculated by scaling out the dependence on L - the radius of

AdS space - and then working with dimensionless quantities. As a result the action

and the entropy will have a prefactor which goes like, L2/GN where GN is the four

dimensional Newton’s constant. Putting all this together gives the entropy density

of the slightly non-extremal black brane to be

s = aCT 2βµ2−2β, (2.45)
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where

C ∼ L2/GN (2.46)

is the central charge of the CFT dual to the AdS4 background. The coefficient a

depends on α, and φ0, this dependence can be fixed from the numerical solution for

the slightly non-extremal black hole.

Note that the specific heat

Cv = T (
ds

dT
)µ = (2β)aCT 2βµ2−2β (2.47)

is positive.

The other thermodynamical properties can be completely determined from the

entropy density. The Gibbs-Duhem relation

sdT − dP + ndµ = 0, (2.48)

where P, n, are the pressure and number density, can be used to obtain the pressure.

Keeping µ fixed and integrating the above equation gives,

P =
a

(2β + 1)
Cµ2−2βT 2β+1 + bCe3αφ0µ3. (2.49)

The second term is a temperature independent integration constant, in §2.4 we will

see that the coefficient b is indeed non-zero and determine its scaling with φ0. Sub-

stituting for P in eq.(2.48) gives the number density,

n =
(2− 2β)

(2β + 1)
aCT 2β+1µ1−2β + 3bCe3αφ0µ2. (2.50)

Finally the energy density can be obtained using the relation

ρ = sT + µn− p (2.51)

which gives,

ρ =
2a

(2β + 1)
Cµ2−2βT 2β+1 + 2bCe3αφ0µ3. (2.52)

We see from eq.(2.49) that the near-extremal system has an equation of state

P =
1

2
ρ . (2.53)

The formulae obtained in this section are valid when T � µ, i.e. for a slightly

non-extremal black brane. As the temperature increases for fixed µ the geometry

eq.(2.40) is no longer a good approximation and the corrections to the formulae above

become significant.
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Let us end this section with some additional comments. We have seen that the

specific heat, which governs the fluctuations in energy, is positive. From eq.(2.50)

we can also compute the susceptibility χ. One gets,

χ ≡ (
∂n

∂µ
)T = (1− 2β)

(2− 2β)

(2β + 1)
aCT 2β+1µ1−2β + 6bCµ (2.54)

For T � µ this is always positive. It is worth noting that the first term, which

is growing with temperature, is negative for β > 1/2. Whether the susceptibility

actually turns negative though as the temperature increases, signalling a that phase

transition occurs, requires one to go beyond the regime where T � µ. We leave this

question for the future 11.

The scaling, for example of the entropy density with temperature, follows essen-

tially from the Lifshitz-like nature of the near-horizon region. The scale invariance

of the metric in this region is broken only by the temperature and this together with

dimensional analysis then determines the temperature dependence in eq.(2.43). In

turn then the temperature dependence of other thermodynamic variables also follows

from the dynamic exponent being 1/β in the scaling region. It is also interesting to

note that for β = 1
2
, the thermodynamics of this system is quite similar to that of

a free Fermi gas.12 However, we expect that correlations functions, for example the

two point density-density correlation function, can distinguish between these two

possibilities and will agree with that of a Lifshitz-like theory 13.

The properties we have found above, notably the vanishing entropy and tem-

perature and positive specific heat for the charged dilaton black branes, are to be

contrasted with the properties of various other charged black holes. For instance,

AdS Reissner-Nordström black holes (as with Reissner-Nordström black holes in flat

space) have a large entropy at extremality; the extremal string-theoretic holes of [3]

have finite temperature and negative specific heat; and the more general flat-space

black holes with arbitrary α have negative specific heat for α ≥ 1. The black branes

we have found seem most similar, then, to the 0 < α < 1 flat-space dilaton black

holes studied in [1, 2]. They have positive specific heat and vanishing entropy in the

extremal limit.

It is of interest now to perturb the near-horizon geometry with a background

electric field, and ask about charge transport. At vanishing charge density, the black

brane solution is the standard AdS-Schwarzschild solution, and the conductivity is

a constant at small ω and T = 0. (The transport in such backgrounds has been

explored in detail in [15], where in fact the authors argue that σ(ω/T ) is a constant

11We thank K. Damle and S. Minwalla for related discussions.
12We thank K. Rajagopal for making a related helpful comment during a seminar about this work

at MIT.
13We thank K. Damle for suggesting this. It is also possible that the ratios of coefficients in

various thermodynamical parameters will be different. We have not carefully computed them here.
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function). We will find that in contrast, a background charge density gives rise to a

universal, α-independent behavior σ(ω) ∼ ω2 at T = 0; the T -dependent DC con-

ductivity also has non-trivial corrections to the constant form found in [15], though

we shall not detail them here. Before performing transport calculations, however, we

finish constructing the global charged black brane solutions.

2.4 Obtaining the solution with the correct asymptotics

The scaling solution eq.(2.13) does not have the correct asymptotic behavior as we

have emphasized already. While the near-horizon behavior sufficed for us to glean

the most interesting thermodynamic behaviors in §2.3, it is of interest to find the

structure of the global solutions. Here we will describe some of the details which go

into finding a solution which does asymptote to AdS4. More details can be found

in appendix A. The idea is to add a perturbation to the scaling solution which is

irrelevant at small w, close to the horizon, but which gets increasingly important

at larger values of r. Such a perturbation if correctly chosen can then change the

solution giving rise to the required new solution which asymptotes to AdS4. Roughly

speaking one can think of large r as the ultraviolet and small r as the infrared in the

boundary theory. Thus the perturbation we add is irrelevant in the infrared scaling

region but relevant in the UV. In the discussion below we will work in conventions

where L = 1.

The perturbation we consider preserves the form of the metric eq.(2.2) (and thus

the symmetries of eq.(2.2)). The resulting functions a, b, φ then are:

a = C2w(1 + d1w
ν) (2.55)

b = wβ(1 + d2w
ν) (2.56)

φ = −K log(w) + d3w
ν (2.57)

C2, K, β take the same values as in eq.(2.12), eq.(2.10). There is a gauge field turned

on, eq.(2.3) with Q given by eq.(2.12). The perturbation is characterized by the

exponent ν and the three constants d1, d2, d3. As we see in appendix A d2, d3 can be

determined in terms of d1 ≡ d. And requiring that ν > 0, so that the perturbation

dies out at small w, gives rise to a unique allowed value for this exponent:

ν =
−(2β + 1) +

√
(2β + 1)(10β + 9)

2
. (2.58)

Thus there is a one parameter family of allowed perturbations, parameterized by the

coefficient d. Adding this parameter with d < 0 gives rise to an asymptotically AdS4

solution. We verify this by numerically integrating the equations of motion.

We expect that the boundary theory at zero temperature is characterized by two

parameters, the value of the chemical potential (or charge density) and the asymp-

totic value of the dilaton. The discussion above though seems to yield only a one
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parameter family of solutions, up to coordinate transformations. The answer to this

puzzle is tied to the fact that the behavior of the boundary theory for different values

of the chemical potential can be obtained by a rescaling, since the chemical poten-

tial is the only scale in the boundary theory. Now a scaling transformation in the

boundary theory is actually a coordinate transformation in the bulk which involves a

rescaling of the radial variable. Thus to allow for a change in chemical potential one

must treat bulk solutions related by a rescaling coordinate transformation as being

distinct. This then introduces a second parameter in the bulk solutions as well.

In practice there is one bulk solution from which all others can be obtained by

a suitable rescaling and shift in the dilaton. It is clear from the equations of motion

that the metric and φ − φ0 only depend on Q2e−2αφ0 . The rescaling is obtained by

carrying out a coordinate transformation under which,

r → λr, (t, x, y)→ λ−1(t, x, y) (2.59)

Thus starting from the solution for Q = 1, φ0 = 0 one can rescale to get any value of

Q and then shift the dilaton to get any value of φ0.

It follows from the equations of motion eq.(2.4)-eq.(2.6) and the constraint

eq.(2.7) that in the asymptotic AdS4 region the bulk solution, with gauge field,

eq.(2.3), the metric and dilaton must take the form

a2 = r2(1− e1
ρ

r3
+
Q2e−2αφ0

r4
+ · · · ) (2.60)

b2 = r2(1 + · · · ) (2.61)

φ = φ0 +
φ1

r3
+ · · · , (2.62)

where the ellipses denote terms that are subdominant at large r. ρ above is the

energy density of the brane. And e1 is a constant which depends on L. Under the

rescaling eq.(2.59), ρ→ ρ
λ3
, Q→ Q

λ2
. This tells us that

ρ = D1(Qe
−αφ0)3/2. (2.63)

The coefficient D1 is a coefficient that is α dependent. A similar scaling argument

tells us that the chemical potential

µ =

∫ ∞
rh

Qe−2αφ

b2
dr (2.64)

is given by

µ = D2(Qe
−αφ0)1/2e−αφ0 (2.65)

where D2 is again an α dependent coefficient. This gives

ρ = D3e
3αφ0µ3. (2.66)
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The coefficient

D3 ∝ C (2.67)

where C is the central charge eq.(2.46) and the proportionality constant which can

be extracted from the numerical solution is denoted by 2b in eq.(2.52).

Let us also note that from these relations (and also more directly from the gauge

field eq.(2.3) and the standard AdS/CFT dictionary which relates the boundary value

of the gauge field to the charge density) it follows that the number density satisfies

the relation

n ∝ Q. (2.68)

We end this section with one final comment. We had mentioned at the end of

section 1.1 that classical relativity often breaks down in the near horizon region of

extremal dilatonic black holes, either due to loop corrections or higher derivative

corrections becoming important. The electrically charged extremal branes we are

considering in this paper are the analogue of the electrically charged dilatonic black

hole of section 1.1. The gauge coupling g2 = e−2αφ becomes vanishing small in

these cases in the near horizon region. Typically this would lead to higher derivative

corrections becoming important. We had also mentioned in section 1.1 that this

problem can be dealt with by introducing a small non-zero temperature. From

eq.(2.9), eq.(2.42) it follows that with T 6= 0 the dilaton at the horizon is

e−2αφ ∼
(
T

µ

)4β

. (2.69)

Thus the dilaton is prevented from running to zero at non-extremality. In addition

large µ or charge and an adjustable asymptotic value of the dilaton, which we have

suppressed in eq.(2.69), can also help in obtaining a small curvature.

Below we will compute the conductivity in the extremal case. The near-horizon

region will play an important role in this calculation and one should worry about

corrections that would arise in any genuine string theory embedding of such a black

brane. Once again the safest way to make the calculation reliable is to introduce

a small non-zero temperature and then calculate the conductivity in the frequency

range, T � ω � µ. In this case we expect that a small nonzero temperature will

control the corrections, and since the frequency is much larger than the temperature,

the conductivity should essentially agree with the calculation done in the extremal

black brane background.

3. Computing the conductivity at zero-temperature

3.1 Finding an effective Schrödinger problem

We now compute the behavior of the conductivity σ(ω) in the extremal black brane

background. We use the general formula for σ recently derived in [14], and crucially

rely on appropriate generalizations of some of the equations from [32, 33].
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The conductivity can be computed by turning on a component of the U(1) gauge

field parallel to the black brane, and studying an appropriate two-point function. A

general discussion with further references appears in e.g. [34]. A useful formulation

of the conductivity for our purposes was given in the paper [14]. After turning on

a gauge field Ax(r, t) in the black-brane background, one recasts the second order

differential equation for the perturbation as a Schrödinger-like equation:

−Ax,zz + V (z)Ax = ω2Ax (3.1)

where z is a redefinition of the radial variable, chosen to cast the equation of motion

for the perturbation in the form (3.1), and we have taken a single Fourier component

in frequency space (so Ax = Ax(z)). Then, studying scattering with purely incoming

boundary conditions at the horizon, one can compute the conductivity σ(ω) in terms

of the reflection coefficient

σ(ω) =
1−R
1 +R

. (3.2)

We will see that in our setup, we can derive analogous equations, though there are

some minor complications, and hence modifications of the formula (3.2).

It remains to find the equation for perturbations Ax and cast it in the form (3.1).

It will prove simplest to work in the metric gauge used by [14]:

ds2 = −g(r)e−χ(r) dt2 +
dr2

g(r)
+ r2(dx2 + dy2) . (3.3)

It is important not to confuse the radial variable r here with the natural radial

variable in §2; they are quite different.

In this gauge, the equation of motion for the Maxwell field, assuming the La-

grangian takes the general form

L = ...− 2(∇φ)2 − 1

4
f 2(φ)FµνF

µν + ... (3.4)

where the gauge-coupling function is f 2(φ), is given by

∂r

(
(f(φ))2e−

χ
2 g∂rAx

)
+ ω2e

χ
2 g−1Ax(f(φ))2 + (f(φ))2e

χ
2 (∂rAt)

(
g′xt −

2

r
gxt

)
= 0 .

(3.5)

Here we have anticipated, following [32, 33], that gxt will be turned on at the same

order as the gauge field perturbation; and we are working to lowest nontrivial order

in Ax and gxt.

The xr component of the Einstein equations tells us that

2
e
χ
2

g

(
g′tx −

2

r
gtx + (f(φ))2(∂rAt)Ax

)
= 0 . (3.6)
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Using (3.6) in (3.5), we find

∂r

(
(f(φ))2e−

χ
2 g∂rAx

)
+ ω2e

χ
2 (f(φ))2g−1Ax − (f(φ))4 e

χ
2 (∂rAt)

2Ax = 0 . (3.7)

Finally, let us define a new variable

∂

∂z
= e−

χ
2 g

∂

∂r
, (3.8)

and a new wavefunction

Ψ = f(φ) Ax . (3.9)

It follows from (3.7) that Ψ satisfies a Schrödinger equation

−Ψ′′ + V (z)Ψ = ω2Ψ (3.10)

where the potential is given by

V (z) = (f(φ))−1
(
(f(φ))′′ + g−1f 3(φ)eχ(A′t)

2
)

(3.11)

and ′ denotes d
dz

. In other words, we will re-formulate the calculation of the conduc-

tivity in terms of the study of reflection of incoming plane-waves of energy ω2 in the

potential (3.11).

Because our wavefunction with energy ω2 is not quite Ax, but is instead re-scaled

by f(φ), there is a minor modification of (3.2). Following the simple logic in §3 of

[14], we now find, for problems where the horizon is at z = −∞, the asymptotic

region is at z = 0, and the potential can formally be set to vanish for z > 0, the

formula:

σ(ω) = f 2(0)

(
1−R
1 +R

− i f
′(0)

f(0)ω

)
. (3.12)

As expected, this reduces to (3.2) in the case of constant gauge-coupling, f(φ) =

const. In our case it follows from the equation of motion for the dilaton, eq.(2.6)

that f ′(0)
f(0)
∼ O(z2) in the asymptotic region. Hence, the second term in (3.12) will

vanish sufficiently rapidly and drop out. Finally, choosing φ0 such that f 2 = 1

asymptotically, we are left with the old formula.

We can make our Schrödinger problem a bit more concrete, and simplify the

formulas, by using the equation of motion satisfied by the background zeroth order

gauge field At:

∂r

(
f 2(φ)r2e

χ
2 ∂rAt

)
= 0 . (3.13)

We find that the electrically charged black brane has

∂rAt =
Q

r2
1

f 2(φ)
e−

χ
2 . (3.14)
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Converting this to ∂zAt and plugging in to (3.11), the effective potential becomes

V (z) =
1

f

(
f ′′ +

ge−χ

f

Q2

r4

)
. (3.15)

We can immediately see some interesting possibilities for different behaviors as

compared to the cases studied in [14]. In those cases, the entire potential was pro-

portional to g, which vanishes at the horizon, so it was guaranteed that there would

be finite conductivity. Here, that is not the case. For instance, if f → 0 at the

horizon, which corresponds to strong coupling, then the potential barrier may actu-

ally become very large at the horizon, even though g always has a zero there. More

controllably, a large value of f ′′

f
at the horizon may cause interesting behavior in the

extremal limit.

We will now study this reflection problem for various choices of the dilaton

coupling to the gauge field.

3.2 The canonical dilatonic black holes: 1
4
f(φ)2 = e2αφ

To begin with, we should relate the metric gauge (3.3) to our old coordinates of

§2.1, to provide the explicit form for the effective potential. Recall that in the w

coordinate of §2, the extremal black brane has a metric:

ds2 = −w2 dt2 +
dw2

w2
+ w2β(dx2 + dy2) . (3.16)

Matching metrics, we quickly find that

r = wβ, g ∼ r2, eχ ∼ r2(1−
1
β
) . (3.17)

Finally, from (3.8) we see that z is related to w by

z = −βr−1/β = −β
w
. (3.18)

It is now easy to evaluate the effective potential (3.15) in this concrete case. We

find, using the solution for eαφ in §2.1, that in the near-horizon region:

V (z) =
c

z2
. (3.19)

It further transpires that the constant c is independent of the value of α:

c = 2 . (3.20)

This is similar to the universality seen, in a different context, in §5.3 of [14]. We

will nevertheless continue our discussion with arbitrary values of c, for possible use

in related problems.
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The change of variables from z to w takes the near-horizon region to z = −∞
and asymptotia to z = 0. Therefore, the scattering problem we wish to study has

incoming plane waves with energy ω2 at 0.

Because the potential has a 1
z2

form, the WKB approximation does not apply.

However, we can still solve this problem using the method of matched asymptotics,

developed in roughly this context in [32]. Define χ via

Ψ =

√
−πωz

2
χ . (3.21)

Then the Schrödinger equation satisfied by Ψ becomes

z2
∂2χ

∂z2
+ z

∂χ

∂z
+ (z2ω2 − ν2)χ = 0 , ν2 = c+

1

4
. (3.22)

3.2.1 Ingoing modes

The AdS/CFT correspondence instructs us to choose modes which are purely ingoing

at the horizon. The solutions to the differential equation (3.22) are Hankel functions;

the purely ingoing solution, at the horizon, is given by

χ = H(1)
ν (−ωz) ∼

√
2

−πωz
exp

(
−iωz − i(ν +

1

2
)
π

2

)
(3.23)

where after ∼ we give the behavior as z → −∞. Including time dependence, this

yields a wavefunction

ψ ∼ exp

(
−iω(t+ z)− i(ν +

1

2
)
π

2

)
. (3.24)

This is the desired, purely ingoing, mode at the horizon.

3.2.2 Overall strategy and detailed analysis

We are now going to solve for the ω-dependence of the resistivity by a method of

matched asymptotics. More precisely, we will do the following. For small ω, the

ω2 term in the Schrödinger equation is really only relevant in the regions where

the potential is arbitrarily small. This happens at z = −∞ (the horizon) and at the

boundary. Therefore, away from these regions, it is surely a reasonable approximation

to neglect the ω-dependent terms entirely, and use the approximation that V (z)

is the dominant term in the Schrödinger equation. We therefore start with the

solution of the ω-dominated equation near the boundary, and show that we can

continue it (still using a near-boundary approximation) to a solution in the potential-

dominated region. I.e., potential domination happens even very near the boundary,

for sufficiently small ω. We then continue the resulting solution all the way to

the horizon, using appropriate matchings. Finally, we use the conservation of flux
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between infinity and the horizon to determine the ω-dependence of the coefficient of

the reflected wave.

Step 1: Near-boundary analysis

For r � rhorizon, we have

a2 ∼ r2, z ∼ −1

r
, V (z) ∼ c2z

2 . (3.25)

We can therefore neglect the potential in the Schrödinger equation if we satisfy

c2z
2 � ω2 → r � 1

ω
. (3.26)

This close to the AdS boundary, the equation has solutions

Ψ(z) = D1e
−iωz + D2e

iωz . (3.27)

Now, choose a point z1 with z21 � ω2. It follows that in the small frequency

limit, we also have |z1| � 1
ω

. Therefore we can Taylor expand our wavefunction

(3.27), yielding:

Ψ ∼ (D1 +D2) + iω(−D1 +D2)z . (3.28)

Now, still in the near-boundary region, we can choose a point z2 where the

potential now dominates the ω2 term in the Schrödinger equation. This just requires

z22 � ω2, and is possible in the near-boundary region for small ω. Let us suppose

that while V (z)� ω2 in the vicinity of this point, in truth both terms are negligible

in the Schrödinger equation. The conditions for this to hold are that:

V (z)(∆z)2 � 1, ω2(∆z)2 � 1, ∆z ≡ |z2 − z1| . (3.29)

These conditions can be satisfied for small frequency; they simply require that ω �
|z2| � 1.

Then in reaching z2 from z1, we can neglect both potential and frequency terms

in the Schrödinger equation, which means we can use linear extrapolation from z1 to

z2! Hence:

Ψ ∼ E1 + E2z, (3.30)

and matching with (3.27) we find that

E1 = D1 +D2, E2 = iω(D2 −D1) . (3.31)

Step 2: Near-horizon analysis
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We will momentarily try to match the wavefunction extrapolated from z2, to a wave-

function in the near-horizon region. What is the appropriate wave-function there?

For z approaching −∞, as we have already discussed,

V (z) ∼ c

z2
, z ∼ −1

r − rh
. (3.32)

We can find points in the near-horizon region where V (z) dominates ω2; this simply

requires |ωz| � 1, and is true for arbitrarily large |z| for small enough ω. Let us

choose such a point, z3. In this region, |ωz3| � 1, the Hankel function reduces to

Ψ ∼
√
−π

2
ωzH(1)

ν (−ωz) ∼
√
−π

2
ωz (Jν(−ωz) + iNν(−ωz))

∼
√
−π

2
ωzi
−(ν − 1)!

π

(
−2

ωz

)ν
. (3.33)

Step 3: Matching

Now, we need to match the wavefunction (3.30) with coefficients (3.31) to the wave-

function (3.33). This involves using the Schrödinger equation to integrate from the

point z2 (near the boundary) to the point z3 (near the horizon). The key point,

however, is that in the entire intermediate region, we can neglect the frequency de-

pendence in the Schrödinger equation. Therefore, the frequency dependence of E1

and E2 in (3.31) can be determined from the frequency dependence we see in (3.33).

This yields

E1, E2 ∼ ω
1
2
−ν → D1 +D2 ∼ ω

1
2
−ν , D2 −D1 ∼ ω−

1
2
−ν . (3.34)

Next, how do we determine the conductivity σ? The key point, as observed in

[14] following [32], is that the exact Schrödinger equation has a conserved flux

F = i (Ψ∗∂zΨ−Ψ∂zΨ
∗) . (3.35)

Evaluating the frequency dependence close to the horizon, we find

F ∼ ω . (3.36)

Now at the boundary, we can write [14]

F ∼ |D1 +D2|2 ω (Re(σ)) . (3.37)

This immediately fixes

Re(σ) ∼ ω2ν−1 . (3.38)

Finally, noting that for all values of α, ν = 3/2, we find

Re(σ)|dilaton black hole ∼ ω2 . (3.39)
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The ω2 behavior of the conductivity, independent of the value of α, is intriguing.

We do not have a good understanding for this universal result. Mathematically it

arises because the coefficient c in the near-horizon potential always takes the value

2, eq.(3.20). However one gets the feeling that something deeper is at work here

which merits further understanding. The same behavior of the conductivity was also

obtained in some cases in [14], and has been proved to hold in general for black

branes with a near-horizon AdS2 geometry in [37, 38]. However, here we find that

this behavior emerges under far more general circumstances.

Let us also note that the real part of the conductivity should have a delta function

Drude peak at ω = 0. This follows on general grounds from the conservation of

momentum. It is also a consequence of the Kramers Kronig relation and an expected

pole in the imaginary part of σ, see for e.g., [35], [6]. We have ignored this delta

function contribution in the discussion above and have only focused on the behavior

of the remaining regular part of the conductivity.

3.3 More general attractors

There is reason to believe that the universal low-frequency behaviour of the conduc-

tivity found above continues to be true even for some of the other classes of attractors

considered in section 2.2.1. Here we present some additional evidence in support of

this, leaving a more detailed analysis for the future.

3.3.1 Case 3

Consider as an example case 3) which is a limiting situation where the potential

vanishes very rapidly. In this case the effective potential takes the form

Veff (φ) = Q2 Exp
(
−Aeαφ

)
, (3.40)

which would arise in a theory where the gauge coupling function f 2 is characterized

by
1

4
f(φ)2 = Exp

(
Aeαφ

)
. (3.41)

Expressing everything in terms of z, and substituting the solution (2.34) into the

effective Schrödinger potential (3.15), we find

V (z) =
2

z2

(
1 +

3

log(−z)
+ . . .

)
(3.42)

The leading order potential near the horizon, where |z| → ∞, is therefore still

2/z2. As a result we expect the low frequency conductivity to behave as σ ∼ ω2 in

this case as well.
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4. Discussion

In this paper, we have shown that charged dilaton black branes in AdS provide a

rich playground for studying black hole physics and holographic condensed matter

physics. The basic features, for the standard charged dilaton branes with gauge-

coupling function f 2 ∼ e2αφ, are:

• The near-horizon metric of the black holes has a Lifshitz-like symmetry in the

metric, with a dynamical critical exponent z that depends on α, although the full

background solution breaks the symmetry. This near-horizon structure is universal

for black holes of arbitrary charge and asymptotic coupling, at fixed α; this represents

a generalization of the attractor mechanism to this class of (much less symmetric)

black branes.

• The ground state at finite charge density has vanishing entropy at extremality, and

positive specific heat, as expected for a garden-variety condensed matter system.

• The T = 0 AC conductivity behaves (apart from a delta function at zero frequency)

as σ(ω) ∼ c(α) ω2 for all values of α.14 This universality is intriguing, and needs to

be understood better.

• At finite but low temperature, there are plentiful low-energy degrees of freedom.

Compared to a 2+1 dimensional CFT where the entropy density (and shear viscosity

[36]) scale like T 2 at low temperature, our system has s ∼ T 2β (with a similar behavior

for the viscosity). Since β < 1, there are more low-energy degrees of freedom in these

states with finite charge density than would be present in a CFT.

• Our system, for β = 1
2

(α =
√

2), has similarities to a Fermi gas in the crudest ther-

modynamic properties. However, we expect that the correlation functions actually

agree with those of a Lifshitz-like theory with β = 1
2
.

Some clear directions for further work are as follows:

• It will be interesting to compute the temperature dependence of the conductivity

for frequencies in the range ω � T � µ and see how this scales with T, µ.

• Instead of the electrically charged case we can easily study a magnetically charged

black brane using electromagnetic duality. In the dual CFT this gives us the response

at non-zero magnetic field. Once again at zero temperature the entropy vanishes,

and the duality map allows the thermodynamic properties to be easily deduced.

Perhaps more interesting is the case of a dyonic black brane, which carries both

electric and magnetic charge. Here the effective potential which governs attractor

behavior has a minimum which is at a finite value for the dilaton. The resulting

14More correctly, as was discussed above, in view of possible corrections becoming important in

the near-horizon region it is best to introduce a small non-zero temperature and interpret this result

as the conductivity in the range, T � ω � µ.
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entropy is now non-zero and the near-horizon geometry is AdS2 × R2 as in the

extremal Reissner-Nordström black brane case. It will be interesting to see if the

resulting thermodynamics and transport properties throw further light on the nature

of charge carriers and their interactions in the boundary field theory.

• Our considerations can be easily generalized to include an axion. In this case

the duality group can be promoted in supergravity to a full SL(2, R) action, using

which solutions where both the axion and dilaton are activated and which carry both

electric and magnetic charges can be obtained. The dual field theory would now have

a non-zero Cherns Simons term and this could lead to a rich set of possibilities both

for critical behavior and for possible insulator behavior obtained by deforming away

from the critical point 15.

• Several recent papers have found interesting evidence of non-Fermi liquid states

arising from the physics of probe fermions in the AdS-RN black hole [39, 40, 41,

42, 43]. It could be worthwhile to generalize these considerations to the family of

solutions discussed here, since the thermodynamic properties are more amenable to

a conventional dual interpretation.

We leave these fascinating questions for the future.
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A. Extremal branes: from near-horizon to infinity in AdS

In this appendix, we obtain numerical solutions that interpolate between the near-

horizon scaling solution eq.(2.13) and AdS4.

The strategy for obtaining such a solution is to numerically integrate the equa-

tions of motion (2.4), (2.5), and (2.6) using standard techniques (NDSolve in Mathe-

matica 7) starting near w = 0 with initial data taken from the near-horizon solution.

However, the near-horizon solution is exact, so numerical integration using initial

data drawn from it simply reproduces the near-horizon solution unmodified. To nu-

merically integrate to a solution that is asymptotically AdS4, we must also take into

account the subleading corrections to the near-horizon solution. (This is analogous

to the case of an extremal Reissner-Nordström black hole – the near horizon-solution

is an exact solution to the equations of motion, however, subleading near-horizon

corrections are permitted and allow the black hole to be embedded in asymptotically

flat spacetime.)

By adding the subleading correction, we introduce an additional parameter in

the near-horizon solution – the strength of the perturbation.

A.1 Allowed corrections to the near horizon solution

We must look for the allowed corrections to the near horizon solution eq.(2.13).

We start with a fairly general ansatz for the modification to the metric:

a(w) = C2w (1 + d1w
ν1)

b(w) = wβ (1 + d2w
ν2) (A.1)

The form of the perturbation of φ is determined from the ansatz for b by the

equation of motion (2.5):

φ(w) = −K log(w) + C3 + d3w
ν2 (A.2)

where d3 = 2β+ν2−1
2K

d2.

We first note that ν1 = ν2. This can be seen by substitution of the ansatz into

eq.(2.4). Since we require both ν1 and ν2 to be positive, the two terms proportional

to wν1 and wν2 cannot separately cancel, so ν1 = ν2 ≡ ν. (Even if we allow negative

solutions, it turns out that allowing ν1 6= ν2 yields only one consistent perturbation:

ν1 = −4+3α2

4+α2 for which d2 = 0. This solution can also be obtained considering the

perturbation with ν1 = ν2.)

We now substitute the ansatz into eq.(2.4) and eq.(2.6), which we solve to leading

order in w. We will use one of the equations to solve for d1 in terms of d2 and ν.
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Substituting into the remaining equation will result in a quartic equation for ν. There

will be no constraint on d2, which is a free parameter that determines the strength of

the perturbation. (The structure is similar to that of an eigenvalue problem: We are

looking for vectors (d1 d2) in the kernel of some 2×2 matrix. The matrix depends on

ν and ν2, hence we expect the condition that the determinant of the matrix vanishes

to yield a quartic equation for ν.)

Substituting the ansatz into eq.(2.4) implies

d1 =

(
2(1 + β)(1 + 2β)

(2β + 2 + ν)(2β + 1 + ν)
− 1

)
d2 (A.3)

Using this expression for d1, eq.(2.6) is satisfied to leading order if ν satisfies the

following quartic equation:

(ν + 1)(4β + ν)
(
−4β2 + (2β + 1)ν − 6β + ν2 − 2

)
= 0 (A.4)

The only positive root is

ν =
1

2

(
−2β +

√
(2β + 1)(10β + 9)− 1

)
=
−3α2 +

√
57α4 + 184α2 + 144− 4

2 (α2 + 4)
. (A.5)

This agrees with eq.(2.58).

To find all allowed perturbations we must also consider values of ν for which

eq.(A.3) is singular – either d1 = 0 or d2 = 0. This happens if (2β+2+ν)(2β+1+ν) =

0. Both these roots are negative, so they do not concern us here. However, for

reference we note that the finite temperature solution eq.(2.42) is obtained from

choosing ν = −2β − 1 = −3α2+4
α2+4

for which d2 = 0. We have not explored what

happens when we consider the other negative values of ν, perhaps they also give rise

to interesting solutions.

Finally, we observe that the constraint eq.(2.7) is satisfied for ν given by eq.(A.5)

and d1 given by eq.(A.3), as required.

The final form of the perturbed solution is eq.(A.1) and eq.(A.2) with ν given

by eq.(A.5), and d1 related to d2 according to eq.(A.3).

A.2 Numerical integration

Here we present results of the numerical integration.

Initial data for numerical integration is taken from the modified near-horizon

solutions (A.1) and (A.2). Figures 1 and 2 show the resulting solution for α = 1.

The strength of the perturbation was chosen to be d1 = −.514219, so that the solution

meets the condition that b′(r)→ 1 as r →∞. (For other negative values of d1, b
′(r)

approaches a constant which is different from one, a coordinate transformation then
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Figure 1: Numerical solution interpolating between the near horizon solution and AdS4
for α = 1 and d1 = −.514219. The second plot shows that a′(r) and b′(r) approach 1. Solid

lines denote a, dashed lines denote b.
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Figure 2: Numerical solution for φ, for α = 1.

brings the solution back to a form with the standard asymptotics of AdS4 space. For

positive d1 the numerical solution becomes singular.)

Figures 1 and 2 clearly show that a(r) = r and b(r) = r for large r, so the

solution is asymptotically AdS4. The dilaton approaches a constant, φ0.
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A similar solution is also obtained for other values of α.

The solution above corresponds to a particular value of the two parameters Q and

φ0, determined by the choice of gauge for the near-horizon solution (2.13). However,

it is straightforward to use a scaling symmetry and the freedom to add a constant

to φ(r) to obtain solutions for any values of Qe−αφ0 and φ0. We can obtain a valid

solution with a different value of φ0 by adding a constant δφ0 to the solution φ(r);

with Qe−αφ0 unchanged. Solutions for different values of Q2e−2αφ0 can be obtained

by a rescaling r → λr, t→ t/λ and xi → xi/λ as described in the main text.
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