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ABSTRACT We have determined the phase behavior of disaturated phosphatidylglycerols (PGs) of chain lengths nCH2 ¼
14–18 at high pH and ionic strength using calorimetry, dilatometry, as well as x-ray diffraction. PGs with nCH2 ¼ 14 and 16 show
thermotropic behavior similar to that of phosphatidylcholines (PCs). The area/lipid obtained in the gel phase is smaller than that
reported for PCs despite the expected larger effective headgroup size. This can be explained by the tilting of the PG headgroup
out of the bilayer plane, and we provide experimental evidence for a headgroup tilt transition. For distearoyl PG, we further find
that the ‘‘usual’’ gel phase coexists with an interdigitated phase, which exhibits a transition from an orthorhombic into a hex-
agonal chain packing. The total amount of the interdigitated phase depends significantly on the temperature but is found to be
largely independent of temperature equilibration time and different sample preparation protocols. Thus, the development of the
interdigitated phase appears to be kinetically trapped. The formation of interdigitated phases in PGs at much smaller chain lengths
than in PCs is of high relevance to interaction studies with antimicrobial peptides, as it provides a mechanism for the discrimi-
nation of membranes composed of different lipid species.

INTRODUCTION

Phospholipids are the main lipid constituents of biological

membranes and are well known for their interesting physical

properties that result from the low dimensionality of the sys-

tem and that in turn have a strong impact on the functionality

of living cells. The concept of regulation of membrane prop-

erties by specific lipid compositions is well accepted, and

different cells are known to display characteristic mixtures

of lipid species. For example, phosphatidylcholines (PCs),

phosphatidylethanolamines (PEs), cholesterol, and negatively

charged phosphatidylserine (PS) are lipids mainly found in

mammalian plasma membranes (1). The lipid architecture of

bacterial membranes, on the other hand, exhibits mainly PEs,

as well as anionic phosphatidylglycerols (PGs) and their deri-

vates, such as cardiolipin but lacks cholesterol. Gram-negative

bacteria further display an outer monolayer composed of lipo-

polysaccharides. Due to the different physical and chemical

properties of the lipids involved, this difference in lipid ar-

chitecture leads to membranes with diverse structural and

mechanical properties (often also denoted as global proper-

ties), which in turn allows antimicrobial peptides to discrim-

inate between bacterial and mammalian membranes (2). It is

therefore a prerequisite to study the global and local prop-

erties of pure lipids or lipid mixtures in detail to be able to

address the effects observed, when antimicrobial peptides or,

more generally, membrane-active compounds interact with

the lipid matrix (3).

Immersed in an aqueous solution, phospholipids exhibit

various lamellar and nonlamellar structures that may be trans-

formed into each other, for example, by changing the tem-

perature, pressure, lipid concentration, ionic strength, or pH

(4–6). Lipids such as PCs and PGs are known to display a gel

phase, Lb9, with tilted hydrocarbon chains at low tempera-

tures that transforms first into a ripple phase, Pb9, upon heat-

ing and then into the fluid, La phase, where the hydrocarbon

chains are in a molten state. Additionally, both lipids are

known to display subgel phases under prolonged equilibra-

tion protocols at low temperature (7–9), as well as a precur-

sor subsubgel phase, denoted as SGII (see Tenchov et al. (9),

and references therein), with a packing symmetry of the hy-

drocarbon chains similar to that of the Lb9 phase. Both, Lb9

and SGII phases are metastable with respect to the subgel

phase. The transformation from Lb9 to SGII is also referred to

as the Y-transition, accounting for the splitting of the hydro-

carbon chain reflections observed by x-ray diffraction (9,10).

Although the La phase is usually considered to be the

biologically most relevant mesophase, biophysical studies

have to also address membrane properties below the chain-

melting transition temperature, Tm, for several reasons. Of
particular relevance in the case here is the ability of some

membrane-active compounds, such as antimicrobial peptides

to shift the Tm of bacterial model membranes, frequently con-

taining PGs, to higher values. In contrast PC bilayers, which

are first-order models of mammalian membranes, remain un-

affected (for review see, for example, Lohner and Prenner

(11)). Hypothetically, the shift of Tm may lead, at least near

interaction sites, to a phase transition into a gel phase even

in natural bacterial membranes, if the temperature is close

enough to the initial Tm. This can in turn cause membrane
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dysfunction, thus providing an alternativemechanism ofmem-

brane perturbation, which is frequently discussed either in

terms of carpet or pore-forming models (2). A detailed un-

derstanding of the gel phase of PGs is therefore of general

interest.

The important difference between PCs and PGs is that the

latter lipid has a single dissociable proton that can be titrated,

yielding charge neutral lipids at low pH and negatively

charged headgroups above a pH of ;5, where the pKa is 2.9

(12). Only in their anionic state do PGs behave analogously

to PCs (13). In the neutral state, PGs exhibit no tilt of the

hydrocarbon chains with respect to the bilayer normal and

behavemore like PEs (9,14), which also form an Lb phase and

display a much higher chain Tm compared to PCs of equal

chain length (15). Additionally, the salinity of the aqueous

solution has a big effect on the phase behavior of PGs. At low

salt concentration the Pb9 phase is basically replaced by a

phase that is rich in pore-like, weakly correlated defects (16).

The occurrence of a tilt for PCs and negatively charged

PGs can generally be attributed, in a simple picture, to the

mismatch between the lateral areas of the headgroup and the

hydrocarbon chains (17). For PCs, excluded volume inter-

actions between the headgroups prevent the chains in the bi-

layer from coming close enough to minimize van der Waals

energies if arranged perpendicular to the membrane surface.

The tilting of the chains is, therefore, a compromise that re-

solves this packing problem. In the case of PGs at high pH

the electrostatic repulsion between the like-charged head-

groups is responsible for an effectively larger headgroup area

that causes the chains to tilt compared to neutral PGs.

If the packing mismatch between lipid heads and hydro-

carbon chains exceeds some critical value, the system may

transform into an interdigitated phase, LbI, where the ter-

minal methyl groups of one monolayer are located near the

polar interface of the other membrane leaflet. This gives each

lipid headgroup four times the lateral space of a single hy-

drocarbon chain. To date, several reports on interdigitated

phases—either in pure lipid phases with symmetric (18–23)

and asymmetric hydrocarbon chains (24) in the presence of

large ions (25) in mixtures of PCs with small amphiphilic mol-

ecules such as anesthetics (26), lysoPC (27), or short chain

alcohols (28–31)—can be found in the literature, where the

latter aspect was recently simulated using a dissipative par-

ticle dynamics technique (32). Alternatively, interdigitated

phases may also be induced by applying hydrostatic pressure

(33).

Historically it is interesting to note that the first report

on interdigitated phases in double-chain lipid systems was

on 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]
(DPPG) (18). However, the same group (34) and also Watts

et al. (14) were not able to reproduce the original result using

an improved PG synthesis protocol. The original observation

of an LbI phase was attributed to the presence of impurities,

most likely traces of choline resulting from a transesterfica-

tion step (34). Interestingly, the antibiotic polymyxin B was

also found to induce an interdigitated phase in DPPG (35,36).

This suggests that generally membrane-active compounds

that interact preferentially near the lipid-polar interface may

act as ‘‘impurities’’ by affecting the balance between head-

group and chain interactions, consequently causing the for-

mation of an LbI phase in PGs. Indeed, recent studies on PG

interactions with various antimicrobial peptides also reveal

interdigitated phases and support this notion (Sevcsik et al.,

unpublished).

The balance between headgroup and acyl chain interac-

tions may be simply altered upon varying the hydrocarbon

chain length, which may lead above a certain threshold to

interdigitation due to increased van der Waals interactions

between the acyl chains (17). This way the relative mag-

nitudes of the two contributions can be controlled in a better

way compared to interaction studies with membrane-active

compounds. The question we intend to tackle in this work,

therefore, is whether interdigitated phases can also be found

in pure PG systems as we increase the chain length. If this is

the case, then the induction of an LbI phase by membrane

surface-active compounds may be understood as a catalyzing

process of an intrinsic lipid property.

Applying small- and wide-angle x-ray scattering (SWAXS),

differential scanning calorimetry (DSC), and dilatometry on

disaturated PGs at pH 7.4 (20 mM Na-phosphate buffer, 130

mM NaCl), we indeed find an interdigitated phase in the case

of nCH2 ¼ 18, which coexists to various extent with the

Lb9 and Pb9 phases. The packing of the hydrocarbon chains

at low temperatures corresponds to orthorhombic symmetry

and transforms into hexagonal symmetry at;12�C. No such
phases can be found for shorter chain PGs. We further pres-

ent previously unreported structural details for DPPG in the

gel phase, including the headgroup volume of 257 Å3, which

we derive from the combination of dilatometric and x-ray

scattering data. Interestingly, our value for the lateral area per

lipid A of 46.7 Å2 at 25�C is smaller than A for PCs (47.2 Å2

(37)) despite the expected larger size for PGs due to elec-

trostatic repulsion. The disagreement is resolved by consid-

ering a tilting of the PG headgroups away from the bilayer

plane, and we indeed observe a transition of PG heads from

an orientation almost parallel to the membrane surface to one

pointing away from the surface.

The work is organized as follows: The Materials and

Methods section introduces the model of interdigitated bi-

layers used in the analysis of x-ray data. Our results are put

together into an emerging global picture of the phase be-

havior of PGs in the Discussion section.

MATERIALS AND METHODS

Lipids, chemicals, and sample preparation

1,2-Dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG), DPPG,

and 1,2-distearoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DSPG) (all so-

dium salt) were purchased from Avanti Polar Lipids (Alabaster, AL) and
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used without further purification. Lipid stock solutions for each PG were

prepared by dissolving weighted amounts of dry lipid powder in an organic

solution of chloroform/methanol (2/1 v/v), which were of p.A. grade and

obtained from Sigma (St. Louis, MO). Thin layer chromatography (TLC)

was applied to check purity and possible degradation of the phospholipids

using Silica 60 F 254 HPTLC plates (Merck, Darmstadt, Germany) and

chloroform/methanol/water/acetic acid (65/25/4/1, v/v/v/v) as solvent (Lactan,

Graz, Austria; purity, p.a.).

Dry lipid films were obtained by evaporating the organic solvent of the

lipid stock solution under a stream of nitrogen and a subsequent place-

ment under vacuum for ;8 h. The samples were hydrated in 20 mM Na-

phosphate buffer containing 130 mM NaCl at ;10�C above the main phase

transition temperatures of the lipid by vigorous intermittent vortex mixing.

The pH was adjusted to 7.4. Samples were used immediately after prepa-

ration, thus excluding the formation of subgel phases (9,13). The total lipid

concentration was 3 mg/ml for DSC, 5 mg/ml for dilatometry, and 50 mg/ml

for SWAXS experiments. Under these conditions PGs display no positional

correlations between the layers, consistent with a previous report (38).

For leakage experiments, the dried lipid films were hydrated in 12.5 mM

ANTS (8-aminonaphthalene-1,3,6-trisulfonic acid, disodium salt), 45 mM

DPX (p-xylene-bis-pyridiniumbromide), 68mMNaCl, 10mMHEPES at pH

7.4. Both fluorophore and quencher were purchased from Molecular Probes

(Eugene, OR), HEPES, and Triton X-100 (4-(C8H17)C6H4(OCH2CH2)nOH,

n ; 10), used during the fluorescence spectroscopy experiments, were ob-

tained from Sigma. The dispersions were subsequently extruded 13 times

through a polycarbonate filter (Millipore, Billerica, MA) of 0.1-mm pore size

to obtain large unilamellar vesicles (ULVs). The ANTS/DPX-containing

vesicles were separated from the free ANTS/DPX by exclusion chromatog-

raphy using a column filled with Sephadex G-75 fine gel (Amersham Bio-

sciences, Little Chalfont, UK) in an isosmotic buffer (10 mM HEPES, 140

mM NaCl, and 1 mM EDTA).

Differential scanning calorimetry

DSC experiments were performed on a MicroCal VP-DSC high-sensitivity

differential scanning calorimeter (MicroCal, Northampton, MA). Different

scan rates of 5�C/h, 30�C/h, and 60�C/h were chosen to test their influence

on the observed transition peaks and widths. No significant differences were

found between scan rates of 5�C/h and 30�C/h. The phase transition

temperatures were taken at peak values of the heat capacities, cp, and

calorimetric enthalpies, DH, were calculated by integrating the peak areas

after baseline adjustment and normalization by the lipid concentration, using

MicroCal Origin 7.0.

Dilatometry

Density data were obtained using the DSA 5000 (Anton Paar, Graz, Austria)

consisting of a vibrating U-shaped borsilica glass tube for dilatometry

(39,40). A built-in Peltier-circuit allows temperature control to within 10�3

�C; the accuracy of the measured density is 10�6 g/ml. From measured den-

sities of the buffer r̃0 and the lipid dispersion r̃;we obtain the specific partial

volume of the lipids applying (40)

uV ¼ 1

r̃0

1� r̃ � r̃0

c

� �
; (1)

where c is the total lipid concentration. Sedimentation or floatation is an

inherent problem in measuring dispersions with the vibrating tube technique,

which affects the uV values on an absolute scale. Nevertheless, due to their

negative surface charge PGs form dispersions of ULVs, for which the sedi-

mentation process is much slower compared to multilamellar vesicles.

Hence, our values of specific partial lipid volumes are expected to be close to

their absolute values, which was validated by repeated measurements on

different sample preparations.

Small- and wide-angle x-ray scattering

The scattered intensity of the PG samples were recorded simultaneously in

the wave vector (q¼ 4p sinu/l) regimes of 10�3 Å�1 , q, 1 Å�1 (SAXS)

and 1.2 Å�1 , q, 2.7 Å�1 (WAXS) using a SWAX camera equipped with

two linear, position-sensitive detectors (Hecus X-ray Systems, Graz, Austria).

The x-ray camera was mounted on a sealed tube x-ray generator (Seifert,

Ahrensburg, Germany), which was operated at 2 kW. CuKa radiation (l ¼
1.542 Å) was selected using a Ni filter in combination with a pulse height

discriminator and the beam size was set to 0.5 mm 3 34 mm (V 3 H).

Samples were filled in 1-mm thin-walled quartz-glass capillaries and equili-

brated for 10 min at each temperature before measurement. Automatic tem-

perature control was provided by a programmable Peltier unit. Typical

exposure times were 2400 s for the SAXS regime and 4800 s for the WAXS

regime. These long exposure times are needed to obtain a reasonable signal/

noise ratio at higher q-values. TLC performed before and after x-ray experi-

ments did not reveal any signs of x-ray-induced sample degradation. Angular

calibration of the scattered intensities was carried out using silver stearate for

the SAXS regime and p-bromo-benzioc acid for the WAXS regime.

SAXS patterns were analyzed after background subtraction using the

program GAP, which is based on a previously developed global analysis

technique (41,42) that has been reviewed recently (3). In brief, the mem-

brane is modeled as a sheet of infinite lateral extent with an electron density

profile that is taken to be given by the summation of two headgroup Gauss-

ians of width sH and position6zH, as well as a hydrocarbon chain Gaussian

of width sC and negative amplitude located at the center of the bilayer at

z ¼ 0. For randomly oriented bilayers that exhibit no positional correlations

the scattered intensity is given by

IðqÞ ¼ jFðqÞj2=q2
; (2)

where the form factor F(q) is the Fourier transform of the electron density

profile.

In the case of interdigitated bilayers, the electron density profile displays

no sharp minimum at the bilayer center but a broad shallow trough (22).

Following Wiener et al. (43), we model this feature by splitting the electron

density into the parts given by the Gaussian headgroups, the hydrocarbon

chains, and a smooth bridging function between the two contributions.

Details of the model are given in the Supplementary Material; see Fig. 6 B

for an example of the electron density profile of the interdigitated phase.

If the system is a mixture of an interdigitated and a noninterdigitated

phase, the observed scattered intensity is a linear combination

IðqÞ ¼ ð1� fiÞIniðqÞ1fiI
iðqÞ (3)

of the intensity from noninterdigitated bilayers Ini qð Þ and interdigitated bi-

layers Ii qð Þ; where fi is the fraction of bilayers in the LbI phase.

From this analysis we obtain, as described previously (41,42,44), the

head-to-headgroup distance dHH ¼ 2zH, the membrane thickness dB ¼ dHH
1 4sH, and the hydrocarbon chain length dC ¼ zH � dH1, with dH1 ¼ 4 Å.

High frequency noise was removed from the background-correctedWAXS

data by applying a Lee filter (45) (see Supplementary Material). From the

wide-angle Bragg reflections we then calculate the lateral area per chain,

AC, and per lipid molecule, A, as detailed in the Supplementary Material. We

further derive the lipid headgroup and hydrocarbon chain volume following

Sun et al. (46).

Leakage experiments

Leakage of aqueous contents from liposomes was determined by fluores-

cence spectroscopy using an ANTS/DPX assay (47). Fluorescence spec-

troscopy was performed using a SPEX FluoroMax-3 spectrofluorometer

(HORIBA; Jobin Yvon, Longjumeau, France). The excitation wavelength

was set to 360 nm (excitation of ANTS) and the recorded emission wave-

length to 520 nm, with both beam slits set to 5 nm. Emission spectra cover-

ing the range of the fluorescence spectra of the fluorophore were collected
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from samples with and without vesicles to assure that light scattering made

no contribution to the fluorescence signal of the fluorophore. The fluores-

cence increase due to leakage and subsequent dilution of the quenched dye

was measured over a period of 2 h.

RESULTS

Table 1 lists the observed main and pretransition tempera-

tures, Tm and Tp, respectively, as well as the corresponding

transition enthalpies of DMPG, DPPG, and DSPG under the

present buffer conditions, and Fig. 1 shows the DSC traces of

DPPG and DSPG. The values of Tp and Tm agree well with

previous reports (13,48,49). Minor differences in Tm and Tp
compared to Zhang et al. (13) can be attributed to different

buffer conditions. Deviations of transition enthalpies are well

within the usual variation found for PCs (50). Boggs and

Rangaraj (36) have reported a Tm of 56.3�C for DSPG at a

three times faster heating rate. The general increase of the

pretransition temperature, Tp, and Tm and the decrease of the

ripple phase regime Tm � Tp with increasing chain length is

similar to the behavior of PCs. The transition temperatures

are also very close to those reported for PCs of equal chain

length (50). The inset to Fig. 1 shows an enlargement of the

DPPG and DSPG thermograms at low temperatures, reveal-

ing two additional low enthalpy transitions for DPPG and

three for DSPG. The corresponding transition temperatures

are reported in Table 1; the tentative assignment made will

be discussed further below. Transition enthalpies are not

reported due to the partial overlap of the transitions.

In the following, we will concentrate on the differences

between DPPG and DSPG because all our data indicate that

DMPG behaves analogously to DPPG with respect to its

overall structural properties. The SAXS patterns of DPPG

(Fig. 2 A) exhibit pure diffuse scattering at all temperatures

originating from positionally uncorrelated bilayers. This can

be explained simply by the overall negative surface charge

that leads to the formation of positionally uncorrelated bi-

layers, most likely ULVs because of electrostatic repulsion.

The scattering patterns presented correspond to structures in

the Lb9 and Pb9 phases, which are identified in combination

with the DSC and WAXS data (Figs. 1 and 3 A). Note that

the patterns in the ripple phase are well described by our model

that considers a variation of the electron density profile only

across the bilayer. This is unexpected because one would

also anticipate scattering contributions from in-plane corre-

lations of the ripple structure. However, it can be shown that

the latter contribution is negligible. This allows us to treat the

ripple phase patterns analogously to gel or fluid phase pat-

terns. The value of the membrane thickness obtained is, how-

ever, affected by the ripple structure. This is clearly evidenced

in the temperature dependence of the membrane thickness

(Fig. 2 B), where the dB values in the ripple phase regime are

slightly higher compared to those in the Lb9 phase. Fig. 2 B
also clearly shows the melting of the hydrocarbon chains

across the main phase transition, leading to a decrease of the

bilayer thickness by ;9%.

The WAXS patterns corresponding to DPPG in the gel and

the ripple phase are presented in Fig. 3 A. Below the pre-

transition, the hydrocarbon chains pack in a two-dimensional

(2D) orthorhombic lattice and the chains are tilted with re-

spect to the bilayer plane. This gives rise to a sharp (2 0) and

a broad (1 1) reflection well known from early studies on PCs

(51) and in agreement with previously published structural

data on DPPG (9,14,49). From the positions of these peaks

we are able to calculate the lateral area per chain, AC (Table 2).
We have further estimated the tilt of the hydrocarbon chains

using dtiltC ¼ dntC cosut;where d
nt
C is the hydrocarbon chain length

of nontilted and dtiltC that tilted bilayers, respectively. dntC ¼
20.7 Å has been determined from diffraction patterns in the

protonated state of DPPG at pH 2, which exhibits no chain

tilt (14). Details of the behavior of the system at low pH will

be published by us in a subsequent study. We obtain 29.5�

FIGURE 1 DSC thermograms of fully hydrated DPPG and DSPG in

20 mM Na-phosphate buffer, 130 mM NaCl, pH 7.4 upon heating with a

scan rate of 30�C/h. Heat capacity curves for DPPG and DSPG have been

shifted vertically for clarity. The inset shows an enlargement of the heat ca-

pacity of DSPG (a) and DPPG (b) between 5�C and 30�C.

TABLE 1 Transition temperatures Ti and enthalpies DHi of DMPG, DPPG, and DSPG at pH 7.4

Lipid Ti (�C) T1 (�C) T2 (�C) Tp (�C) DHp (kcal/mol) Tm (�C) DHm (kcal/mol)

DMPG n.o. n.o. n.o. 12.1 0.9 22.9 7.1

DPPG n.o. 9.3 14.5 33.2 1.3 40.4 10.2

DSPG 12.5 19.0 23.5 52.0 1.8 53.5 11.6

Index ‘‘i’’ refers to the LbI,o / LbI,h transition, ‘‘1’’ and ‘‘2’’ to either the Y-transition, or to the headgroup transition, ‘‘p’’to the pretransition and ‘‘m’’ to

the main phase transition.

n.o., not observed.
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for ut, which is in good agreement with the result obtained by

Watts et al. (14) and is only slightly smaller than the tilt of

31.6� reported for DPPC at 25�C (52). The lateral area per

DPPG molecule is also ;1.5 Å2 smaller than the value of

47.3 Å2 obtained in the same study. Following the work of Sun

et al. (46), we further calculate the volume of the hydrocar-

bon chains, VC. The headgroup volume, VH, has been cal-

culated by subtracting VC from the total lipid volume, VL,

derived from dilatometry. The value of 257 Å3 obtained is

smaller than the 319 Å3 reported for PCs (46) but slightly

larger than the reported values of 252 Å3 for PEs (53) and

244 Å3 for PS bilayers (54). The intermediate value between

PEs and PCs agrees with the differences obtained from rough

estimates of the headgroup size based on the van der Waals

radii of the elements. Table 2 reports the structural data for

DPPG at 25�C.
We now turn to temperature dependence of DSPG under

identical conditions. The packing of the hydrocarbon chains

is much more complex than in DPPG (Fig. 3). In fact, we

observe the superposition of two distinct chain lattices. At

2�C, the pattern consists of three sharp and one broad peak.

The sharp peak at q ¼ 1.45 Å�1 and the broad peak at 1.54

Å�1 can be indexed as the (2 0) and (1 1) reflections of a two-

dimensional orthorhombic unit cell with lattice parameters

of a ¼ 8.7 Å and b ¼ 4.6 Å, which give AC ¼ 20.1 Å2. The

(1 1) peak exhibits a comparable width as the correspond-

ing peak for DPPG at 25�C. This allows us to conclude that

this packing comes from tilted hydrocarbon chains, with ut;
35� derived from the small angle data (see below). The re-

maining two Bragg reflections at 1.49 Å�1 and 1.64 Å�1 also

index on a two-dimensional rectangular lattice. However,

their small width suggests that they are due to a packing of

FIGURE 2 Structural behavior of DPPG under the present buffer con-

ditions. Panel A shows SAXS patterns in the Lb9 phase at 25�C (i) and in the

Pb9 phase at 38�C (ii). Solid lines give the best fit of the global analysis

model to the scattered intensities. The temperature dependence of the mem-

brane thickness is presented in panel B encompassing the Lb9, Pb9, and La

phases. Dashed lines indicate the transition points observed by DSC.

FIGURE 3 WAXS patterns of DPPG (A) and DSPG (B) as a function of

temperature. The DPPG patterns at 25�C and 38�C are typical for hydro-

carbon chain packing in the Lb9 and Pb9 phases, respectively. DSPG displays

a coexistence of two phases throughout the complete gel phase range; the

pattern at 2�C can be described as the superposition of four peaks corre-

sponding to the (20)b9 and (1 1)b9 of the Lb9 phase, as well as the (1 1)bI,o and

(20)bI,o reflections of the LbI phase with orthorhombically packed acyl

chains. At 35�C, the latter phase has transformed into an LbI,h with hex-

agonally packed chains as evidenced by the strong and sharp (1 1)bI,h
reflection, which is superimposed on the Lb9 peaks. At 50�C the Lb9 phase

has transformed into a Pb9 phase indicated by the broad peak (similar width

as that exhibited by DPPG at 38�C) that coexists with the LbI,h phase.
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hydrocarbon chains with negligible tilt. Moreover, the calcu-

lated unit cell parameters a ¼ 7.7 Å and b ¼ 5.0 Å yield an

area per chain of 19.3 Å2, which is significantly smaller than

in the coexisting b9-structure.
To distinguish between the coexisting reflections we de-

note the chain reflections of the b9-conformation as (2 0)b9
and (1 1)b9 and, in anticipation of results presented below,

those of the additional orthorhombic phase as (1 1)bI,o and

(2 0)bI,o. At 35�C theWAXS pattern has transformed into two

sharp and one broad peak. The sharp peak at 1.47 Å�1 and

the broad at 1.51 Å�1 can again be ascribed to a b9-packing
of the hydrocarbon chains. The second sharp peak occurs at

the same position as the broad peak and originates from a

hexagonal acyl chain packing of untilted chains and is, there-

fore, referred to as the (1 1)bI,h reflection. Finally, at 50�C,
the system has transformed into a Pb9 phase and the corre-

sponding WAXS pattern exhibits a broad peak at 1.49 Å�1

of comparable width as that in DPPG at 38�C (Fig. 3). The

second peak is as sharp as the (1 1)b,h peak 35�C and occurs

at almost the same position (1.50 Å�1). It is therefore due to

the same structure.

The temperature dependence of the wide-angle reflections

for a complete heating/cooling cycle is presented in Fig. 4.

Four regimes can be discerned. In regime I (Fig. 4), we ob-

serve a slight shift of the (2 0)b9peak toward lower angles and

a decrease of its intensity at around 22�C on account of an

increase of a (2 0)b9peak at somewhat larger q-values around
1.47 Å�1. The (1 1)bI,o and (2 0)bI,o peaks in turn do not shift

with temperature but decrease in intensity and finally trans-

form into the (1 1)bI,h peak at around 12�C. Regime II is

characterized by strong (2 0)b9 and (1 1)bI,h peaks, which ap-

proach each other as the temperature is increased further,

where the lower q-peak decreases slightly in amplitude dur-

ing this process. The third regime corresponds to that of the

ripple phase according to our DSC data (Fig. 1) and exhibits

a prominent (1 1)bI,h and a broad peak as shown in Fig. 3 B.
The system transforms into the fluid phase above ;56�C in

regime IV and exhibits only a broad diffuse peak that is cen-

tered at lower q-values. Melting of the hydrocarbon chains

commences, however, at several degrees lower as evidenced

by the increase of diffuse scattering just above 50�C. Upon
cooling, the phases appear in opposite order but exhibit some

hysteresis. This demonstrates reversibility of the temperature

behavior. It is very unlikely that two coexisting structures

undergo a phase transition at one and the same temperature.

In Fig. 5, we show an enlargement of the main phase tran-

sition regime of DPPG and DSPG, where the heat capacity

peaks have been normalized to unity. It is evident from the

comparison that the cp-peak of DSPG consists of two melting

processes, which are shifted by ;0.05�C.
We now describe the supramolecular packing observed for

DSPG in the SAXS regime. Fig. 6 A shows a representative

SAXS pattern obtained at 45�C. Analogous to DPPG (Fig. 2),

the scattered intensity is purely diffuse and originates from

positionally uncorrelated bilayers, most probably ULVs. It

differs from the patterns displayed by DPPG, however, in an

important detail. The scattered intensity of DSPG does not

display a minimum between the first and the second side

maximum. Instead, it exhibits a diffuse contribution reflect-

ing a distance of;30 Å as can be roughly estimated from its

position on the q axis. Consequently, several trials to fit the

data with a single bilayer distribution failed. One possibility

is that such a diffuse component comes from a structure that

occurs in the plane of the bilayer, such as regularly aligned

TABLE 2 Structural parameters of DPPG in the Lb9

phase (25�C)

Parameter DPPG

dB (Å) 56.0 6 0.3

dHH (Å) 44.0 6 0.2

dC (Å) 18.0 6 0.2

a (Å) 8.5 6 0.1

b (Å) 4.8 6 0.1

AC (Å2) 20.3 6 0.2

ut (deg) 29.5 6 0.3

A (Å2) 46.7 6 0.7

VL (Å3) 1098 6 2

VH (Å3) 257 6 10

VC (Å3) 841 6 16

FIGURE 4 Contour plot of WAXS patterns as a function of temperature

during a heating/cooling cycle. The bottom panel corresponds to the start of

the experiment and gives the heating scan. The top panel shows the cooling

scan. Highest intensities are colored in red, lowest in blue. Dashed lines

separate regimes I–IV that can be distinguished from the experimental data

(see text for details).

518 Pabst et al.

Biophysical Journal 93(2) 513–525



pores, suggested for DMPG at low ionic strength in the main

phase transition regime (16) or a modulation of the bilayer

just as in the ripple phase but with a short wavelength on the

order of 30 Å. To check on the first option, we have per-

formed leakage experiments on extruded DPPG and DSPG

vesicles filled with a ANTS/DPX mixture. No increase in

fluorescence intensity was observed over a period of 2 h for

both systems. The presence of ANTS within the vesicles was

verified by Triton-X100, which leads upon addition to a rapid

jump of the detected fluorescence intensity (see Supplemen-

tary Materials). Consequently, we can exclude the formation

of pores to be the origin of the additional diffuse scattering.

The expected contribution to the scattered intensity from sin-

gle, positionally uncorrelated bilayers with a short wave-

length modulation was modeled according to Karmakar and

Raghunathan (55). Indeed, one finds a diffuse component ap-

pearing in the expected range of wave vectors. However, its

intensity is negligible compared to that originating from the

modulation of the electron density across the bilayer and

cannot account for the observed scattering patterns.

A third possibility to explain the absence of a minimum

between the first and the second side maximum would be the

formation of asymmetric bilayers recently found for ULVs

composed of PS (56) and a PC/PS mixture (57). In such a

scenario, PGs would form small ULVs of high curvature,

where the inner monolayer would be laterally compressed

leading to an untilting of the hydrocarbon chains, whereas

the outer monolayer would be relaxed enough to allow for a

tilt of the hydrocarbon chains. Although this would go along

with the observed WAXS patterns between 20�C and 50�C,
one would in such a case expect a tight coupling of the tran-

sitions occurring in the coexisting chain lattices, which is ap-

parently not the case (Fig. 4). Moreover, this would lead

to additional diffuse scattering at q-values around 0.1 Å�1

due to the increase of the membrane thickness, not around

0.2 Å�1as observed experimentally. Hence, we can also dis-

miss this option.

Still, the best indication for the additional structure visible

in the SAXS regime comes from the corresponding WAXS

patterns (Fig. 3 B), which exhibit sharp peaks in addition to

the b9-pattern that corresponds either to an orthorhombic or

hexagonal b-packing of the hydrocarbon chains. Such pack-

ings are well known to be exhibited by interdigitated phases

(19,21). Moreover, studies on dihexadecyl phosphatidylcho-

line and DPPC in the presence of KSCN (potassium thio-

cyanate) showed that the interdigitated phases form at low

temperatures a 2D rectangular phase, denoted LbI,o, which

transforms upon heating into a 2D hexagonal phase, LbI,h
(19,25). This prompted us to fit the SAXS profiles displayed

by DSPG with a linear combination of an interdigitated and

a noninterdigitated phase (see Materials and Methods). This

model agrees well with the experimental data (Fig. 6). The

corresponding electron density profiles are shown in Fig.

6 B. The values of the parameters obtained for the interdig-

itated phase are dB ¼ 38.8 Å and dC ¼ 22.8 Å; the fraction

fI of the LbI phase turns out to be ;8%. We note that all

SAXS patterns recorded below 56�C exhibited additional

diffuse scattering that can be interpreted to be due to an LbI

FIGURE 5 Normalized heat capacity curves for DPPG (solid line)
and DSPG (dashed line) in the main phase transition regime at a scan rate

of 5�C/h.

FIGURE 6 Coexistence of an interdigitated and a noninterdigitated phase

in DSPG. SAXS data (T ¼ 45�C) show diffuse scattering at q ; 0.2 Å

compared to DPPG (Fig. 2). The experimental data can be fitted with a linear

combination of scattering intensities originating from interdigitated (dashed

line) and noninterdigitated bilayers (dashed-dotted line). The solid line gives

the sum of the two contributions. Panel B shows the corresponding electron

density profiles, where the dashed line gives the profile of the interdigitated

phase, clearly distinguishable by the broad methylene trough.
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phase. Above 56�C, in the La phase, the SAXS patterns can

be fitted with a single bilayer population as in DPPG (Sup-

plementary Material). Fig. 7 shows the fraction of the inter-

digitated bilayers for a complete heating and cooling cycle.

Two things are apparent from these results. First, fI in-

creases as the temperature approaches the main phase tran-

sition by about a factor of two. Second, the fraction decreases

with some hysteresis again as the system is cooled back to

2�C.
The temperature dependence of the membrane thickness

and the area per hydrocarbon chain of DSPG are presented in

Fig. 8 for all observed phases. dB increases with temperature

both in the Lb9and the LbI. The decrease of dB in the fluid

phase compared to Lb9 indicates melting of the hydrocarbon

chains as expected. The area per chain of the Lb9 phase shows

a slight increase with temperature. Interestingly, it does not

reflect the transition occurring at ;24�C clearly observed in

Figs. 4 and 5 B. Hence, the transition evolves under isoareal

conditions. Likewise, the LbI,o / LbIh transition does not

yield an increase of the chain packing area. Instead AC

remains constant up to 20�C. Between 20�C and 56�C, the
area per chain of the LbI,h increases progressively and ap-

proaches that of the Lb9 phase. In fact, the values overlap

with the areas calculated in the b9 structure above 50�C. We

should note that the areas per chain in the ripple phase are

estimates. They have been obtained from the position of the

q11 peak (Supplementary Material). These values need to be

corrected, however, for inclination angle of the ripple c (see

inset to Fig. 8 B), assuming for the sake of simplicity sym-

metric ripples and c ¼ 10�. Note that even if one considers a
probably more realistic asymmetric ripple profile as reported

in PCs (see, for example, Sengupta et al. 58 and references

therein) no significant changes to the observation of similar

ACs for the LbI and Pb9 phases in this particular temperature

range can be expected.

To conclude the Results section, we concentrate on the

packing properties of the Lb9 phase. Fig. 9 A presents the av-

erage chain tilt of DSPG and DPPG as a function of the dis-

tance from the main phase transition T � Tm. This allows us
to plot the DPPG data on top of the DSPG data and dem-

onstrate that the general temperature dependence of ut does
not depend on the chain length. ut for DSPG has been deter-

mined analogously to DPPG using dntC ¼ 23.8 Å measured at

pH 2 (Pabst et al., unpublished). The overall decrease of the

tilt with temperature has also been observed for PCs (52) and

consequently leads to the observed increase of the membrane

thickness (Fig. 8). The area per lipid, shown in Fig. 9 B,
remains constant at the value of;49 Å2 up to 20�C and then

decreases in regime II to a value of 46.6 Å2, just before the

system transforms into the ripple phase.

DISCUSSION

Our data provide clear evidence for the coexistence of two

lamellar gel phases in DSPG in 20 mM Na-phosphate buffer

(130 mM NaCl, pH 7.4). The two phases correspond to an

Lb9 phase and an interdigitated LbI phase, which transforms

as a function of temperature from a 2D rectangular packing

of the hydrocarbon chains into a hexagonal subcell. At the

FIGURE 7 Temperature behavior of the interdigitated phase fraction

during a heating/cooling cycle. Solid lines are drawn to guide the eye.

Arrows indicate the direction of temperature change.

FIGURE 8 Calculated membrane thickness of DSPG in the Lb9 and Pb9
(d) phase, the LbI (s) phase, and La (shaded squares) phase (panel A).
Regime I corresponds to the coexistence of the LbI,o and Lb9 phases, regime

II to that of the LbI,h and Lb9 phases, regime III to that of the LbI,h and

Pb9phases, and regime IV to the La phase (see also Fig. 4). Panel B presents

the corresponding temperature behavior of the lateral area per chain (same

symbols as in panel A). The inset gives a schematic of a symmetric ripple

(shaded area) period illustrating the definition of c.
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same time, we find no signatures of an LbI phase in the

shorter chain lipids DMPG and DPPG applying equivalent

methods. The coexistence of Lb9 and LbI phases and in par-

ticular the temperature behavior of fI (Fig. 7) are in striking

conflict with Gibbs’s phase rule, according to which in the

presence of excess water and at constant pressure single com-

ponent lipid bilayers may exhibit in equilibrium two-phase

coexistence only at a single temperature. The fact that we

observe the coexistence of LbI and Lb9 phases over such a

broad temperature regime, therefore, implies that the system

is not in equilibrium. Hence, it is astonishing that the amount

of the interdigitated phase reverts back to its original value

upon cooling. We kept the sample for 3 days at 50�C without

detecting any noticeable change of the scattering pattern and

in the LbI fraction. Additionally, other samples prepared with

similar protocols gave no significant difference in the amount

of LbI. However, we do not know whether the protocols used

for DSC yield similar fractions of the interdigitated phase.

The x-ray data suggest that the system is to some extent ki-

netically trapped, but we do not at present have an expla-

nation for the observed temperature dependence of the LbI

fraction. Further kinetic studies would be necessary to ad-

dress this point adequately.

We will focus our discussion on a different point. About

10 years ago, Sun et al. (59) reported on the ‘‘anomalous’’

behavior of long-chain PCs using x-ray diffraction. In par-

ticular they observed WAXS patterns of dilignoceroyl phos-

phatidylcholine (DLPC, nCH2 ¼ 24) that look very similar to

those observed for DSPG (Fig. 3 B). From their studies Sun

et al. (59) concluded that the Lb9 phase coexists at low tem-

peratures with an LbI,o phase, which vanished in the inter-

mediate temperature regime. Raising the temperature further

they observe a third phase with hexagonally packed chains,

which again coexisted with the Lb9 phase. Using circumstan-

tial arguments this hexagonally packed phase was proposed

to be a ripple phase. An infrared fluorescence spectroscopy

study that was published shortly afterward confirmed the

packing of the hydrocarbon chains but was not able to prove

whether the hexagonally packed chains at high temperature

belong to a Pb9phase (60). Although we did not repeat this

study, based on our present data, it appears very likely that

the observed hexagonal subcell actually belongs to an LbI,h
phase.

Nevertheless, this is only a minor aspect in view of the

general picture that emerges. PGs in the anionic state behave

analogously to longer chain PCs with respect to their pro-

pensity to form interdigitated phases. This is by no means a

trivial statement, because anionic PGs behave regarding their

thermotropic properties analogously to PCs of equal chain

length, with only very small shifts of transition temperatures

(13). Why do PGs exhibit this dual behavior? To gain some

qualitative understanding of this phenomenon, let us con-

centrate on the temperature dependence of the structure of

the Lb9phase. Here, we find that the average chain tilt de-

creases with temperature, leading to an increase of the mem-

brane thickness (Figs. 8 and 9). If we suppose that ut shows a
linear temperature dependence, we find dut/dT ¼ �0.14�/�C
for DSPG. This is comparable to the value reported for the

chain analog PC (52). The overall expansion of the lateral

area per chain of DSPG, again assuming a linear temperature

dependence, gives dAC/dT ¼ 0.007 Å2/�C, which is ;4

times smaller than in PCs. Thus, the area expansivity given

by Sun et al. (52)

aA ¼ 1

A

dA

dT

� �
¼ 1

Ac

dAC

dT

� �
1 tan ut

dut

dT

� �
(4)

is dominated by the temperature dependence of the chain tilt

yielding aA ¼ �12 3 10�4 �C�1. This is six to two times

larger in magnitude compared to PCs, but most important, it

is of negative sign in contrast to the small but positive aA

found for PCs (52). Thus, the cross sectional area of PC in-

creases slightly with temperature, whereas it decreases in the

case of DSPG. This would lead, at some point, to a positional

overlap of the lipid heads, which is of course physically not

possible. To avoid headgroup crowding the system may

either react by a small vertical translocation of the lipid mol-

ecules, which would yield a modulated phase, or by the for-

mation of an interdigitated phase giving the headgroups simply

four times the space of a single hydrocarbon chain (37,52).

The important quantity in this respect is the compressibility

of the headgroup, which is dominated in the case of PCs by

its steric size. It can be estimated in the vicinity of the pre-

transition temperature, and Tristram-Nagle et al. (37) have re-

ported 47.2 Å2 as the putative hard-core excluded headgroup

FIGURE 9 Average chain tilt (A) and area per molecule (B) for DPPG (s)

and DSPG (d) in the Lb9 phase as a function of the reduced temperature

T � Tm. Dashed lines indicate the borders of the regimes introduced in

Fig. 4.
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area for PCs. In the case of PGs at high pH, additional elec-

trostatic repulsion between the heads have to be considered

(17). In view of this our value of 46.6 Å2, both for DPPG and

DSPG, is puzzling because the effective headgroup area of

the negatively charged PGs would be expected to exceed that

of PCs.

It is interesting to note that Petrache et al. (54) in a detailed

study on PS bilayers in the anionic state have also reported a

smaller cross sectional lipid area compared to PC chain ana-

logs. In the case of PS the area reduction effect is, however,

much more pronounced, on the order of 10%–15% and was

tentatively attributed to hydrogen bonding between adjacent

lipid headgroups creating an additional attractive force. This

also leads to higher Tms (61) in close analogy to PEs, where

hydrogen bonding has been suggested to account for the

higher phase transition temperatures (62). The similarities

between PE and PS lipids are also manifest in the absence

of a chain tilt in the gel phase (54).

It is therefore feasible that something similar may be

happening also in the case of PGs. Indeed, Zhang et al. (13)

have suggested that the PG headgroup hydroxyls may be

involved in intermolecular hydrogen bonding. Although we

cannot rule out a contribution from such a condensing effect,

we think that there is an additional effect dominating the ob-

served behavior in the case here. For its illustration we have

to take a close look at the temperature behavior of the area

per molecule (Fig. 9). In regime I, we found that A does not

depend on temperature, whereas Awas found to progressively

decrease in regime II. At the same time we found a transition

in the DSC data around 24�C (Fig. 1) and a jump of the

(20)b9 reflection toward larger q-values at the same temper-

ature (Fig. 4). Further, we recall that Sun et al. (52) reported

no significant changes in A as a function of temperature

below the pretransition for PCs. Why does the area per lipid

decrease for PGs upon approaching Tp and why does it not in
the case of PCs? The lateral area per head will be dominated

by its steric size in the case of PCs and by its effective size,

given by electrostatic repulsion, in the case of PGs. Thus, al-

though excluded area interactions lead to a basically incom-

pressible hard-wall-type potential for PCs, the interaction

potential of PG heads contains an additional soft part.

Apparently, however, there appears to be some energy bar-

rier that needs to be overcome to access the soft, compress-

ible part of the interaction potential. Otherwise we would not

observe a reduction of the lateral area per lipid only above

;25�C (Fig. 9 B). It is highly plausible that this activation

energy comes from the negative area expansivity, leading to

a lateral compression of the headgroup region. Two options

have been given so far to avoid headgroup crowding with

increasing temperature, vertical lipid displacement, and for-

mation of the interdigitated phase. There is, however, a third

scenario, which we think takes place in the case of PGs: a

change of the headgroup tilt, with respect to the bilayer sur-

face. Such a scenario is found in PCs. On the other hand, PCs

are known to change their headgroup tilt in the presence of

salts (63–65). This occurs, however, in the La phase, where

the lipid packing is much looser. At low temperatures and

hence at low entropic pressure from the hydrocarbon chains,

the PG headgroups are able to adopt a tilt that places the heads

nearly parallel to the bilayer (66), similar to PC heads (67).

This corresponds to regime I, which is laterally quasiincom-

pressible, with an average A of 48.7 Å2, which is ;1.5 Å2

larger than the value for PCs.

The larger A agrees with the expected larger effective size

of the PG headgroup due to electrostatic repulsion. As the

lateral pressure increases, the headgroup simply tilts away

from the bilayer plane, which is possible because their steric

size is still smaller than the area per lipid. Due to the tilting of

the PG headgroup, the lateral area per headgroup decreases

and so does A as the temperature is further increased (Fig. 9

B, regime II). It is further interesting to note that a reordering

of lipid headgroups has also been reported for amino acid-

linked dialkyl lipids based on Fourier transform infrared spec-

troscopy data (23). Roughly at the same time, as we observe

the transition of the headgroup tilt, we also find an increase

of the LbI fraction (Fig. 7), which is an alternative mecha-

nism to release the pressure on the headgroups as discussed

above.

At this point we are able to understand the additional tran-

sitions observed at low temperatures (Fig. 1, inset). In the

case of DSPG we have so far described two transitions, the

LbI,o / LbI,h and the headgroup tilt transition. The third

transition can be identified by comparison to a detailed study

on lipid-gel phases (9). In this article, Tenchov and co-workers

have reported the existence of subsubgel phases, denoted

SGII, in various lipid bilayers including DPPG at neutral

pH and 1 M salt concentration. The SGII / Lb9 transition,

termed the Y-transition, was reported to be of low enthalpy

change and low cooperativity and involves a reordering of

the hydrocarbon chains. By additionally comparing to Figs.

4 and 9 B, we attribute the cp-peak at 12.5�C to the LbI,o /
LbI,h. The transitions occurring at 19.0�C and 23.5�C are due

to SGII/ Lb9 and headgroup transition, respectively (Table

1). We are presently not able to say whether the Y-transition

occurs below the headgroup transition or vice versa. It is

clear, however, that both transitions are also present in DPPG

under equivalent conditions, whereas the LbI,o / LbI,h is

not observed due to the absence of an interdigitated phase.

The LbI,o / LbI,h transition has been previously assigned to

a subtransition (19,25) or Y-transition (9). However, to not

add to the confusion we refer only to the SGII / Lb9 as the

Y-transition. Tenchov et al. (9) report a Y-transtion at 11.7�C
for DPPG at similar pH but 1 M NaCl. High salt concen-

trations apparently lead to a disappearance of the headgroup

transition, since only a single low-temperature phase transi-

tion has been reported by the same authors. This can be un-

derstood in terms of a screening of the headgroup interactions

at high ionic strength. In any case, the change of the head-

group tilt appears to be a general transition occurring in PGs

at low ionic strength. Consequently, we would also expect a
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headgroup tilt transition to take place in DMPG. However, it

is not reflected in our experimental data, presumably because

it occurs below the temperature range studied.

Finally, we turn to the ripple phase. It is remarkable that

the hydrocarbon chain packing of the LbI,h and Lb9 approach

each other in regime II (Fig. 8 B) and finally display about

equal AC values in the ripple phase. It is therefore very tempt-

ing to assume that both domains finally coalesce to form the

Pb9 structure as also implied in a recent molecular dynamics

simulation (68). Nevertheless, we do not think that such a

scenario takes place. First, because we do observe the melt-

ing of the b9 domains at a slightly lower temperature than

that of the bI domains (Fig. 5). Second, the WAXS pattern

clearly exhibits two peaks, a sharp and a broad one, whereas

the WAXS pattern of a ‘‘regular’’ ripple phase consists usu-

ally only of a single broad peak (Fig. 3). Third, we are able to

fit a linear combination of a b9and bI phase to the SAXS in

the whole temperature range of the ripple phase. This implies

that the b9 and bI domains are separated and large enough to

contribute to the scattering signal. This is highly unlikely to

be fulfilled in a normal ripple structure found in PCs or PGs

(Fig. 3 A).
In summary, we have provided evidence for a highly com-

plex gel phase behavior in aqueous dispersions of PGs at

neutral pH and 130 mM NaCl. Our findings are summarized

in Fig. 10. PGs, under the present conditions, exhibit a thermo-

tropic behavior that is very similar to that of PCs, i.e., the Y-,

pre-, and the main phase transition temperatures increase with

chain length and the temperature regime of the ripple phase

narrows at the same time (13,50). DSPG, however, unlike its

PC chain analog, exhibits in addition to the Lb9 and Pb9 phases

a coexisting interdigitated phase. The shorter chain DPPG,

however, shows no signatures of a coexisting LbI phase. This

may be understood by increased van der Waals interactions

between hydrocarbon chains in the case of the longer chain

lipid (17). Alternatively, modification of the lateral stress pro-

file at the water/bilayer interfacial region due to inclusion

of additives, such as small amphiphilic molecules (26–31) or

macroions (25,34–36), is also known to induce hydrocarbon

chain interdigitation. Thus, formation of interdigitated phases

depends on a delicate balance of headgroup and hydrocarbon

chain interactions.

The LbI phase of DSPG displays a chain packing transi-

tion at ;12�C from an orthorhombic to a hexagonal subcell.

At ;24�C we observe another transition that we attribute to

the tilting of the PG headgroups out of the plane of the bi-

layer in response to the increasing fluctuation pressure from

the hydrocarbon chains. This allows a further condensation

of the lipids to the point where headgroup crowding is avoided

by the formation of the ripple phase. At the same time we

also observe an increase of the total amount of the LbI phase.

The large two-phase coexistence regime observed for DSPG

can be explained only if the system is not in thermal equi-

librium. The system appears to be kinetically trapped and it

would be desirable to study longer chain PGs, which are

unfortunately commercially not available. Nevertheless, we

expect that there is a chain length, which we indicated as

x1CH2 in Fig. 10, above which PGs will display no b9-acyl
packing but only interdigitated gel phases.

Besides revealing the rich phase behavior exhibited by PGs,

our results have an important impact on interaction studies

with membrane-active compounds. PGs are frequently used

as mimetics of bacterial membranes in biophysical studies

on the effect of antimicrobial peptides (2,38,49,69,70). Here,

we find in most recent experiments performed in our lab that

peptides, depending on their structure and concentration, may

induce interdigitated phases in the shorter chain lipid DPPG

(Sevcsik et al., unpublished; Hickel et al., unpublished). Thus,

peptides may tip the balance between headgroup and hydro-

carbon chain interactions and act as a catalyst for the forma-

tion of the interdigitated phase in PGs. It is highly appealing

that this provides a powerful mechanism for antimicrobial

peptides to perturb the integrity of bacterial membranes,

whereas mammalian membranes that contain large fractions

of PCs will remain unaffected.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.

We are grateful to Eva Sevcsik, Andrea Hickel, Peter Laggner, and Karl

Lohner for several illuminating discussions and helpful comments.

FIGURE 10 Schematic phase diagram of PGs under the present buffer

conditions (20 mM Na-phosphate, 130 mM NaCl, pH 7.4) and in absence of

subgel phases due to short equilibration times. The diagram summarizes the

present findings as a function of temperature and chain length. Circles in-

dicate the transition temperatures determined by DSC. corresponds to the gel

phase where the lipid headgroups are nearly parallel to the membrane sur-

face and to headgroups pointing away from the bilayer plane. The indicated

regions (a–c) correspond to the phase coexistences of SGII and LbI,o, SGII

and LbI,h, as well as and LbI,h. The coexistence regime of interdigitated and

noninterdigitated gel phases is expected to vanish above a certain lipid chain

length x1CH2.
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