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Shamit Kachru1,2,3, Dušan Simić1,2,3 and Sandip P. Trivedi4,1,2

1Stanford Institute for Theoretical Physics, Stanford University

Stanford, CA 94305 USA

2 SLAC, Stanford University

Stanford, CA 94309 USA

3 Kavli Institute for Theoretical Physics

Santa Barbara, CA 93106 USA

4 Tata Institute for Fundamental Research

Mumbai, 400005, India

Abstract: We construct a large class of non-supersymmetric AdS-like throat geometries in

string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The

scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken

supersymmetry. The large hierarchy of energy scales in these geometries is stable. We estab-

lish this by showing that the dual gauge theories do not have any relevant operators which

are singlets under the global symmetries. When the geometries are embedded in a compact

internal space, a large enough discrete subgroup of the global symmetries can still survive to

prevent any singlet relevant operators from arising. We illustrate this by embedding one case

in a non-supersymmetric orbifold of a Calabi-Yau manifold. These examples can serve as a

starting point for obtaining Randall-Sundrum models in string theory, and more generally

for constructing composite Higgs or technicolor-like models where strongly coupled dynamics

leads to the breaking of electro-weak symmetry. Towards the end of the paper, we briefly

discuss how bulk gauge fields can be incorporated by introducing D7-branes in the bulk, and

also show how the strongly coupled dynamics can lead to an emergent weakly coupled gauge

theory in the IR with matter fields including scalars.
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1. Introduction

The Randall-Sundrum model [1,2] provides a solution to the hierarchy problem different from

supersymmetry. The essential idea is to have a five dimensional AdS5-like warped spacetime

which can give rise to a large hierarchy of scales. By suitably locating the standard model

fields in such a spacetime and tying the hierarchy of scales in the warped background to the

breaking of electroweak symmetry, one can try to construct a workable model of electroweak

symmetry breaking.

In this paper we will take some steps towards constructing such a model in string the-

ory. String compactifications which realize some of the basic physics of the Randall-Sundrum
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model have already been described in [3,4] and many subsequent papers. However, these con-

structions are based on compactification of SUSY-preserving AdS throat geometries. There-

fore, the first question we must address is: can a geometry with a long throat, and thus a

large hierarchy of scales, be stable in the absence of SUSY?

The worry is that once SUSY is broken, relevant operators can be generated in the dual

field theory (say at the cutoff, where one glues the throat into a compact geometry). These

would destroy the throat geometry. These operators, in the gravity picture, correspond to

modes that grow rapidly in the interior of the throat (as one goes towards the infra-red), and

cause the throat to pinch-off at a high scale. In this paper, we argue that one can construct

non-supersymmetric throat geometries (and compactifications incorporating them) that avoid

this particular problem.

The basic idea is to find theories with sufficiently rich global symmetries to forbid all

relevant operators. In theories with scalars, one operator which cannot be forbidden by

linearly realized symmetries is a singlet scalar mass of the form φ†φ; but as observed in [5],

such operators obtain large anomalous dimensions in the limit of strong ’t Hooft coupling,

and are dual to string states. Combining these ingredients, we obtain non-supersymmetric

theories with only marginal or irrelevant global singlet perturbations. Any global singlet

marginal perturbations, if they become marginally relevant, can end the throat geometry,

but only after a long period of RG flow, leaving a macroscopic throat. Our goal will be to

realize this picture in concrete examples, much in the spirit of [5].1

One might wonder whether such constructions, if they exist, would be very contrived

or non-generic. We will actually find, on the contrary, that the simplest gauge/gravity dual

pairs give rise rather easily to large classes of examples. We start with the famous duality

between N = 4 super Yang-Mills and type IIB string theory on AdS5 × S5 [6]. We find that

an infinite class of non-supersymmetric orbifolds of this dual pair [7,8] preserve SU(3)×U(1)

global symmetries, and have all the properties required to realize our scenario. In this class,

we do not yet have a concrete handle on how the throat may round off in the deep IR (when

marginally relevant operators in the UV have grown strong).

To obtain a model where we have a slightly more complete picture of the IR physics, we

then turn to the theory of D3-branes and D5-branes in the conifold geometry [9,10]. We show

that simple orbifolds of this theory again break SUSY while maintaining the absence of global

singlet relevant operators. In this case, we can use the Klebanov-Strassler solution [10] to give

a picture of the IR physics which should govern some examples. We further exhibit a concrete

compactification of such a SUSY-breaking throat, preserving sufficient global symmetries to

stabilize the hierarchy.

Given a concrete model with the IR geometry of the throat under control, we can discuss

1For clarity, we should describe what has been learned on top of the basic picture advocated in [5]. We

believe the present work demonstrates that the existence of examples is much more generic than one might

have believed, that one can suitably “round off” such examples in the IR in a way that allows generation of

composite scalars, and that one can compactify these throats while preserving sufficient discrete symmetries

to protect the hierarchy.
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in more detail how one might obtain gauge and matter fields at low energies. We show that

two promising avenues are to realize bulk gauge fields via D7-branes stretching down the

throat, or to have an emergent gauge sector arise in the IR on anti-D3 branes localized at the

tip. The latter system also gives rise to light composite Higgs-like scalars, which break the

gauge symmetry at low energies.

The full organization of our paper is as follows. In §2, we present an infinite class of non-

supersymmetric orbifolds of AdS5 × S5 which have no global singlet relevant operators. We

then turn, in §3, to brief overview of the Klebanov-Witten (KW) and Klebanov-Strassler (KS)

theories of D-branes at the conifold. §4 details the construction of non-supersymmetric orb-

ifolds of these theories which have the required properties. In §5, we turn to the construction

of compactifications which incorporate such throats, and show that the full compact geometry

can maintain a large enough subgroup of the global symmetry group to still forbid all relevant

operators. Having established the existence of such stable throat geometries, we turn in §6

to adding (very crude) toy models that give rise to interesting IR physics (i.e., some weakly

interacting sector with light gauge bosons, fermions, and scalars). In appendix A, we provide

a detailed discussion of how a discrete group we use in §5 acts on operators of the KS field

theory, while in appendix B, we discuss some issues related to the Horowitz-Orgera-Polchinski

instability of non-supersymmetric orbifolds [11].

2. Orbifolds of N = 4 Theory

We begin by considering a large class of non-supersymmetric orbifolds of the N = 4 theory.

These have a dual description as non-supersymmetric orbifolds of IIB string theory on AdS5×

S5 [7,8]. The N = 4 theory has a global SO(6) R symmetry group, which corresponds in the

gravity description to the isometries of the S5. In the examples we consider, after orbifolding,

this global symmetry is broken to an SU(3)×U(1) subgroup. We show that at large ’t Hooft

coupling, where the supergravity description is valid, there are no relevant operators in the

gauge theory which are singlets under the surviving global symmetries. This shows that the

throat geometry is stable in all these examples even though supersymmetry is broken. 2

Before proceeding, we should describe the current state of knowledge about non-supersymmetric

orbifolds of AdS/CFT [12–14]. The non-supersymmetric orbifolds with fixed points of the

orbifold action on S5 have twisted sector closed-string tachyons in the gravity regime. The

instability represented by these tachyons seems to correlate with weak-coupling Coleman-

Weinberg instabilities in the dual field theories (at small ’t Hooft coupling) [12].

On the other hand, freely-acting orbifolds (which are the only kind we consider) do

not generate any apparent tachyonic instabilities in the gravity regime – the twisted sector

strings have large positive mass proportional to the size of the space. Therefore, at strong

’t Hooft coupling, the AdS/CFT correspondence suggests that there is a large-N fixed line,

destabilized by 1/N corrections.

2Note that the supersymmetry breaking is not soft, and occurs in the ultraviolet. At large N , some

properties of the daughter theory are however inherited from the parent SUSY theory.
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In the small radius regime of freely-acting orbifolds, the story is different. The field theory

at weak ’t Hooft coupling and large-N is not at a fixed point (even at the planar level), due

to the generation of double-trace couplings [13,14].

A more subtle issue in these examples is possible non-perturbative instabilities at strong ’t

Hooft coupling. Horowitz, Orgera and Polchinski [11] analyzed non-perturbative decay chan-

nels of precisely the orbifolds we consider. We summarize their analysis, and its implications

for our constructions, in appendix B.

2.1 Constructing the field theories

The metric of AdS5 × S5 spacetime is,

ds2 =
r2

L2
Ads

(−dt2 + dx2
i ) +

L2
AdS

r2
dr2 + L2

AdS dΩ
2
5. (2.1)

Here dΩ2
5 is the volume element of a unit S5, and LAdS is the common radius of the AdS5 and

the S5. This geometry is obtained as the near-horizon geometry of D3-branes which extend

along, t, xi, i = 1, · · · 3, and are transverse to the six coordinates y1, · · · y6 [6].

The orbifold we consider is obtained by identifying configurations in IIB string theory

related by the action of the Zk generator:

α = R( 2π
k

)(−1)F . (2.2)

Here,

R( 2π
k

) = exp[
2πi

k
(J12 + J34 + J56)], (2.3)

is a simultaneous rotation by the angle 2π
k in the y1 − y2, y3 − y4, and y5 − y6, planes. This

rotation acts on the S5 and leaves the AdS5 invariant. The second factor in eq.(2.2), (−1)F ,

weights spacetime fermions and bosons with opposite signs. We only consider the case where

k is an odd integer. In this case, due to the presence of the (−1)F factor, αk is unity on both

spacetime fermions and bosons.3

The orbifold has no fixed points. If Z1 = y1 + iy2, Z2 = y3 + iy4, Z4 = y5 + iy6 are the

three complex coordinates transverse to the D3 branes, then under the action of α,

(Z1, Z2, Z3) → (exp[
2πi

k
]Z1, exp[

2πi

k
]Z2, exp[

2πi

k
]Z3). (2.4)

The only fixed point would be at Z1 = Z2 = Z3 = 0 but this point is not present in the

near horizon geometry, where the flux blows up the S5 to non-zero radius. This makes it

relatively easy to determine the spectrum of light states. In the supergravity approximation,

these states are simply those KK modes of the AdS5 × S5 background which are invariant

under the orbifold symmetry. The masses of these modes (and the dimensions of the dual

operators) are the same as in the N = 4 theory.

3If k is even the orbifold would project out all spacetime fermions and correspond to an orbifold of Type 0

string theory, as described in e.g., [11]. We do not consider this case here.
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To understand what subgroup of the SO(6) R-symmetry group is preserved by the orb-

ifold, let us note that the S5 can be described as a U(1) fibration over CP 2. The orbifold is

obtained by identifying points along the fiber circle related by a shift of 2π
k . This preserves the

SU(3) symmetry of the base CP 2 and also the U(1) symmetry corresponding to continuous

shifts along the fiber. Thus the SO(6) global symmetry of the N = 4 theory is broken to an

SU(3) × U(1) subgroup after the orbifold identification.

To preserve supersymmetry the orbifold must have SU(3) holonomy. SO(6) ∼ SU(4)

has a 4 dimensional spinor representation (ψ1, ψ2, ψ3, ψ4), where the first three components

transform as a triplet of SU(3) and the last is a singlet. Under the orbifold symmetry, α,

(ψ1, ψ2, ψ3, ψ4) → (−e
−iπ

k ψ1,−e
−iπ

k ψ2,−e
−iπ

k ψ3,−e
3iπ
k ψ4) (2.5)

(these charge assignments will become clear when we consider the gauge theory below). For

k = 3 we see that this leaves ψ4 invariant, so that the resulting holonomy lies in SU(3) and

the orbifold preserves N = 1 susy. For all the other cases, when k > 3, no component is left

invariant, and supersymmetry is broken.

We now turn to the gauge theory description. As is well known, the N = 4 theory can be

described in N = 1 language as follows: it has three chiral multiplets and one vector multiplet.

A U(1) subgroup of the full SO(6) R-symmetry is manifest in this description. Under it the

scalar components of the three chiral multiplets, which correspond to the three coordinates,

Z1, Z2, Z3, have R-charge 2/3, their fermionic partners have R-charge −1/3 and the gaugino

has charge +1. Besides the U(1)R symmetry this description also makes an additional SU(3)

subgroup of the SO(6) R-symmetry group manifest. The three chiral superfields transform

as a triplet of the SU(3). The theory has a superpotential which is trilinear in the chiral

superfields and which is also manifestly SU(3) × U(1)R invariant. The SU(3) symmetry we

have identified in this way in fact corresponds to the SU(3) isometries of the base CP 2 in

the gravity description while the U(1)R corresponds to continuous shifts along the fiber.

It then follows that the rotation R( 2π
k

) in eq.(2.3) acts with a phase e
3πi
2k

Q on the fields of

the N = 4 theory, where Q is the R-charge of the field. Thus the full action of the generator

α of eq.(2.2) is by a phase e
3πi
2k

Q(−1)F . As an aside, note that the three fermionic partners

of the scalars and the gaugino lie in a 4 dimensional spinor representation of SO(6). The

transformation, eq.(2.5) follows from this. Now to determine the resulting gauge theory,

after the orbifold projection, we also need to embed the Zk discrete symmetry in the SU(N)

gauge symmetry of the N = 4 theory. Here we take N = nk. And on the N dimensional

fundamental representation of SU(N) we take the generator of the Zk symmetry to act in a

block diagonal fashion as:

([1]n×n, [e
2πi
k ]n×n, [e

4πi
k ]n×n · · · , [e

2(k−1)πi

k ]n×n), (2.6)

so that it multiplies each n × n subspace by a kth root of unity. The action on any other

representation follows from this. This is just the simplest example of the general procedure

described in [15] for computing the spectrum of D-branes at orbifold singularities.
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Fields which survive in the orbifold theory are invariant under the simultaneous action by

e
3πi
2k

Q(−1)F and the action on the gauge indices. It is easy to see that the orbifold projection

breaks the SU(N) gauge symmetry to SU(n)k resulting in a k node quiver.4 The scalars and

fermions give rise to bi-fundamental matter. In particular, for k > 3, there are no fermions

which transform in the adjoint representation of SU(n)k, and thus no gauginos. This shows

that supersymmetry is broken.

Let us give the resulting spectrum in full detail for the case k = 5. The 3 complex scalars

give rise to:
SU(n)1 SU(n)2 SU(n)3 SU(n)4 SU(n)5

Qi
1 1 1 1

Qi
2 1 1 1

Qi
3 1 1 1

Qi
4 1 1 1

Qi
5 1 1

(2.7)

Here the superscript i takes three values, i = 1, 2, 3,. The fields Qi
m,m = 1, · · · 5, arise from

the complex scalar Zi in the N = 4 theory. The fermions give rise to :

SU(n)1 SU(n)2 SU(n)3 SU(n)4 SU(n)5

ψi
1 1 1 1

ψi
2 1 1 1

ψi
3 1 1 1

ψi
4 1 1 1

ψi
5 1 1 1

λ1 1 1 1

λ2 1 1 1

λ3 1 1 1

λ4 1 1 1

λ5 1 1 1

(2.8)

The ψi
m, i = 1, 2, 3, fermions arise from the fermions in the chiral multiplets (in N = 1

language), while the λm fermions arise from the gaugino.

For those who find quiver diagrams more useful, the quiver summarizing this field content

is given below.

2.2 Operator analysis

Having understood the matter content of the field theory dual to the orbifold we can now

investigate whether there are relevant operators which would destabilise the throat. In the

gravity picture these correspond to modes which would grow exponentially fast in the radial

direction. In particular we are interested in relevant operators which are singlets under the

SU(3) × U(1)R global symmetry.

4There are also extra U(1) factors which we are not being careful about.
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Figure 1: Quiver diagram of the k = 5 case. White arrows denote fermions, and black arrows denote

scalars. We thank the authors of [13] for permission to reproduce this figure.

For this purpose it is useful to examine first how the relevant operators in the N = 4

theory transform under the SU(3) × U(1)R symmetry. Let us start with single trace gauge

invariant operators.

The N = 4 theory has three kinds of operators which are bilinears in the scalar:

1) Tr(ZiZj) : These have dimension 2. They transform like a 6 of SU(3) and carry

charge 4/3 under U(1)R. Thus they are not singlets under SU(3) × U(1)R. The operators,

Tr(Z̄iZ̄j), which are complex conjugates transform in the complex conjugate representation

under the global symmetries and are also not singlets.

2) Tr(ZiZ̄j) −
1
3δ

i
jTr(Z

iZ̄i): These also have dimension 2. They are singlets under the

U(1)R but transform like an 8 of SU(3) and are therefore not singlets under the global

symmetry.

3)Tr(ZiZ̄i): This operator is a singlet. However it has an anomalous dimension which

goes like ∆ ∼ (gsN)1/4 and thus is much bigger than unity in the large ’t Hooft coupling

limit. It is therefore not relevant.

In the orbifold theory there are also scalar bilinears which arise from the Qi
m fields and

their complex conjugates. However these operators inherit their SU(3) × U(1) quantum

numbers and also their anomalous dimensions (to leading order in N) from the N = 4 theory.
5 Thus we conclude that there are no scalar bilinears in the orbifold theory which are global

singlet relevant operators (GSROs).

The discussion above brings out one of the central points of the paper, so it is worth

emphasising in more general terms. At strong coupling (large ’t Hooft coupling) in the

supersymmetric parent theory, only protected operators have anomalous dimensions of order

unity; these operators are charged under the global symmetries of the parent theory and thus

are not GSROs. If we can arrange for a sufficiently big subgroup of the global symmetry

group to be preserved by the daughter orbifold theory, it too will not contain any GSROs. In

5This is consistent with the fact that in the sugra approximation the mass of invariant KK modes is left

unchanged by the orbifolding procedure.
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particular it was vital in the example above that the operator Tr(ZiZ̄i) obtains an anomalous

dimension bigger than 4 at strong coupling in the N = 4 theory. This ensures that the

daughter theory does not suffer from a hierarchy problem even though it has elementary

scalars and no supersymmetry! In contrast, at weak ’t Hooft coupling, the operator Tr(ZiZ̄i)

has (approximately) dimension 2 and is thus relevant. It would be generated at the cut-off

and destabilise the orbifold field theory. The importance of this large anomalous dimension

at strong coupling was emphasised in [5].

Continuing with our discussion of possible GSROs, one class of dimension three operators

in the N = 4 theory arise from Lorentz invariant, fermion bilinears. Denoting the three matter

fermions by ψi, i = 1, · · · 3 and the gaugino by λ, there are three operators of this type:

1)Tr(ψiψj): R-charge −2
3 .

2)Tr(λλ): R charge 2.

3)Tr(ψiλ): R charge 2/3.

Thus none of these are global singlets. As a result no fermion bilinear global singlets

arise in the daughter theory. Actually there is an even quicker argument which one can use

in this case: the daughter theory has fermions in only bi-fundamental representations (no

adjoints). It is easy to see that no Lorentz invariant, gauge invariant fermion bilinears can

be made from these.

Additional dimension 3 operators in the N = 4 theory arise from scalar trilinears. Each

scalar in the trilinear can be one of the Zi or the Z̄i fields. However since the Zis have

R-charge 2/3 it is easy to see that no such trilinear combination can be R-charge neutral.

Thus, no GSROs can arise from these operators either.

Having discussed all possible single trace GSROs, let us now turn to double trace op-

erators. The smallest dimension of a single trace gauge invariant in the N = 4 theory is 2.

Since to leading order in N the anomalous dimensions of double trace operators are simply

the sum of their single trace constituents, it follows that any double trace operator must have

at least dimension 4 and can therefore at most be marginal. This completes our discussion

of possible GSROs in the orbifold theory. We see that there are no such operators and thus

the throat in the dual gravity description is stable.

Note that we have not discussed possible global singlet marginal operators (GSMOs).

These are operators whose dimension is 4, up to small corrections. Such operators are in fact

present in the parent theory and thus also arise in the daughter theory. One example is a

double trace operator made out of single trace scalar bi-linears. No symmetry prevents these

operators and they will be generated by radiative effects even if one sets them to zero in the

ultraviolet. However since these operators are marginal their presence will not destabilise the

hierarchy, which is our main concern here. In fact such operators can play an important role

in ensuring the vacuum stability of the orbifold theory. To leading order in N the orbifold

theory has flat directions - these are inherited from the N = 4 theory and correspond to Zk

symmetric displacements of the D3-branes along the Coulomb branch. These flat directions

will be lifted by quantum effects and could potentially lead to Coleman-Weinberg type run-

away instabilities. Since the GSMOs will be radiatively generated anyways, one might as
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well add them to the tree level Lagrangian with appropriately small coefficients. These

coefficients (with sign) can be chosen to lift at least some of the flat directions. We will not

pursue a complete analysis of the resulting stability of these orbifold theories here, see [5] for

some discussion. In the subsequent section an example is constructed in detail based on an

orbifold of the Klebanov Strassler theory. In this example we will see that there is no vacuum

instability.

Let us end with one final comment. We have used the continuous symmetry SU(3) ×

U(1)R to prevent relevant operators. However it is well known that realistic compacifications

of string theory, like Calabi-Yau compactifications, do not give rise to isometries. So one

might be worried that after compactification these isometries will be broken and the relevant

operators cannot be prevented. However, one can easily construct examples of Calabi-Yau

manifolds with unbroken discrete symmetries. A moderately big discrete symmetry can often

suffice to prevent operators of dimension < 4. This will be illustrated in detail in the example

based on the Klebanov-Strassler theory below.

3. An Overview of KW and KS

While the discussion of N = 4 orbifolds already provides a wide class of non-SUSY theories

without GSROs, it is useful to study a single example in more detail. One would explicitly

like to construct a compactification preserving enough symmetries to protect the hierarchy,

and also provide a more detailed picture of the emergent IR physics. For these purposes, we

find it useful to study an example based on D-branes at the conifold. Below we construct such

an example based on an orbifold of the Klebanov-Strassler theory. In this section we review

some essential features of the Klebanov-Witten and the Klebanov-Strassler theories, [9], [10],

and then turn to the non-supersymmetric orbifold in the section which follows.

3.1 The Klebanov-Witten (KW) Theory

The Klebanov-Witten theory is obtained by placing D3 branes at the tip of a conifold. The

resulting gauge group is SU(N) × SU(N), with chiral multiplet matter fields Ai, B
j , i =

1, 2; j = 1, 2 transforming as ( , ) and ( , ) respectively under the gauge symmetries. The

non-anomalous global symmetries include a Baryonic symmetry, U(1)B , under which Ai have

charge +1 and Bj have charge −1, and a U(1)R R-symmetry, under which the fields Ai, B
j

have charge 1/2. The theory also has an SU(2) × SU(2) flavor global symmetry. The fields

Ai, i = 1, 2 transform as a doublet of the first SU(2) and the Bj, j = 1, 2 as a doublet of

the second SU(2). There is in addition a discrete Z2 symmetry which we will refer to as

Z2exchange below. This involves the exchange Ai ↔ Bj accompanied by complex conjugation.

The dual gravity description of this field theory involves type IIB string theory on

AdS5 × T 1,1. The U(1)R symmetry corresponds to an isometry of the T 1,1 manifold. T 1,1

has an O(4) symmetry group. The SU(2) × SU(2) flavor symmetry is a subgroup of O(4).

The Z2exchange mentioned above corresponds to acting by a reflection element of O(4) (with
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determinant −1), accompanied by Ω(−1)FL where Ω stands for orientation reversal on the

world sheet. Under Z2exchange, the two forms B2, C2, have odd intrinsic parity.

Of special importance to us, as was discussed in the previous section, are relevant op-

erators, in particular operators with dimension less than 4, which are Lorentz scalars and

singlets under the global symmetries. We turn to studying these next. The spectrum of KK

modes for the KW theory was calculated by Ceresole and collaborators [16]. It is easy to

read off the spectrum of all relevant operators from their work. We will skip some of the

details here, and only discuss operators which are singlets under the SU(2) × SU(2) global

symmetry.6 Operators which are not SU(2) × SU(2) singlets, can be naturally forbidden by

preserving a large enough subgroup of SU(2) × SU(2) in the non-supersymmetric model we

construct in §4.

There is only one operator of dimension 2 which is a singlet under the SU(2) × SU(2)

global symmetry. It is Tr(|A|2 − |B|2), which is the scalar component of the U(1)B current

multiplet. Here we are being a bit schematic – the trace is over the colour degrees of freedom,

and also the SU(2)×SU(2) flavour indices. Note that this operator is odd under the Z2exchange

symmetry, and is therefore not a singlet of the full global symmetry group. This means it

will be important for us to maintain the Z2exchange symmetry in our non-supersymmetric

construction.

At dimension 3, there are three operators which are singlets under the SU(2) × SU(2)

global symmetry. Two of these are the gaugino bilinears of the two gauge groups, Tr(λλ).

However these carry R-charge 2 under the U(1)R. The third operator is Tr(A1B1A2B2 −

A1B2A2B1). This is the same operator which appears in the superpotential, but here the

operator we are considering only contains the scalar components of the chiral superfields A,B.

Once again this operator has R-charge 2. Thus there are no single trace global singlets of

dimension < 4 in this theory.

Next we turn to double trace operators. It is easy to see that there is in fact one

double trace operator which is a global singlet in the theory with dimension 3. It is given

by, Tr(AB)Tr(AB). Here, the bar in the second term indicates the complex conjugate of

Tr(AB). The trace is over colour indices and the SU(2) × SU(2) flavour indices have been

contracted between the two single trace operators to result in a singlet under the full flavour

group. In the large N limit the dimension of a double trace operator is given by the sum of the

dimensions of the two single traces. Since Tr(AB) has dimension 3/2 it then follows that this

double trace operator has dimension 3. We will describe how this operator is eliminated in our

non-supersymmetric construction in §4, once we have provided the relevant quiver diagram.

The other dimension 3 SU(2)2 singlet double-trace operators, of the form Tr(AB)Tr(AB)

(and their conjugates), have R-charge 2, and can be forbidden by maintaining a large enough

subgroup of U(1)R.

In conclusion, in the KW theory there is only one operator with dimension < 4 which is

a global singlet. It is the double trace operator Tr(AB)Tr(AB).

6We thank A. Dymarsky and O. Aharony for discussions in this regards, and A. Dymarsky for informing

us of some minor corrections to the results in [16].
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Before proceeding further it is worth emphasizing a few important points:

• First, the field theory above has scalars in it. At weak coupling this means that there is

always a global singlet of dimension 2; in the KW theory it is of the form Tr(|A|2 + |B|2).

However, we see that at strong ’t Hooft coupling this operator acquires a large anomalous

dimension, and in fact does not correspond to a SUGRA mode, but rather to a string mode.

This is akin to what we saw in the N = 4 theory above, where the scalar bilinear which is an

SO(6) singlet acquires a big anomalous dimension at strong coupling. In the KW case too

this feature plays an important role in ensuring the absence of GSRO’s.

• Second, one may worry that U(1) symmetries which are not R symmetries are always

problematic with regards to a stable hierarchy. From the representation theory of N = 1

superconformal symmetry it is known that the multiplet containing a U(1) current must also

contain a scalar of dimension 2. This scalar must be a singlet under all the continuous global

symmetries and thus is in general problematic.7 We see from the discussion above that this

conclusion can be sometimes avoided. The KW theory has a U(1)B current as was mentioned

above, and in fact the dimension 2 scalar we found above, Tr(|A|2 − |B|2), is the partner of

the U(1)B current. However we see that the theory posses in addition a Z2exchange discrete

symmetry which does not commute with Baryon number. This symmetry prevents the scalar

partner of the Baryonic current from destroying the hierarchy. A similar argument could work

more generally for a Baryon current in a theory which has charge conjugation symmetry.

• Finally, we have been considering a non-compact situation above, where the AdS throat

extends to infinity in the UV and there is no dynamical 4 dimensional gravity. For added

realism we should consider embedding the KW throat in a compact Calabi-Yau manifold. Now

it is well known that there are no continuous isometries in compact Calabi-Yau manifolds with

sufficiently generic holonomy. Thus one would expect that once the KW throat is glued into

the compact Calabi-Yau space, relevant operators which are not singlets under the global

symmetries will also be induced in the theory in the ultra-violet. Such operators will then

destroy the hierarchy. To avoid this conclusion, we can consider situations where a sufficiently

large discrete subgroup of the SU(2) × SU(2) × U(1)R × Z2exchange symmetry8 is preserved

by the Calabi Yau manifold. This could then suffice to prevent relevant operators (with

dimension < 4) from being induced, even after coupling the (approximate) CFT to quantum

gravity. We provide an explicit example in §4 showing that this can indeed happen.

3.2 The Klebanov-Strassler (KS) Theory

The KS theory is a deformation of the KW theory obtained by taking the two gauge groups

to have unequal rank (see the Figure below). The resulting gauge theory has gauge group

SU(N +M) × SU(N) with matter fields Ai, B
j . The U(1)B Baryonic symmetry mentioned

7We thank K. Agashe and R. Sundrum for stressing this concern.
8This notation is a bit loose. The Z2exchange does not commute with the two SU(2)’s. In fact it exchanges

them, and also reverses the U(1)B charges. So the full symmetry group is a semi-direct product, rather than

a product.
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in the discussion of the KW theory continues to be non-anomalous in this theory. The

U(1)R symmetry is now anomalous but a Z2M subgroup survives as a non-anomalous discrete

symmetry of the Lagrangian. The theory has an SU(2)×SU(2) global symmetry which acts

on the Ai, B
j fields as in the KW case. Also the Z2exchange discrete symmetry continues to be

a symmetry in the KS case. The theory undergoes a duality cascade under RG flow. At each

step in the cascade, the rank N changes by N → N −M . In the deep infrared the Z2M R

symmetry is broken spontaneously to a Z2 subgroup. In the far ultraviolet the rank N → ∞,

and the theory approaches the KW case.

NN+M

A1,2

B1,2

Figure 2: Quiver diagram for the KS theory.

In the gravity description, the parameter M corresponds to Ramond-Ramond three-form

flux F3 which is turned on along a non-trivial 3-cycle. The 3-form flux results in the U(1)R
symmetry being broken to Z2M [17]. Since this flux is invariant under the Z2exchange discrete

symmetry which acts as a reflection combined with Ω(−1)FL , the symmetry remains unbroken.

The back-reaction due to the additional three-form fluxes (SUSY requires that NS-NS flux H3

is also turned on) grows in strength in the infrared and results in a deformation of the conifold.

This deformation of the conifold breaks the Z2M symmetry to a Z2 subgroup in the infrared.

In the far ultra-violet the effects of the three-form flux are negligible compared to that of the

5-form and the geometry approaches that of the AdS5 ×T 1,1 case, with logarithmically small

corrections.

Next, we turn to a discussion of operators with dimension < 4 in the KS theory. Since,

as was mentioned above, this theory approaches the KW theory in the ultra-violet up to

logarithmic corrections, the dimension of operators in the UV in the KS case can be obtained

directly from our earlier discussion of the KW case, up to small corrections. There is one

important difference: while the SU(2) × SU(2) and the Z2exchange symmetry are preserved

in the KS case, the U(1)R symmetry is broken to a Z2M subgroup in the KS theory.9 Thus

the global symmetry group available to us in the KS case is smaller. Operators which are

of dimension < 4 and which are not singlets under this smaller global symmetry group can

destabilise the hirarchy. Note that the breaking of U(1)R symmetry to Z2M occurs due to

9It is further broken spontaneously from Z2M to Z2 in the deep infrared. The spontaneous breaking of

Z2M → Z2 is not a worry in the context of perturbations that can destroy the throat. Operators protected by

the Z2M symmetry might be induced in the IR once the symmetry breaks to Z2, but this will not destabilize

the hierarchy.
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an anomaly, and is supressed in M/N . However, in realistic compactifications, one does not

expect (due to tadpole cancellation conditions etc.) that exponentially large values of N are

allowed (even if they were aesthetically tenable); thus this supression by itself is not enough

to ensure the stability of an exponentially large hierarchy.

Looking through the list of operators of dimension < 4 discussed above in the KW theory

again, we see that among the single trace operators the U(1)R symmetry was important in

protecting the hierarchy from the three dimension 3 operators, all of which have R-charge 2.

While the U(1)R symmetry is broken to a Z2M subgroup in the KS case, for M > 1 this is

still a big enough residual symmetry to prevent these operators from being induced. Among

the double trace operators the U(1)R symmetry was important for operators of the form,

Tr(AB)Tr(AB). These have R charge 2 also and therefore they will also be forbidden by

the surviving Z2M symmetry. This only leaves the double trace non-holomorphic operator of

the form, Tr(AB)Tr(AB), which is a singlet under all the global symmetries. It is a GSRO

in the KS theory as well. Thus, we see that in the KS case, as in the KW theory, the only

global singlet operator with dimension < 4 is the double trace operator Tr(AB)Tr(AB).

4. The Non-SUSY Orbifold

We are now ready to consider the breaking of SUSY. This will be accomplished by constructing

an orbifold. Our real interest is in the KS theory, but as in the discussion above it will also

be useful to discuss the KW theory as we proceed.

The orbifold group must involve the unbroken symmetries of the KS solution. Since we

want the resulting orbifold to break SUSY, it must involve the R symmetry group. We have

seen above that the KS theory only preserves an unbroken Z2 subgroup of the underlying

non-anomalous Z2M R-symmetry group.10 The simplest possibility, then, which leaves the

SU(2)2 symmetry untouched, is to consider the orbifold group to be this Z2 subgroup, possibly

combined with discrete subgroups of the U(1)B symmetry.

We will choose to accompany the Z2 R-transformation above with an action of U(1)B
which rotates the A fields by i and the B fields by −i. The result is that we quotient by a

Z2 R-symmetry under which the scalar components of the chiral fields transform as:

A→ −A,B → B . (4.1)

This means the fermionic partners transform by:

ψA → ψA, ψB → −ψB . (4.2)

The gauginos of the two gauge groups transform, as usual under a Z2 R symmetry, as

λ→ −λ . (4.3)

10Note that on the Ai, Bj fields, which carry R-charge 1/2, the generator of this subgroup acts with a phase

of i. This is consistent with the symmetries of the deformed conifold, since the zi variables appearing in (4.4)

are bilinears in A,B, and taking zi → −zi is a symmetry even after deforming the conifold.
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Before proceeding it is important to clarify one point. A different Z2 symmetry can be

defined by combining the Z2 action discussed above with (−1)F , where F is spacetime fermion

number. This new Z2 symmetry has the same action in spacetime but it acts oppositely on

spacetime fermions. As a result it turns out to preserve supersymmetry. Under it, (A,ψA) →

−(A,ψA), (B,ψB) → (B,ψB), while the gauginos are invariant, λ → λ. Orbifolding by this

Z2 gives rise to a SUSY-preserving quiver theory, which has been discussed in [18, 19]. This

quiver is different from the one which we will obtain after orbifolding by the SUSY-breaking

Z2 symmetry described in the previous paragraph. This will become clear when we discuss

the matter content of the SUSY-breaking case in some detail below.

Now let us continue with our discussion of the SUSY-breaking Z2 orbifold in more detail.

Note that the Z2 action has no fixed points in the dual IIB gravity description. The unwarped

conifold is described by the locus

z1z2 − z3z4 = 0 (4.4)

where each of the zi coordinates can be expressed as a bilinear product of one of the A and

one of the B fields. From the transformations of the A and B fields given above, it follows

that under the Z2 -symmetry

zi → −zi . (4.5)

This appears to have a fixed point at the (singular) tip of the conifold zi = 0. However, as in

§3 of [7], this is not the case in the near-horizon limit of N D3-branes probing this geometry.

We can think of (4.4) as a cone with S3×S2 base over a radial direction r, where the S3×S2

shrinks at r = 0. The near-horizon limit chooses a slice of definite size for the S3 × S2,

yielding the geometry AdS5 × T 1,1. The T 1,1 is a slice of the cone at some definite r > 0 in

the above description, and the fixed point at zi = 0 does not survive the near-horizon limit.

Because the Z2 acts freely on AdS5×T
1,1, it is easy to determine the states in the theory

after orbifolding. At the SUGRA level these correspond to KK modes which are invariant

under the orbifold symmetry. In particular, there are no additional twisted sector states we

need to worry about. (There are of course twisted sector string states, but these correspond

to operators of sufficiently high dimension that they are of no concern to us).

On the gauge theory side, in determining the quiver gauge theory which arises after

orbifolding, it is again useful to first consider the KW case. To determine the quiver theory

we must also embed the action of the Z2 in the SU(N) × SU(N) gauge group. Here we

consider the standard embedding (for a discussion of such orbifolds of D-brane theories in

general terms, see [15]). Take N = 2n. In the fundamental representation of SU(N) – in

terms of N×N matrices with unit determinant – the Z2 symmetry is given by (In×n,−In×n).

This is the Z2 action in both of the SU(N) subgroups. It is then easy to see that the resulting

quiver has 4 nodes, each corresponding to a SU(n) gauge group. The scalar fields transform
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as follows:
SU(n)1 SU(n)2 SU(n)3 SU(n)4

Q1 1 1

Q2 1 1

Q3 1 1

Q4 1 1

(4.6)

Here Q1, Q3 arise from the field A1 and Q2, Q4 from the field B1. Similarly there are scalars

which arise from A2, B2 as well, giving rise to two copies of this scalar spectrum.

The fermionic fields transform as follows:

SU(n)1 SU(n)2 SU(n)3 SU(n)4
ψ1 1 1

ψ2 1 1

ψ3 1 1

ψ4 1 1

(4.7)

Here ψ1, ψ3 descend from the fermionic partner of B1, and ψ2, ψ4 descend from the fermionic

partner of A1 in the parent theory. Similarly there are fermions that descend from the

fermionic partners of B2, A2. So again, we get two copies of this fermionic spectrum.

Additional matter also arises from the gauginos in the parent theory. They give rise to

bi-fundamental fermionic matter which transforms as follows:

SU(n)1 SU(n)2 SU(n)3 SU(n)4

λ1 1 1

λ2 1 1

λ3 1 1

λ4 1 1

(4.8)

It is clear from the matter content above that the resulting quiver theory breaks super-

symmetry. For example there are no fermions in the adjoint representation of the quiver

gauge group, and thus no possible gauginos in this theory.

The discussion in the KS case is essentially similar. We start with the gauge group

SU(2n + 2m) × SU(2n) and consider the standard embedding of the Z2 action in the two

gauge groups. This results in a four node quiver with gauge group SU(n + m) × SU(n) ×

SU(n + m) × SU(n) and matter content consisting of bifundamentals which form a quiver

diagram identical to the KW case.

Let us now turn to the global symmetries. The SU(2) × SU(2) global symmetry is still

preserved in the non-supersymmetric quiver theory: the descendants of the A fields transform

as a doublet under the first SU(2) and those of the B fields as a doublet of the second

SU(2). The U(1)B is also preserved, with the descendants of the A,B fields having charge

±1 respectively. A Z2 symmetry analogous to the Z2exchange symmetry in the KW/KS theories

can be defined in the quiver theory. It can be described as follows. Exchange the descendants

of the A,B fields, along with exchanging the two SU(n+m) groups with each other followed
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by charge conjugation. It is easy to see that this keeps the quiver diagram invariant and

thus is a symmetry of the theory. Since it involves the exchange of the A,B fields, this

Z2 symmetry also anti-commutes with Baryon number. We will refer to this symmetry are

Z2exchange below. The KS theory has a Z2M R symmetry which is then spontaneously broken

to a Z2 subgroup (so it is a symmetry in the UV of the solution, but is broken at the tip). The

orbifold is obtained by identifying points in the KS geometry related to each other by this Z2

action. In the orbifold space a ZM subgroup of the Z2M R-symmetry still acts non-trivially

and is a global symmetry in the UV. Thus, the global symmetries of the orbifold theory are

SU(2) × SU(2) × U(1)B × ZM × Z2exchange.

Now, we are ready to discuss the relevant operators in the orbifold theory. At the single

trace level these operators will arise from the relevant operators of the parent theory. The

dimension 2 operators which arise from Tr(|A|2−|B|2) in the parent theory are all odd under

the Z2 symmetry defined above, which exchanges the descendants of the A,B fields, and

therefore are not singlets under the global symmetry group. The dimension three operators

which arise all carry charge under the ZM symmetry group (which survives as a symmetry

from the underlying Z2M R symmetry group) and, again, are not global singlets. This only

leaves the possibility of double trace operators. However, it is easy to see that there are no

global singlet double trace operators with dimension < 4 that survive in the quiver theory,

either.

The point is that in the parent theory the single trace operator Tr(AB), out of which

the problematic double trace operator is composed, is not invariant under the Z2 orbifold

symmetry (since that symmetry takes A → −A,B → B). As a result there is no gauge

invariant operator which arises in the daughter theory which is bilinear with one descendant

from the A and B fields respectively. Without such a single trace operator no double trace

operator can then arise. To get a gauge invariant single trace operator made out of the

scalars in the daughter theory one needs two descendants from the A and two from the B

fields respectively. Such an operator can be thought of as arising from an operator of the type

Tr(ABAB) in the parent theory. It has dimension 3, thus a double trace operator made out

of two such single trace operators would have dimension 6, and would be irrelevant.

The conclusion is that the orbifold theory has no operators, either single trace or double

trace, which are singlets under the global symmetries and which have dimension < 4.

This ensures that our first aim is met: we have constructed non-compact non-supersymmetric

warped backgrounds with a stable throat geometry (or equivalently, a stable hierarchy of

scales).

One might worry that coupling this field theory to quantum gravity would be problematic.

After all, quantum gravity famously abhors at least continuous global symmetries. We display,

in the next section, a compact embedding of this throat geometry, where the compactification

preserves a sufficiently large subgroup of the global symmetry group to protect the hierarchy.

Let us end with a comment about vacuum stability. In the KS theory, before orbifolding,

if we take N = kM , the duality cascade ends in the IR with a N = 1 SU(M) gauge theory,

with no additional matter. This theory confines and has a mass gap. The vacuum of this
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theory is stable. In particular there are no massless scalars, which could be rendered unstable

due to quantum effects. In the orbifold theory, with M = 2m the end point is a two node

quiver with gauge group SU(m) × SU(m), and a pair of bifundamental fermion fields which

transform like ( , ) and ( , ) respectively. This theory inherits a mass gap from the parent

theory,and thus does not suffer from a vacuum instability. In fact this agrees with what one

would expect from the gauge theory analysis. Any one of the two SU(m) gauge theories has

m flavours in the fundamental representation. It should confine and in fact exhibit chiral

symmetry breaking, resulting in a stable vacuum and a mass gap.

5. Coupling to 4D Gravity

Any model of the real world must incorporate 4d gravity, and this implies at least one in-

teresting constraint on the previous discussion, which is the absence of continuous global

symmetries (see e.g. [20], [21] for general discussions). Therefore, we will relax the assump-

tions of the previous sections and assume that, in proving the absence of global singlet relevant

operators, we only have discrete symmetries at our disposal. We will carry out the analysis

for the theory of §4, but presumably one could easily find analogous constructions coupling

the orbifolds of N = 4 to 4d gravity while preserving discrete symmetry groups that forbid

all relevant perturbations.

Inclusion of 4d gravity is achieved by cutting off the throat at some radius and gluing it

into a compactification, thus making the 4d graviton a dynamical mode. The statement that

there are no continuous global symmetries then corresponds to one of two possibilities: i) the

compactification preserves the isometries of the throat, in which case the global symmetries

are effectively gauged; ii) the compactification breaks the isometries of the throat down to a

(possibly trivial) discrete subgroup. When considering Calabi-Yau compactifications, as we

will do shortly, the second possibility is guaranteed: Calabi-Yau manifolds (with sufficiently

generic holonomy) have no continuous isometries. Our non-supersymmetric theory will be

coupled to 4d gravity by taking an appropriate Z2 orbifold of a Calabi-Yau compactification

with a conifold throat. Therefore, we are guaranteed that our global group will be broken to

at most discrete factors. We must prove that there exist compact embeddings that preserve a

sufficiently large discrete group, to forbid generation of all of the dangerous relevant operators.

In §5.1 we find an explicit F-theory compactification which realizes a discrete subgroup

of G = SU(2) × SU(2) × Z2M × Z2exchange, and in §5.2 we show this global group is large

enough to accomplish our task.

One could of course worry about the further steps involved in coupling to 4d quantum

gravity: one must show that the Calabi-Yau compactification can be stabilized appropriately,

give rise to realistic cosmology, etc. These further steps are necessary in any attempt to

embed any idea about particle phenomenology in string theory, and are not special to our

goal here of exhibiting composite Higgs models. We will not pursue them in this note.
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5.1 An F-theory compactification

Here we exhibit an F-theory compactification on an elliptically fibered four-fold which pre-

serves a healthily large discrete subgroup of G. Consider the Weierstrass form

y2 = x3 + f(zi) xz
4 + g(zi) z

6 (5.1)

where the zi are coordinates on the base B of the elliptic fibration, not to be confused with

the z appearing above. We take as our base B11 a complete intersection of two quadrics in

P 5. If we label the defining equations of the base I1,2 = 0, then the locus in moduli space we

choose to work with is:

I1 =
4

∑

i=1

z2
i − t2z2

5 + ǫ2z2
6 , I2 = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 + z5z6 . (5.2)

This complete intersection is non-singular for generic values of t, ǫ, which we take to be real

numbers. As t2 → 0 or ǫ2 → 0, there is a point of non-transversality (located respectively

at z5 = 1 with the other homogeneous coordinates vanishing, or z6 = i with the other

homogeneous coordinates vanishing).

Expanding in local coordinates around these singular points, we see that the singularities

are conifolds. The collapsing S3s can be seen to lie on the fixed point loci of the involutions

z → z̄ in the first case, and z1,···,4 → z̄1,···,4 with z5,6 → −z̄5,6 in the second case.12 In

particular, for non-zero but small t2, then, there is a deformed conifold singularity with a

small S3. We shall use this conifold throat associated with the singularity at t2 → 0 to build

our approximately conformal field theory.

To make the manifold (5.1) Calabi-Yau, we should take y ∈ 3L, x ∈ 2L, f ∈ H0(4L) and

g ∈ H0(6L) where L is the line bundle given by L = −KB in terms of the canonical bundle

of B. In practice, for this model, we can think of f and g as being polynomials of degree 8

and 12 in the coordinates of the P 5.

Sen has given a general prescription for going to an orientifold locus of any fourfold

compactification [23]. Following his prescription, we wish to choose polynomials of the special

form

f = Cη(zi) − 3h(zi)
2, g = h(zi)[Cη(zi) − 2h(zi)

2] . (5.3)

where η and h are of degree 8 and 4 respectively and C is a constant. For small (non-zero)

values of C, the average coupling in the IIB string theory is weak. The IIB theory lives on

the base, eq.(5.2).

11We are inspired by seeking the simplest possible modification of the compact embedding of the conifold

discussed in §4 of [4]. That example doesn’t suffice for our purposes. It only preserves a Z2 ⊂ U(1)R, which

for instance isn’t restrictive enough to forbid the dimension 3 gaugino mass operator Tr λλ from destroying

the throat.
12In the Calabi-Yau orientifold we construct based on this example, one can see that the spheres are special

Lagrangian; this is guaranteed for fixed-point loci of antiholomorphic involutions with suitable properties [22].
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A big discrete subgroup of G is preserved by various simple choices of the data η, h. For

instance, we can take

η(zi) =

4
∑

i=1

z8
i + az8

5 + z8
6 (5.4)

h(zi) =
4

∑

i=1

z4
i + bz4

5 + z4
6 (5.5)

for some tunable constants a, b. In the Sen limit, the model reduces to an orientifold of

a Calabi-Yau threefold; one introduces a new coordinate ξ, and the equations defining the

Calabi-Yau threefold are (5.2) together with the additional equation

ξ2 = h(zi) . (5.6)

The orientifold action then reverses ξ while simultaneously acting with Ω (−1)FL (where Ω

here denotes worldsheet orientation reversal).

In the Sen construction, there are D7-branes and O7-planes wrapping divisors in the

Calabi-Yau threefold. The D7 branes are located on the loci η = 0, while the O7 planes wrap

h = 0.13

With our choices above, η and h are invariant under the group P of all permutations of

the four zi’s, i = 1 · · · 4. This is a discrete subgroup of O(4). There is also a symmetry of the

fourfold (5.1) under which za → e
2πi
4 za for a = 1, 2, 3, 4, z5 → z5, and z6 → −z6, which is a

Z4 ⊂ U(1)R.14

Finally, the action of Z2exchange in the IIB theory involves a permutation of the zi’s com-

bined with Ω(−1)FL . This too is a symmetry. We will see in §5.2 that this discrete symmetry

group is big enough to disallow any GSROs. More generally the same discrete symmetries are

preserved if η is a more general quartic polynomial invariant under the permutation group,

P, containing only monomials that preserve the Z4 ⊂ U(1)R mentioned above.

To complete the discussion, let us calculate the Euler number χ of our fourfold. It is

relevant in determining the length of our throat, and hence the size of the hierarchy obtainable

in our compact model. This is because tadpole conditions bound the allowed three-form flux

in the orientifold limit (or more generally, the four-form flux in the fourfold compactification)

to satisfy:

KM ≤
χ

24
(5.7)

where K is the number of KS cascade steps, and M is the number of fractional D5-branes.

The hierarchy of energy scales generated for a given choice of K and M is of the order

e−
2πK
3gsM [4].

13Strictly speaking, at small but finite C, the O7 planes split into various (p, q) D7-branes, but this is an

exponentially small effect at weak coupling.
14The defining equation of the base B (5.2) is not invariant for non-zero ǫ. However, by choosing appropriate

fluxes, we can stabilize ǫ very close to zero [4]; this breaking of Z4 can then be made to occur naturally at a

tunably small scale, and will not concern us.
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Using a result in [24] we have:

χ

24
= 12 + 15

∫

B
c1(B)3 = 492 , (5.8)

where c1(B) is the first Chern class of our 3-fold base B. In our example, c1(B) = 2J where

J is the restriction of the Kähler form from the ambient P 5, and
∫

B J
3 = 4. The above result

follows. This is a healthy Euler number for our purposes, easily accomodating large enough

fluxes to generate a sizeable hierarchy (and to additionally stabilize ǫ at a very small scale).

We can now orbifold this theory by our Z2 operation of §4, z1,2,3,4 → −z1,2,3,4, with

(z5, z6, x, y, z) → (z5, z6, x, y, z). This symmetry acts freely on the geometry, and acts as in §4

on the conifold throat. A Z2 ⊂ Z4 of the R-symmetry that was preserved acts non-trivially

on the orbifold. Hence the global discrete symmetries preserved after the orbifolding consist

of the permutation group P, Z2exchange and Z2.

5.2 Discrete Symmetries and GSROs

In this subsection we show that the discrete symmetries which survive in the compact example

constructed above are enough to prevent any relevant operators from arising in the warped

throat region.

A detailed analysis has already been carried out in the non-susy quiver gauge theory

above using its SU(2) × SU(2) × ZM × Z2exchange global symmetry(there is an additional

U(1)B symmetry but it does not serve a useful purpose in preventing GSROs, and we will not

include it in the discussion below). We remind the reader that the ZM discrete symmetry is a

subgroup of the R-symmetry group in the parent susy theory and arises as follows. The KW

theory has a U(1)R symmetry, this is broken to Z2M in the KS case by the three form flux.

In the non-susy orbifold a ZM ∈ Z2M acts non-trivially and is a global symmetry. We saw

in the previous subsection that in the compact case a Z4 subgroup of U(1)R is left unbroken.

For M ≥ 2 this 15
Z4 ∈ Z2M . And a Z2 subgroup of this Z4 then acts non-trivially in the

orbifold theory. We denote this Z2 symmetry as Z2R below. In the compact case we see then

that the global symmetries which survive are P,Z2exchange and Z2R.

We now examine whether any GSROs are allowed by this discrete group. Let us first

consider operators which are singlets under SU(2) × SU(2), and ask whether they are ruled

out by the symmetries Z2exchange × Z2R. Since Tr(|A|2 − |B|2) is odd under Z2exchange its

descendants in the orbifold theory are not GSROs. At dimension 3 there are three operators,

the two gauginos bilinears and the scalar quartic, Tr(ABAB) in the KW/KS theory. All

of these have R-charge 2 under the U(1)R, this means they are odd under Z2R and thus

transform non-trivially under it.16 It then follows that the operators which descend from

15In fact to obtain the orbifold we need M = 2m, with m > 1 so this is no restriction.
16The reader should not be confused by the notation. The Z2R generator acts on the A, B and gaugino

fields the same way that the Z4 generator did in the parent theory, so the gaugino bilinear is odd under the

Z2R. The symmetry is reduced to a Z2 because the square of the generator relates field configurations that

our orbifold action has already identified.
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these dimension 3 operators in the orbifold theory are also not global singlets. Finally, as

we discussed at some length in §4, there are no double trace operators which are relevant (of

dimension < 4) in the orbifold theory.

Next, consider operators which are not invariant under the continuous SU(2) × SU(2)

group, but which could be invariant under the surviving discrete symmetries. There are

essentially three candidates:

1) First, the KW theory has the operator Tr(AB) which is a (1/2, 1/2) under SU(2) ×

SU(2). However, as was discussed in §4, this operator is not invariant under the Z2 orbifold

symmetry and as a result there are no gauge invariant operators in the orbifold theory which

descend from it and which are bilinear in the scalars.

2) Next, there are dimension 2 operators in the KW theory which are the partners

(under the superconformal symmetries) of the two SU(2) currents. These transform like

(1, 0) and (0, 1) representations of SU(2) × SU(2). The permutation symmetry P, includes

three elements which are rotations by π along the three axes of the first SU(2) and also

three elements which are rotations by π along the three axes for the second SU(2). This is

discussed in greater detail in appendix A. Any operator which lies in the (1, 0) representation

must transform under the rotations by π along the three axes of the first SU(2) and cannot

be invariant under the permutation symmetry. Thus it cannot give rise to any GSROs in

the orbifold theory. Similarly no GSROs can arise from the operator which transforms in the

(0, 1) representation.

3) This leaves only one other possibility. There is a non-chiral operator in the KW theory

with dimension 3.29. It arises from vector multiplet I in the classification used in [16], see

also [25]. This operator transforms as a (1, 1) representation under SU(2) × SU(2). It is

schematically of the form, Tr(ABĀB̄) where the indices are contracted in a gauge invariant

manner, and thus is R-charge neutral and also neutral under Z2exchange. However, once again,

any element of the (1, 1) representation must transform under the six rotations by π mentioned

above and thus cannot be a singlet. Therefore, no descendent of this operators in the orbifold

theory can give rise to a GSRO either.

It is difficult to think of any other operators in the KW theory from which GSRO descen-

dants might arise in the orbifold theory. However, to be certain, we have worked through the

list of operators in [16], applying the selection rules which govern the choice of the R charge

(specified by r), for given SU(2)×SU(2) quantum numbers (specified by (j, l)). We find that

indeed no other GSROs arise in the orbifold theory. The essential point is that the anomalous

dimension grows rapidly with increasing j, l, thus beyond modest values of these quantum

numbers no worrisome candidates can arise. We will spare the reader further details.

6. Adding interesting physics in the IR

While our focus in this paper has been to exhibit a large class of field theories without GSROs,

at the next step in any program for realizing the basic picture of [1], one would like to find

ways to add interesting gauge and matter sectors in the IR (or, perhaps, spread across the
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5th dimension). Here, we discuss in a very preliminary way two natural methods of adding

interesting matter sectors to our example of §4, §5. While neither gives rise to anything

resembling the Standard Model in detail, both methods illustrate how one may achieve the

addition of matter and gauge fields to these backgrounds without destabilizing the hierarchy.

6.1 Adding bulk gauge fields: D7s in the throat

One standard way of adding bulk matter fields in AdS/CFT is to add probe D7-branes to the

throat geometry. In fact, in the Sen limit of an F-theory compactification, one automatically

has an O7-plane stretched along the locus h = 0 and a pair of coincident D7-branes along the

locus η = 0 [23], where for our concrete model the polynomials h and η are given in (5.5) and

(5.4).

It is clear from (5.2) that the deformed conifold singularity of interest to us in the orien-

tifold arises in the patch z5 = 1 with small values of the zi satisfying

4
∑

i=1

z2
i + O(ǫ2z4

i ) = t2 . (6.1)

Therefore, for suitable choices of parameters, we can arrange for the D7-branes in the geometry

to stretch into the throat region (while, for simplicity, leaving the O7-plane far away).

Concretely, taking a small value of a in (5.4), we see that the zero locus of η will pass

arbitrarily close to the deformed tip of the conifold, while the O7-plane remains localized far

away for b of O(1). In this limit, we obtain a bulk U(2) gauge theory from the D7-branes

stretching down the conifold throat.

The Z2 orbifolding which breaks SUSY acts freely on the surface η = 0 wrapped by

the D7s, so it simply changes the topology of the divisor which the D7-branes wrap. The

moduli of the D7-branes are geometrized in F-theory as deformations of the fourfold complex

structure. Assuming the fourfold complex structure moduli are stabilized by fluxes at a high

scale, as in [26], the low-energy theory on the D7-branes will then be a pure U(2) gauge

theory.

In this way of adding bulk gauge fields to the throat, there is no danger of destabilizing

the hierarchy. The symmetries of the geometry already eliminated any GSROs, and the D7

embedding arises here for specific choices of the symmetric geometry. On the other hand,

the small value of a we require to obtain D7s which live far down the throat is not explained

at this level; it is a tune that needs to be attributed to the details of moduli stabilization.

It is natural to ask if there are simple mechanisms that would guarantee the stabilization

of the D7s with exponentially small a (i.e. stretching far down the throat); we expect such

mechanisms can be found, but leave this for future work.

6.2 Higgsing a group in the deep IR: Anti D3-branes in the throat

Another natural ingredient in the models of this class is D3-branes. However, in the rele-

vant tree-level solutions of IIB supergravity, D3-branes feel no force. Therefore, any probe
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D3-branes may be driven out of the throat by sub-leading corrections; they may suffer an

instability to run away on their Coulomb branch. While this is presumably model dependent,

it would require further work to analyze under what circumstances probe D3s would be stable

in the IR region of the throat. This is the reason we focused on the case N = kM in the

discussion of §4; then the cascade ends with no left-over probes.

Instead, we can add probe anti-D3s. As in [27], they will be pulled to the tip of the (now

orbifolded) KS geometry by the background 5-form flux. If we add p such anti-D3s (with

p << M,N to retain calculational control), then their fate is the following: the SU(p) gauge

theory on the anti-D3s is Higgsed at an exponentially low-scale (by the anti-D3 adjoint scalar

fields) in a way that completely breaks the gauge symmetry. This is seen via a Myers effect

in the flux background at the tip of the geometry [27]. The interpretation of these objects as

states in the dual field theory has been discussed in [28].

Unlike the D7s, the probe anti-D3s do break the global symmetry group in an important

way. For instance, their positions break the SU(2)2 isometries. However, this spontaneous

breaking of the global symmetries in the IR is not dangerous, for the same reason the breaking

of Z2M → Z2 in the KS theory is not dangerous – it happens in the deep IR, and the possible

subsequent generation of relevant perturbations to the field theory at such a low scale does

not destabilize the hierarchy.

Therefore, this example gives a concrete instance of a non-Abelian gauge theory under-

going the Higgs mechanism at energy scales << MPlanck in a theory with high-scale SUSY

breaking.

One rather interesting feature of this example is that the emergent SU(p) gauge theory

can be weakly coupled (although it emerged from the cascading strongly coupled large N

gauge theory). In addition, there are no SU(p) charged bulk gravity modes: only the open-

string states stretching between the anti-D3s carry SU(p) gauge quantum numbers. The

excited string states are parametrically heavier than the KK modes at the end of the throat.

This also implies that p << M,N should be the relevant species factor controlling radiative

corrections to the anti-D3 gauge theory. This could be important in obtaining reasonable

values of precision electroweak observables such as the S and T parameters.

Furthermore, because of the nature of the cascading gauge theory, the effective ’t Hooft

coupling of the hidden approximate CFT is considerably smaller in the IR than the coupling

in the UV (gsM << gsN). This means that one may be able to use supergravity to control

the hierarchy, while just approaching the border of (or even leaving) the supergravity regime

in the IR region. This has been observed to improve, e.g., the nature of the electroweak phase

transition in RS models [29]. So we see that the presence of several distinct expansions (as

opposed to a single ’t Hooft expansion in gsN) in the more detailed string constructions offers

some qualitative hope of solving the phenomenological problems of the simplest large-N toy

models.

It would be interesting to try and generalize the work of [30] to give more realistic models

in these completely non-supersymmetric throats.
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A. The action of P on different SU(2) × SU(2) representations

The permutation group, P was introduced in our discussion of the discrete symmetries pre-

served by the compact Calabi-Yau manifold, in §5.2. Here we discuss how this group is

embedded in the continuous group SU(2) × SU(2). This will allow us to determine how P

acts on any representation of SU(2) × SU(2).

The four coordinates, zi, in eq.(5.1), eq.(5.2), transform as a (2, 2) representation of

SU(2) × SU(2). This means on the matrix,

M =

(

z1 + iz2 z3 + iz4
−(z3 − iz4) z1 − iz2

)

, (A.1)

we can take the first SU(2) to act on the left, M → U ·M,U ∈ SU(2), and the second SU(2)

to act on the right similarly.

Six elements of P in particular played an important role in our discussion of the GSROs

above. These are the three rotations by angle π about the three axes of the first SU(2)s, and

similarly the second SU(2). Consider a rotation by π about the z-axis of the first SU(2). It

acts on M by the matrix

U =

(

e
iπ
2 0

0 e
−iπ
2

)

(A.2)

acting on the left. Under it, (z1, z2) → (−z2, z1) and (z3, z4) → (−z4, z3). It is easy to see that

this keeps the polynomials η and h, eq.(5.4), eq.(5.5), invariant and is therefore a symmetry

of the Calabi-Yau. Similarly for all the other rotations by angle π.
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To be more thorough, the group P consists of 6 pair-wise exchanges and elements of

order 3 and 4 obtained by composing these pair-wise exchanges. Now an exchange of any two

coordinates, say z1 and z2, is carried out by the matrix

(

z1

z2

)

→

(

0 1

1 0

)(

z1

z2

)

(A.3)

which has determinant −1. This lies in O(4) but not in SU(2)×SU(2). A related symmetry

which does lie in SU(2) × SU(2), is obtained by composing the exchange above with an

inversion, in this case say, z1 → −z1, (with the other coordinates held fixed). The resulting

transformation is now carried out by the matrix

(

0 −1

1 0

)

, with determinant +1. Since the

inversion is also a symmetry of the Calabi Yau manifold, this final transformation is also a

symmetry.

In this way we can obtain pair-wise exchange elements (by appending additional signs)

which are all elements of SU(2) × SU(2). The order 3 and 4 elements obtained by further

composing them are then automatically also elements of SU(2) × SU(2). We take P to be

the resulting group of permutations obtained in this manner. By construction it is a now a

subgroup of SU(2)×SU(2). And in particular the rotations by angle π about the axes of the

first and second SU(2)s are then all elements of P. More generally, it is easy to determine

how the pair-wise exchanges act on any representation of SU(2)×SU(2), and from there find

how all elements of P act on the representation.

B. The Horowitz-Orgera-Polchinski instability

The Horowitz-Orgera-Polchinski (HOP) instability of AdS5 × S5/Zk compactifications [11],

with the Zk action given by (2.2) with k > 3 and odd, can be understood as follows. S5 can

be viewed as a circle fibration over CP 2, with metric

ds2 = R2
(

ds2CP 2 + (dχ+A)2
)

(B.1)

where χ is the coordinate on the circle fiber and A is a gauge connection (of the KK gauge

field) on CP 2. If the periodicity of χ is taken to be 2π on the original S5, then on S5/Zk,

the periodicity becomes 2π/k. The orbifolded circle then has circumference 2πR/k.

The vacuum energy of a string stretching around this orbifolded circle is given by:

α′M2 =
R2

α′k2
+

2(3 − k)

k
(B.2)

which is always positive at large ’t Hooft coupling, but becomes tachyonic at weak ’t Hooft

coupling (small R).

The boundary conditions on fermions encircling the minimal circle in the quotient, due to

the factor of (−1)F in (2.2), are anti-periodic. While the tachyonic instability described above

for small R is a stringy effect, Witten demonstrated long ago that the Kaluza-Klein vacuum
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R4 × S1 on a circle with anti-periodic boundary conditions for fermions is unstable even in

the large radius limit; there is a tunneling instability induced by a “bubble of nothing” [31].

In the Euclidean solution describing false vacuum decay, the S1 shrinks smoothly to a point

as one moves in from infinity in the radial direction of R4; the solution is in fact the analytic

continuation of the Schwarzschild solution.

The main insight of the HOP paper is that a similar bubble of nothing solution exists

for the AdS5 × S5/Zk orbifolds under consideration. The intuition is that the S1 fiber over

the CP 2 in S5 plays the role of the S1 in Witten’s analysis. A fascinating new ingredient is

that since in a conformal theory there is no scale, the decay rate must be either 0 or infinite;

the HOP analysis shows that the integral over the value of the radial coordinate where the

bubble nucleates gives an infinite rate. The non-compact AdS5 × S5/Zk orbifold thus decays

instantly.17

This sounds like it would have dramatic effects for our discussion, but in fact it does not.

If one were to take the N = 4 orbifolds of §2, and couple them to 4d gravity as in §5, the

decay rate computed in [11] is regulated by the UV cutoff. Instead of integrating the decay

rate over the entire radial direction of AdS5, the integral is cut off at some finite rUV . The

rate then becomes negligibly small. It is estimated in equation (5.2) of [11]; the result is that

with a cutoff at energy scale Λ, one finds an integrated rate

Γ ∼ k9e−BΛ4 (B.3)

where the instanton action is

B ∼ N2/k8 . (B.4)

In the limit of large N with fixed k, this vanishes rapidly. Our conclusion is that cut-off

throats based on the orbifolds of §2 are viable despite the existence of the HOP instability;

their lifetimes can be made cosmologically realistic.

The case of the cascading theory of §4 is more involved. As described in [11], the growth of

the effective number of colors N with the radial coordinate in cascading theories renders their

integral of the decay rate over the radial direction finite, even in the non-compact cascading

solution. We conclude that for our construction involving quotients of the Klebanov-Strassler

throat, the HOP instability, while again an interesting feature, does not provide a serious

constraint.

17More precisely, a bubble nucleates somewhere instantly; a given observer will be struck in about an AdS

Hubble time.
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