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Abstract

Background: The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium
tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host
control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat
tuberculosis.

Methodology/Principal Findings: Towards this objective, we used a combination of genetic, microbiological, biochemical,
cell biological tools and a guinea pig virulence assay to compare the hypoxic adaptation and virulence properties of two
novel M. tb strains, namely, a devR disruption mutant, Mut1, that expresses C-terminal truncated N-terminal domain of DevR
(DevRntp) as a fusion protein with Aphl (DevRy-Kan), and its complemented strain, Comp1, that expresses intact DevR along
with DevRy-Kan. Comp1 bacteria exhibit a defect in DevR-mediated phosphosignalling, hypoxic induction of HspX and also
hypoxic survival. In addition, we find that Comp1 is attenuated in virulence in guinea pigs and shows decreased infectivity
of THP-1 cells. While Mut1 bacilli are also defective in hypoxic adaptation and early growth in spleen, they exhibit an overall
virulence comparable to that of wild-type bacteria.

Conclusions/Significance: The hypoxic defect of Comp1 is associated to a defect in DevR expression level. The
demonstrated repression of DevR function by DevRy-Kan suggests that such a knockdown approach could be useful for
evaluating the activity of DevRS and other two-component signaling pathways. Further investigation is necessary to

elucidate the mechanism underlying Comp1 attenuation.
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Introduction

Mpycobacterium  tuberculosts (M. th) is a versatile intracellular
pathogen that has the ability to either cause active disease or
produce a persistent latent infection. Tubercle bacilli exhibit
dramatically contrasting phenotypes under these two conditions;
during frank disease they are virulent, multiply actively and are
susceptible to anti-tubercular therapy while during latent infection
they display the property of non-replicative persistence, remain
dormant and are quite resistant to anti-tubercular drug regimens.
Therefore, an understanding of the dormant bacterial state is vital
in order to devise strategies targeted towards their control and
elimination. The interaction of M. b with the host is likely to be
dynamic and complex and to involve multiple phases of

@ PLoS ONE | www.plosone.org

adaptation and regulatory networks. M. tb genome sequencing
has revealed the presence of a panoply of potential regulatory
molecules that comprise of transcriptional regulators, sigma factors
and signaling systems including two-component systems (TCS)
and eukaryotic-like serine threonine protein kinases/phosphatases
[1]. All of these are likely to play a dynamic role in bacterial
adaptation to the changing environmental conditions within the
host.

Bacterial TCS are involved in the control of a wide variety of
physiological processes ranging from nutrient uptake to virulence.
TCS of M. th have been intensely studied by many laboratories
and as expected, several of these systems are responsible for
bacterial adaptation within the host [2,3]. One of the best
characterized TCS of M. t is dewRS (also called dosRS). devR
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(Rv3133¢ or dosR) was identified as a differentially expressed gene
in virulent M. t# H37Ryv [4,5] and it encodes DevR which is
activated by transfer of phosphosignal from DevS and/or
Rv2027¢/DosT [6-8]. It is directly involved in the hypoxia-
induced dormancy response [9-11] and also in virulence [12-15].
Moreover, DevR and its target genes are highly expressed in
animals and cell infection models which suggests that bacteria rely
on them for adaptation i vivo [16-20].

DevR is a classical response regulator which contains a N-
terminal phosphorylation domain and a C-terminal DNA binding
domain [5]. Phosphorylation of DevR is essential for the activation
of its DNA binding function, its autoinduction and the induction of
DevR regulon genes expression [21-23]. A novel devR mutant
strain, Mutl, was generated serendipitously in our laboratory by
an in-frame insertion of a promoterless kanamycin resistance
cassette into the devR gene at an unique PpuMI site which results
in the expression of C-terminal truncated DevR as a DevRyrp-
Aphl fusion protein (DevRn-Kan). The fusion protein confers
kanamycin resistance to the mutant bacterium and enabled its
original selection [13]. Its complemented strain, Compl, expresses
intact DevR from its native 327 bp upstream region along with
DevRy-Kan fusion protein [13]. In the present study, we studied
the properties of guinea pig-passaged Mutl and Compl bacteria
alongside wild-type H37Rv (WT) bacteria. We find that Mutl
bacilli exhibit a defect in hypoxic adaptation and early growth
within spleen but exhibited overall virulence nearly comparable to
WT bacilli. Interestingly, in Compl bacteria, DevRy-Kan
competes for the activating phosphosignal resulting in a defective
hypoxia adaptive response. We also find that Compl] is attenuated
in virulence. The potential implications and possible application of
these findings are discussed.

Results

DevRy-Kan Inhibits HspX Induction in Comp1 Bacteria
hspX is a DevR-regulated gene and its expression is a reliable
marker of DevR regulon expression. HspX expression was
strongly induced in hypoxic WT cultures (Fig. 1, lanes 1-2) in
contrast to the lack of expression in Mutl bacteria. Surprisingly
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however, HspX was only weakly expressed in Compl bacteria
(that expresses both DevRy-Kan and full-length DevR proteins)
under similar conditions. To correlate with this defect, DevR
expression was assessed; while it was induced in hypoxic WT
cultures (Fig. 1, lanes 1-2), its level declined in Comp]l bacteria
(Fig. 1, lanes 3-4). Furthermore, DevR level was consistently lower
relative to DevRyn-Kan (~55% and ~20% under aerobic and
hypoxic conditions respectively, a representative blot is shown in
Fig. 1, lanes 3-4).

The Expression Defect in Comp1 Is Ascribed to Inhibition
of Signaling by DevRy-Kan

The skewed protein ratios (possibly due to differences in
promoter strength) suggest that DevRy-Kan may interfere with
intact DevR function in Compl bacteria. This hypothesis was
tested by assessing HspX expression in Comp?2 strain that was
generated by introducing pDSDevR into a complete devR deletion
mutant strain (Tables 1 and 2). HspX induction was restored in
Comp?2 (Fig. 1, lanes 5-6), indicating that the hypoxic expression
defect in Compl was due to DevRy-Kan-mediated inhibition.
Towards understanding the underlying basis of this defect, the
promoters expressing intact DevR and DevRy-Kan proteins were
compared since in Compl bacteria, full-length DevR is expressed
from the complementing plasmid through its upstream promoter
(as in pdevR-2) while DevRy-Kan is expressed from its natural
genomic location (as in pOperon-2). From the GFP reporter
activity it is evident that pOperon-2 displays both aerobic and
DevR-dependent inducible expression under hypoxia while
pdevR-2 shows constitutive and moderate activity that is
independent of DevR (Fig. 2). Considering the results of
immunoblotting and reporter assays, the observed decline in
DevR protein level during hypoxia in Compl bacteria is likely to
be a consequence of a defect in expression (since DevR ectopic
expression from a constitutive promoter is not sensitive to
induction during hypoxia). By contrast, DevRn-Kan levels maybe
stabilized as a fusion protein and/or due to DevR expression from
the inducible promoter (since Compl bacteria synthesize DevR,
albeit at low levels).

WT Comp1 Comp2 Comp3 Comp4 Mut1 Mut2
L)
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HspX =——3 . r. - »e '
DevRy - Kan ——» — — e e e | ey e—
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Figure 1. Effect of DevRy-Kan and full-length DevR co-expression on DevR regulon gene expression. M. tb lysates were electrophoresed
and subjected to immunoblot analysis using polyclonal antibodies to HspX (top panel), DevR (middle panel) and SigA (bottom panel). Lanes 1, 3,5, 7,
9, 11 and 13 represent aerobic culture and lanes 2, 4, 6, 8, 10, 12 and 14 represent 5 days standing hypoxic cultures. Anti-HspX immunoblots were
developed for longer periods to visualize HspX in Comp1 bacterial lysates. Representative blots from 2 to 4 independent cultures are shown.

doi:10.1371/journal.pone.0009448.g001
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Table 1. Plasmids used in this study.
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operon promoter (described in [21]), Hyg', Kan"

Plasmid Description Reference
pDSdevR devR gene cloned in pFPV Hyg (low copy number plasmid), DevR expressed [13]
from 327 bp devR upstream promoter, Hyg"
pJFR19 3 kb amidase promoter cloned in integrative plasmid pMV306H, Hyg" [32]
pOperon-2 PFPV27 (promoter less GFP) containing operon promoter (—1454 to +12) with This study
reference to the devR translational start site, Hyg"
pdevR-2 pPFPV27 (promoter less GFP) containing devR promoter (—390 to +164) with reference [21]
to the devR translational start site, Hyg"
pAVdevRy -Kan DNA coding for DevRy - Kan fusion protein cloned in pJFR19, protein expressed from native This study

pDSS578 pPROEx-HTb carrying wild type devS gene D. K. Saini, Ph.D. thesis, AlIMS
pET-28-a Vector for overexpression of Hiss-tagged recombinant proteins, Kan" Novagen

pKKNKan pET-28-a based plasmid for overexpression of DevRy-Kan fusion protein, Kan" This study

pAVDevR pET-28-a based plasmid for overexpression of full-length DevR protein, Kan" This study

doi:10.1371/journal.pone.0009448.t001

The inhibitor function of DevRy-Kan was confirmed in two
additional M. b strains (Table 2). In Comp3 bacteria (generated
in H37Rv background and expressing DevRy-Kan and WT
DevR proteins, each from the native inducible promoter), HspX
expression was induced (Fig. 1, lanes 7-8), indicating that
DevRy-Kan inhibitory activity is overcome in the presence of
WT DevR levels. However, HspX induction was not rescued in
Comp4 bacteria (generated in a complete devR deletion strain
that produced a skewed ratio of DevRy-Kan and full-length
DevR proteins), akin to Compl bacteria (Fig. 1, lanes 9-10).
Note that although DevRy-Kan was expressed at an elevated
level from its ectopic location in Comp3 and Comp# strains vs.
from its native location in Compl1 (Fig. 1), HspX expression was
consistently restored in Comp3 bacteria but not in Comp4
bacteria. Likewise, absence of HspX induction in Comp4 but not
Comp?2 bacteria (both in complete devR deletion background) is
attributed to the presence of DevRy-Kan in the former (Fig. 1).
These results establish that the hypoxic defect of Compl in terms
of HspX expression is associated to a defect in DevR expression
level.

We next asked whether DevRy-Kan competed with DevR for
the activating phosphosignal in Compl bacteria by reconstituting
the phosphosignaling reaction w vitro. Briefly, DevRn-Kan coding
sequences (exactly as expressed in Mutl bacilli) were cloned, the
overexpressed protein was purified and used with full-length DevR
in a DevS~P-driven competition assay (Fig. 3). The phosphosignal
was transferred to DevR and DevRy-Kan inhibitor with
approximately similar efficiency when they were present at
equimolar concentrations. Importantly, the signal was diverted
majorly to the inhibitor at higher concentrations of DevRy-Kan,
which mimics the protein ratios i viwo, indicating that preferential
phosphorylation of DevRy-Kan is likely to occur i vivo. Moreover,
in a phosphosignaling competition assay performed with DevRy
protein (without the kanamycin resistance cassette), similar results
were obtained (not shown), thereby attributing the inhibition to
DevRy in the fusion protein.

All these findings, namely, (a) efficient diversion of phospho-
signal to DevRn-Kan i wvitro, (b) skewed DevRy-Kan: DevR
protein ratio in vivo resulting in diversion of the phosphosignal to
the former and, (c) defective HspX induction in Compl and

@ PLoS ONE | www.plosone.org

Table 2. M. tb strains used in this study.
M. tb strain  Description Expression Reference
DevR DevRy.Kan
Aer Hyp Aer Hyp
H37Rv wT + - - [13]
Mut1 devRACTD, expresses DevRy-Kan protein from its native location (fusion - - +4++ [13], this study
gene created by in-frame insertion of promoterless kanamycin resistance
cassette at the PpuMlI site within devR gene), includes entire N-terminal
signaling domain of DevR [residues 1-145], Kan"
Mut2 Complete AdevR deletion - = - - [12]
Comp1 M. tb Mut1 complemented with plasmid pDSDevVR, Kan', Hyg" + A [13]
Comp2 M. tb Mut2 complemented with pDSDevR, Kan", Hyg" + - - This study
Comp3 H37Rv containing pAVDevRy-Kan, Kan', Hyg" + o+ +++ This study
Comp4 M. tb Comp2 containing pAVDevRy-Kan, Kan', Hyg" + A This study
Aer, aerobic; Hyp, hypoxic.
+, ++ etc,, relative levels of DevR and DevRy.Kan proteins (semi- quantitative).
—, absence of DevR.
|, decline in hypoxic level.
doi:10.1371/journal.pone.0009448.t002
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Figure 2. Comparison of promoter activity using GFP reporter
assay. GFP fluorescence in M. tb WT and Mut1 cultures carrying operon
(pOperon-2) and devR (pdevR-2) promoter constructs under aerobic
and hypoxic conditions.

doi:10.1371/journal.pone.0009448.9002

Comp4 bacteria, conclusively establish that DevRn-Kan inhibits
DevR signaling.

Comp1 Bacteria Are Defective in Hypoxic Survival

As DevR plays a crucial role in the mycobacterial adaptive
response to hypoxia, we evaluated the survival properties of
Compl bacteria under hypoxia (Fig. 4). Hypoxic viability was
sustained in WT bacilli and on day 50, ~105% of the bacteria
remained viable (relative to maximum CFU on day 10). By
contrast, the hypoxic survival defect in Mutl bacilli was evident
from day 5 (the earliest time point when bacteria were sampled)
and only ~2% of the initial bacterial load (maximum CFU) were
viable on day 50. If we compare initial and final number of
bacteria, there is little difference in hypoxic viability between
Compl and WT strains. However, under hypoxic conditions,
Compl grew more rapidly than W' bacteria during the first 10

DevSs57g~P (5 uM) + + o+ + +
DevRn-Kan (uM) - 5 - 083 125
DevR (uM) - - 5 5 5

DevRN-Kan: DevR ratio 1.6 1:4
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days and thereafter its viability was not sustained and on day 50,
approximately 5% of the bacteria were viable relative to
maximum CFU observed on day 10. All the strains grew at
similar rates and exhibited similar viability under aerobic
conditions. The hypoxia survival defect of Compl bacteria is
attributed to an insufficient level of activated DevR. Another
possible underlying reason for the defect in Compl bacteria is that
expression of DevR from the natural genomic location and from
complementing plasmids is very different and these differences
may affect other proteins involved in the two-component system
signaling in an unknown manner.

M. tuberculosis Comp1 Strain Is Attenuated in Guinea
Pigs

Passaged Mutl, Compl and WT bacteria were tested in the
guinea pig virulence model [24,25]. At 6 weeks, a nearly similar
number of lesions were visually scored for both the WT and
mutant strains. By contrast, fewer lesions were visually scored in
the Compl group (P<<0.05 in comparison to WT and Mutl
groups, Table 3). The spleens of WT and mutant-infected groups
were also significantly enlarged in comparison to Compl group of
animals (Table 3 and Fig. 5A). The extent of lung and liver
granuloma (P<<0.05 in comparison to WT group) and lung CFU
were lower in the Comp1 group (Fig. 5B and Table 3) and spleen
CFU was lower in both mutant and complemented groups
(P<<0.05 in comparison to WT, Fig. 5B).

To evaluate disease progression, a second infection of 13 weeks
was performed. An increase in visually scored tubercles was noted
in all the groups; however, once again the number of visually
scored lesions was lower in the Compl group (P<<0.05, Table 3).
Progressive splenic enlargement was noted at 13 weeks in WT and
Mutl groups but not in the Compl group (Table 3). CFUs in
lungs and spleens also increased at 13 weeks for all the strains.
Although fewer bacteria were recovered from lungs and spleen of

+ + + + +
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Figure 3. DevRy-Kan competes efficiently with full-length DevR for phosphosignal from DevS. Reaction mixtures containing purified
DevS~P (5 uM) plus DevRy-Kan (0.83 to 30 uM) and full-length DevR (5 uM) proteins were incubated at 25°C for 2 minutes. Samples were analyzed
by 15% SDS-PAGE and subjected to phosphorimaging (top panel) and Coomassie blue staining (bottom panel).

doi:10.1371/journal.pone.0009448.g003
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Figure 4. Survival of M. tuberculosis strains cultured in vitro. WT,
Mut1 and Comp1 strains were grown under hypoxic (A) and aerobic (B)
conditions for upto 50 days in Dubos Tween Albumin medium as
described. The mean CFU * SD determined from three independent
cultures is shown as % survival with respect to number of bacteria on
day zero. B, WT; [J, Mut1 and V, Comp1.
doi:10.1371/journal.pone.0009448.g004

Mutl-infected animals at both 6 and 13 weeks of infection, with
the exception of a significant reduction in spleen CFU at 6 weeks
(Fig. 5B), the differences were not significant compared to the WT

Table 3. Virulence comparison of passaged M. tb strains.

DevR Signaling in M.tb

group (Fig. 5B). However, a significant growth defect of Compl
bacilli persisted at 13 weeks in both organs (Fig. 5B). The extent of
organ granuloma correlated quite well with bacterial CFU and
visual scores (Table 3). In qualitative terms, granulomas in liver
were composed essentially of lymphocytes, macrophages and large
numbers of epithelioid cells. In the lung, epithelioid cells were rare
and the granuloma consisted mainly of lymphocytes and
macrophages (not shown). There was very little necrosis in both
the organs. Overall, the results of the two experiments are
consistent with an attenuation of Compl bacteria (P<<0.05
compared to WT) and a modest lowering of virulence for Mutl
bacteria that was not significant.

Reduced Infectivity of Comp1 Bacilli in THP-1 Infection
Model

The strains were next assessed in the THP-1 cell infection
model to determine whether Compl bacteria possessed an
intracellular survival defect (Fig. 6). Passaged and laboratory
cultured organisms of all the strains exhibited quite similar
intracellular survival and growth properties over a 7-day period
(Fig. 6). However, Comp] bacteria displayed a reduced ability to
infect THP-1 cells in comparison to the WT and Mutl strains
(Fig. 6 insets). For the passaged strains, the infectivity rate of the
WT and Mutl strains was 9.8% and 8.5% compared to 4.3% for
Compl bacteria. Similar observations were made with the
laboratory cultured strains; only 4.3% infection was observed
with Compl bacteria compared to 7.4% and 6.7% for WT' and
Mutl strains, respectively. The macrophage infection assay
performed at a higher m.o.i (1 bacterium per 10 macrophages)
further confirmed the decreased infectivity of Comp!l organisms
(not shown).

Animal Passaged Mut1 Bacilli Multiply Preferentially in
Lungs

In a guinea pig virulence assay performed previously, Mutl
bacilli were observed to be attenuated in terms of visually observable
lesions and spleen CFUs [13]. However, Mutl bacterial attenuation
was not observed in the present study. The difference between the
two studies is that the previous study was performed with Mutl
bacteria that had been repeatedly cultured i vitro during the
generation of the mutant strain, whereas the present one was carried
out with guinea pig-passaged bacteria. Since repeated i vitro culture
of pathogenic bacteria can result in their attenuation [26], we
compared animal passaged and laboratory cultured bacteria in a 6

6 weeks 13 weeks

WT Mut1 Comp1 WT Mut1 Comp1
Visual scores™ 32.25+4.34 25.25+5.85 8 Q¥ ** 55.2+8.25 48.66+4.96 18.5+£8.73%**
Lung granuloma (%) 58.75+2.39 43+15.77 25+2.04% 67.5+12.99 74.16+9.95 33.33£2.76%**
Liver granuloma (%) 46.25+9.43 21.66+3.75 12.5+4.78*% 68.75+5.15 80.83+3.27 28.5+7.30%**
Spleen weight ratios” 1.08+0.25 0.87+0.40 0.26+0.05%** 3.75%+0.90 3.30*+1.54 0.57+0.62%**
Lung weight ratios 0.80*0.14 0.79+0.05 0.73+0.14 1.84*1.25 1.96+0.42 0.73£0.10%**
Liver weight ratios 5.85*+0.37 4.51£0.66 5.48+0.92 7.54*+1.76 7.16+2.19 4.18+0.84***

*P<<0.05 in comparison to WT.

**P<0.05 in comparison to Mut1.

/\Weight ratio = (organ weight/body weight) x100.
doi:10.1371/journal.pone.0009448.t003

@ PLoS ONE | www.plosone.org

#Mean total of lesion scores assigned to spleen, liver, lung and the site of injection along with its draining lymph nodes immediately after death as described [24].
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Figure 5. Virulence of passaged M. tuberculosis strains in guinea pigs. (A) Pictorial representation of lungs and spleens. (B) CFU in lungs and
spleens are expressed as mean * SD. *, ** represent P<<0.05 in comparison to WT and Mut1, respectively.

doi:10.1371/journal.pone.0009448.g005

weeks side-by-side guinea pig virulence assay to determine whether
repeated laboratory culture was the underlying reason for the
observed attenuation of Mutl bacteria. Interestingly, spleen CFUs
in Mutl bacilli group were significantly lower relative to WT CFUs
in both passaged and laboratory cultured bacilli (Fig. S1) and these
results were consistent with our previous observations [13].
Observable lesions, liver granulomas and spleen weight ratios were
also significantly lower in laboratory cultured Mutl bacilli infected
group (Table SI). This was also consistent with previous
observations [13] indicating that overall pathology was decreased

@ PLoS ONE | www.plosone.org

by laboratory passaging (P<<0.05, Table S1). By contrast, passaged,
and not laboratory cultured, Mutl bacteria exhibited prolific
multiplication in lung accompanied by a decrease in splenic CFU
load suggesting that laboratory cultured bacilli exhibited a lung-
specific defect (P<<0.05, Fig. S1).

Discussion

In this study a devR disruption mutant strain, Mutl, and its
complemented strain, Compl, were assessed for their hypoxia

February 2010 | Volume 5 | Issue 2 | 9448
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doi:10.1371/journal.pone.0009448.9006

adaptability and virulence properties. The Compl strain is
novel in that it is defective in the hypoxic response. This defect
is explained by skewed expression of DevRy-Kan vs. intact
DevR protein and an associated skewing of phosphosignaling,
which likely results in insufficient availability of activated
DevR.

A key finding of this study is that Compl bacteria are
attenuated. We exclude the possibility of attenuation due to an
mntrinsic growth defect since Compl bacteria multiply normally in
broth cultures and within infected THP-1 cells. However, lower
infectivity of THP-1 cells suggests a scenario wherein Compl
bacteria could be gradually cleared over multiple cycles of
infection and result in significantly lower bacterial loads. Since
bacteria disseminate from the site of injection in the thigh to
various organs in this virulence assay [24], an infectivity and/
dissemination defect could also contribute to its attenuation.

@ PLoS ONE | www.plosone.org
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However, differences in infecting dose as a possible reason for
differences in virulence are ruled out since an approximately equal
number of viable organisms of each strain were injected
subcutaneously per animal.

Passaged Mutl-infected guinea pigs contained significantly lower
spleen bacterial loads at 6 weeks and this was consistent with our
previous observations [13]. Although lung CFUs were also lower in
Mutl vs. WT-infected animals, the difference was not significant.
Therefore we conclude that passaged Mutl bacilli are overall nearly
as virulent as WT' organisms. In contrast, the Compl strain was
attenuated by all parameters (organ inflammation, histology, visually
observable lesions and organ CIUs). Studies with various devR or dosR
mutant and complemented strains have reported virulence pheno-
types ranging from attenuation to hypervirulence and these variations
have been attributed to differences in strain construction and the use
of different models [12-15]. Our experiments indicate that animal
passaging restores the ability of Mutl bacilli to multiply in guinea pig
lungs suggesting that a decreased capacity of laboratory cultured
organisms to establish a productive lung infection is a key aspect of
attenuation that could have occurred by repeated i vitro culturing
during Mutl construction. It was recently suggested that the variable
results of various animal studies could be explained by differences in
both host and infecting dose [15]. Our study provides evidence that
the mode of bacterial propagation also significantly influences the
virulence phenotype.

Except for the present study performed with a disruption
mutant, all other investigations were performed with deletion
mutant strains. The strains also vary in the expression of the co-
transcribed devS gene; Mutl expresses DevS [7], unlike a dosR
mutant [13]. Since DevRS/DosT comprise the DevR signaling
pathway and wild-type levels of dosT transcripts were detected in
Mutl and Compl bacilli (data not shown), a paucity of signaling
through the kinases is unlikely to occur in Mutl or Compl strains.
Therefore we attribute the hypoxia adaptation defect to the
disruption of devR function alone and not that of the kinases. We
have established in the present study that DevRy is the active
mbhibitor species in the DevRy-Kan fusion protein. Moreover, the
kanamycin resistance cassette is routinely used in genetic analysis
and is not known to confer any abnormal phenotype to M. tb.
Therefore, our results establish DevRy-Kan as a signaling
inhibitor of the DevR-mediated hypoxia response and we exclude
an ‘unnatural’ function for the fusion protein in this response.
However, the effect of DevRy-Kan expression per se on other
aspects of bacterial physiology including virulence awaits further
investigation.

Importantly, the attenuated phenotype exhibited by Compl
bacteria was stable and not modulated by animal passaging.
Further investigation is necessary to understand the mechanism
underlying attenuation of the Compl strain. However, the
demonstrated repression of WT DevR function by DevRy-Kan
signaling inhibitor suggests the possibility that such a knockdown
approach that intercepts bacterial signaling could be useful for
studying and perhaps for modulating the activity and function of
other M. tb signaling pathways.

Materials and Methods

The plasmids and strains used in this study are described in
Tables 1 and 2, respectively.

Construction of pAVdevRy-Kan

The devR gene was disrupted by in-frame msertion of a kanamycin
resistance cassette (kan) from pGP1-2 (kind gift from Dr. S. Tabor,
USA) at an unique PpuMI site. DevRn-Kan fusion protein-coding

February 2010 | Volume 5 | Issue 2 | 9448



DNA sequence was cloned downstream of the native operon
promoter described earlier [21] to generate pAVdevRy -Kan.

Preparation of Passaged Bacilli

All experiments were performed with guinea pig-passaged M. th
WT, Mutl and Compl strains unless mentioned otherwise. For
passaging, —70°C frozen stocks of laboratory cultured bacilli were
thawed, resuspended in PBS and ~5x10° CFU were injected
subcutaneously into guinea pigs as described [13]. Bacilli were
recovered from guinea pig spleens at 6 weeks post infection by plating
on Middlebrook (MB) 7H11 agar with OADC. Bacterial scrapings
were cultured in 7H9 medium containing Albumin Dextrose
Complex (ADC) and stored frozen at —80°C for further use.

Bacterial Culture

Frozen passaged bacterial stocks were sub cultured twice or
thrice to logarithmic phase (As95~0.4) prior to viability and
expression analysis.

Expression Analysis

Various logarithmic phase M. t cultures were diluted to Asgs of
0.025 and grown with shaking to an Asgs of 0.3. A culture aliquot was
immediately harvested by centrifugation (aerobic culture). For
hypoxic cultures, 10 ml aliquots of aerobic cultures were dispensed
mto 50 ml screw-capped tubes and kept standing for 5 days. Lysates
were prepared as described [27] from two to four independent
cultures at each condition. Aliquots containing 10 to 15 ug protein
were subjected to immunoblotting using rabbit polyclonal antisera as
described [19]. Anti-SigA antibody was a generous gift from Dr. T'S.
Balganesh (AstraZeneca, Bangalore). Densitometric analysis was
performed using Quantity One software (Biorad, USA). The signal
intensities derived from SigA in each lysate were used to normalize
the signal intensities from DevR and DevRn-Kan.

GFP Reporter Assay

GFP reporter activity of pOperon-2 and pdevR-2 constructs
was assessed under aerobic and hypoxic conditions as described
earlier [28]. Briefly, the M. t strains were subcultured twice to
mid-logarithmic phase and then 3.3 ml aliquots (Asq95 =0.1) were
dispensed in 5 ml Vacutainer tubes (BD) which were kept standing
(hypoxic conditions). GFP fluorescence was measured at the
specified time points.

In Vitro Phosphotransfer Competition Assays

Full length DevS (DevSs75) was purified as described earlier
[29]. Full-length DevR was overexpressed and purified from E. coli
(43 harbouring pAVDevR by standard techniques. DevRy -Kan
fusion protein was purified from E. coli carrying pKKNKan by
standard techniques. DevS;7g (5 uM) was autophosphorylated
using 5 pCi y - *?P-ATP (approximately 38004000 Ci/mmole,
BRIT, Mumbai, India) in a 20 pl reaction containing 50 mM
Tris, pH 8.0, 50 mM KCI, 25 mM MgCl, and 50 puM ATP at
25°C for 60 min as described [7]. DevS;;3~P was added to a
mixture of full-length DevR (5 uM) and DevRn-Kan (at
concentrations ranging from 0.83 to 30 uM to attain molar ratios
of 1:6 to 6:1 for DevR:DevRyn-Kan, respectively) and incubated
for 2 min at room temperature. Samples were electrophoresed
through a 15% SDS-PAGE and the gel was subjected to
phosphorimaging.

Assessment of Viability of M. tuberculosis Strains In Vitro

M. th cultures were diluted to Asg; of 0.005 and 10 ml aliquots
were dispensed in 50 ml tubes and grown either with shaking at
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220 rpm (aerobic setup) or kept standing in 15 ml tubes (hypoxic
setup). Cultures were sampled once only from separate tubes
dedicated for each time point of the hypoxia set up. Bacterial CFU
at defined time points was estimated by plating serial dilutions in
duplicate on MB 7H11 agar containing ADC and incubating the
plates at 37°C for 6 weeks.

Guinea Pig Virulence Assay

Approval was taken from the Institutional Animal Ethics
Committee, NTI, Bangalore prior to guinea pig experiments.
Guinea pigs were infected by subcutaneous route with passaged M.
th strains in phosphate buffered saline (approx. 5x10° viable
organisms per animal) for 6 weeks and 13 weeks (6-10 animals per
group) as described [13]. The virulence assay in guinea pigs was
performed as described [13,24,25]. In this model, bacteria spread
to the lungs and spleen from the site of injection (thigh). Briefly, at
the time of sacrifice, internal organs were examined for visually
scorable lesions in spleen, liver, lung, inoculation site and its
draining lymph nodes as described [24]. Lungs and spleens were
transferred to selective Kirchner’s liquid medium for CFU
determination as described [13]. The spleens and right lower
lobes of lungs were individually homogenized in dedicated
homogenizers and serial dilutions were plated in duplicate on
MB 7HI11 agar containing OADC and also on LJ slopes. The
colonies were counted after 6 weeks of incubation at 37°C.
Portions of lung and liver were fixed in 10% formalin and
processed for histopathological analysis by staining with haema-
toxylin and eosin as described previously [30]. Laboratory
cultured strains were also assessed in the 6 weeks virulence assay
(10 animals per group). The statistical significance of the
differences between the various strains for different parameters
was determined using the Mann-Whitney test.

THP-1 Infection Assays

The inocula for infection were prepared by culturing M. th
strains with shaking to A595~0.6 in Dubos Tween Albumin. THP-
I cell line was maintained in RPMI 1640 medium supplemented
with 10% fetal calf serum and monolayers were prepared and
infected as described [31]. Briefly, THP-1 cells were seeded at
0.25x10° cells per well in 24-well tissue culture plates and were
differentiated by the addition of phorbol 12-myristate acetate
(100 nM) for 24 h. The monolayers were infected with M. #
strains at a low m.o.i. (1 bacterium per 50 macrophages) for 20 h,
washed with incomplete RPMI 1640. Fresh complete RPMI 1640
was added to each well and the plates were incubated at 37°C for
upto 7 days. Intracellular viable bacteria on day 1, 4 and 7
postinfection were assessed by lysis of the monolayers in 0.025%
SDS, followed by plating serial dilutions as described above.
Infectivity i1s expressed as a fraction of the number of bacteria
internalized on day 1 to the total number of bacilli added.
Significance was determined by one-way ANOVA followed by
post-hoc analysis using Bonferroni correction.

Supporting Information

Table S1
Found at: doi:10.1371/journal.pone.0009448.s001
DOC)

Figure S1 Bacterial recovery (Mean plus/minus SD) from
guinea pigs infected for 6 weeks with passaged or laboratory
cultured M. tb strains. *, * *, P<<0.05 in comparison to WT and
Mutl, respectively. #, P<<0.05 between the passaged and the
laboratory cultured strains.

Found at: doi:10.1371/journal.pone.0009448.s002 (0.18 MB TIF)

(0.05 MB
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