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ABSTRACT Using small-angle neutron scattering and dynamic light scattering, we have constructed partial structural phase
diagrams of lipid mixtures composed of the phosphatidylcholines dimyristoyl and dihexanoyl doped with calcium ions (Ca21)
and/or the negatively charged lipid, dimyristoyl phosphatidylglycerol (DMPG). For dilute solutions (lipid concentration #1 wt %),
spontaneously forming unilamellar vesicles (ULVs) were found, and their polydispersity was determined to be ;20%. The
stability of the Ca21- or DMPG-doped ULVs was monitored over a period of 4 days and their structural parameters (e.g.,
average outer radius, hRoi) were found to be insensitive to the lipid concentration (Clp). However, doping the dimyristoyl/
dihexanoyl system with both Ca21 and DMPG resulted in ULVs whose hRoi was found to be Clp dependent. The hRoi of DMPG-
doped ULVs remained unchanged over an extended period of time (at least 4 days), a good indication of their stability.

INTRODUCTION

Spontaneously formed unilamellar vesicles (ULVs) have

great potential for application as vehicles for drug delivery

(Gregoriadis, 1995; Lee, 2002) and gene therapy (Maurer

et al., 1999). However, ULVs obtained by filtration or

sonication are usually unstable and polydisperse. Over the

last decade or so, spontaneously forming ULVs have been

observed in many cationic-anionic surfactant mixtures

(Kaler et al., 1989, 1992; Murthy et al., 1991; Yatcilla

et al., 1996; Villeneuve et al., 1999; Bergstrom et al., 1999;

Bergstrom and Pedersen, 2000) and cationic surfactant

systems (Viseu et al., 2000). Although some of them are

believed to be thermodynamically stable, with low poly-

dispersities, issues concerning biocompatibility and bio-

degradability must be considered for biologically relevant

applications.

Phospholipids share many of the characteristics exhibited

by surfactants. However, unlike surfactant systems, phos-

pholipids are the main constituents of cell membranes,

making them a promising group of materials suitable for

engineering biocompatible systems. In the past, spontane-

ously formed ULVs were found in phospholipid mixtures

composed of long- and short-chain lipids (Gabriel and

Roberts, 1984; Ollivon et al., 2000). However, their stability,

as a function of total lipid concentration, (Clp), and

polydispersity were seldom studied. Other approaches used

in obtaining monodispersed ULVs were either through

micelle-to-vesicle transitions induced by a temperature jump

(Andelman et al., 1994; Lesieur et al., 2000; Nieh et al.,

2001, 2002) or through a simple dilution of the system

(Schurtenberger et al., 1984, 1985; Egelhaaf and Schurten-

berger, 1999). Regardless of the method, the average vesicle

radius, hRoi, has always been found to vary as a function of

Clp, an indication that ULVs were sensitive to their external

environment. Two exceptions that we are aware of are an

indirect measurement of a surfactant mixture composed of

sodium dodecyl sulfate and didodecyldimethyl ammonium

bromide reported by Marques et al. (1998) and a surfactant

aqueous mixture of sodium oleate/octanol (Gradzielski et al.,

1999).

Several theories of spontaneous ULV formation have

been developed over the past few decades. Since the

formation of ULVs from a symmetric bilayer (same

chemical composition in both the outer and inner bilayer

leaflets) costs energy (Israelachvili, 1992), entropy gain has

usually been thought of as the main reason for the formation

of stable vesicular structures. Safran et al. (1990, 1991)

have shown that vesicles can be more stable than lamellar

structures in the limit of large bending rigidity, kb, if the

attractive interactions between the two surfactants in

a mixture are sufficiently strong. On the other hand, Berg-

strom (1996, 2001) and Bergstrom and Eriksson (1996,

1998) have studied the stability of ULV in surfactant

mixtures taking into account a variety of contributions to

the system’s total energy including geometrical packing,

electrostatics, headgroup interactions, chain conformation,

and mixing. Yuet and Blankschtein (1996a,b) have de-

termined the size distribution of ULVs in surfactant

mixtures based on a detailed molecular-thermodynamic

model. Another study that has attempted to simultaneously

tackle the theoretical and experimental issues was carried

out by Oberdisse et al. (1996), Oberdisse and Porte (1997),

and Oberdisse (1998) using the so-called ‘‘vesicle cell

model’’ (VCM) to investigate the effect of charge density

(r), dilution, salinity, and kb on the size of the ULVs.

Despite all of the above-mentioned studies, there is still no

clear understanding of the factors affecting the vesicle size
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distribution in a given experimental situation. In addition, it

has been shown that, at least in some cases, ULVs are not

equilibrium structures, but are kinetically trapped (Marques,

2000; Leng et al., 2003).

In the last few years, there has been a great deal of

scientific activity in a system forming bilayered micelles or

so-called ‘‘bicelles’’ (Sanders and Landis, 1995; Katsaras

et al., 1997). Although bicelles are commonly produced

using a variety of surfactants (Sanders and Prestegard, 1990;

Chung and Prestegard, 1993; Sanders and Landis, 1995),

recently a number of groups have produced biomimetic

bicelles composed of long- (e.g., the phosphatidylcholine

(PC) dimyristoyl (DMPC)) and short-chain (e.g., dihexanoyl

(DHPC)) phospholipids doped with either paramagnetic

ions, charged lipids/surfactants, or both (Prosser et al., 1996,

1998; Losonczi and Prestegard, 1998). Most recently, Nieh

et al. (2001, 2002) have shown that the bilayer charge

density plays an important role in determining the structures

produced by these mixtures. For example, in the dilute

regime (i.e., lipid concentration \0.01 g/ml) bicelles were

found in DMPC/DHPC mixtures doped with the negatively

charged lipid, dimyristoyl phosphatidylglycerol (DMPG)

(DMPC/DMPG ¼ 15). However, monodispersed ULVs

were observed when the mixtures were doped with the

lanthanide trivalent cation, thulium (Tm31), or with

a combination of DMPG and Tm31. In nondoped systems

(i.e., no net surface charge), multilamellar vesicles (MLVs)

were routinely observed. One can seemingly thus produce

monodispersed ULVs by merely adjusting the charge density

of these mixtures.

Here we report on a series of small-angle neutron

scattering (SANS) and dynamic light scattering (DLS)

experiments, where the morphology of the lipid mixtures

was monitored as a function of r, Clp, and temperature. The

charge density of the membranes was introduced through

doping with the negatively charged lipid, DMPG, and the

salt, CaCl2, either individually or in combination. In this

study, instead of the previously used trivalent cation, Tm31,

we have used the physiologically relevant divalent cation,

Ca21, which is known to have a strong binding affinity for

phosphatidylcholine headgroups (Gennis, 1989). Through-

out the experiment, the molar ratio of long- (DMPC or

DMPC 1 DMPG) to short-chain (DHPC) lipid remained

constant at 3.2, whereas the bilayer surface charge was

controlled by varying the amounts of DMPG and/or Ca21.

SANS and DLS were used to probe the size and polydisper-

sity of the ULVs. We find that some of our experimental

results do not agree with the predictions of the vesicular cell

model (Oberdisse et al., 1996; Oberdisse and Porte, 1997;

Oberdisse, 1998). More importantly, as determined by

SANS, the size of DMPG-doped ULVs was found not to

change over a period of at least 4 days. In some cases, the

ULV size was surprisingly found to be independent of Clp,

implying potential for the practical use (e.g., drug delivery)

of this system.

MATERIALS AND METHODS

Sample preparation

DMPC, DHPC, and DMPG were purchased from Avanti Polar Lipids

(Alabaster, AL); calcium chloride (CaCl2) was obtained from Sigma (St.

Louis, MO). All chemicals were used without further purification. Before

use, the solvent, deuterium oxide (99.9%, Cambridge Isotope, Andover,

MA), was filtered through a 0.1 mm filter.

Solutions of DMPC/DHPC (molar ratio ¼ 3.2/1) and of DMPC/DMPG/

DHPC (molar ratio¼ 2.67/0.53/1) in D2O were prepared with a Clp of 20 wt

% by vortexing and temperature cycling the mixtures from 108C to 508C.
These solutions were then diluted to a Clp of 2 wt %. Mixing appropriate

amounts of the 2 wt % solutions yielded DMPC/DMPGmolar ratios ranging

from 305 to 11. Subsequently, each 2 wt % DMPC/DMPG mixture was

diluted to its final Clp of between 1.0 and 0.25 wt %.

The Ca21-doped solutions were produced by adding small amounts of

CaCl2 solution (20 wt % in filtered D2O) to the 2 wt % DMPC/DHPC

solution resulting in DMPC/Ca21 mixtures whose molar ratios ranged from

1 to 50. The new solutions were subsequently diluted to yield a Clp of 1.0,

0.5, and 0.25 wt %. The same procedure was employed for preparing

solutions doped with both DMPG and Ca21, using two of the 2 wt %

DMPC/DHPC/DMPG solutions (DMPC/DMPG ¼ 10 and DMPC/DMPG

¼ 155) to start with. Solutions of five different DMPC/DMPG/Ca21 molar

ratios were made, ranging from DMPG-rich to Ca21-rich. Most samples

were prepared and refrigerated for a period of at least 1 month before

experimentation. However, some samples were placed in an oven, at 458C,
for periods of up to 14 days.

Small-angle neutron scattering

For a solution of nearly identical scattering objects, the intensity of scattered

radiation I(Q), as a function of the scattering vector, Q (Q ¼ 4psin(u/2)/l,

where l is the wavelength of the neutron and u the scattering angle), can be

interpreted in terms of a form factor, F(Q), and a structure factor, S(Q). F(Q)

characterizes the scattering length density of a scattering object, whereas

S(Q) describes the arrangement of the collection of objects in the solution.

The measured scattered intensity is given by

IðQÞ } jFðQÞj2 SðQÞ:

SANS experiments were performed using the high resolution NG7 30m

SANS instrument at the NIST Center for Neutron Research located at the

National Institute of Standards and Technology (Glinka et al., 1998); 8 Å

neutrons (Dl/l ¼ 11%) and two sample-to-detector distances (15.3 and 1.2

m) were employed to carry out all of the SANS experiments described

herein. With a horizontal detector offset of 20 cm, the effective Q range

covered was between 0.002 and 0.32 Å�1. After correcting for ambient

background and empty cell scattering, the two-dimensional raw data were

circularly averaged yielding a one-dimensional intensity distribution, I(Q),

which was put on an absolute scale (cross section per unit volume) using the

incident neutron flux. From the high-Q scattering intensity plateau of the

reduced data, the incoherent scattering from hydrogen was obtained and

subtracted from the corresponding data.

An analytical expression for the structure factor, SMSA(Q), has been

obtained by Hayter and Penfold (1981) by solving the Ornstein-Zernike

equation in the mean spherical approximation (MSA), which accounts for

the repulsive electrostatic interactions between macroions. This expression

was used in fitting the data from all ULVs and strongly charged bicelle

systems. In the case of dilute and weakly charged bicelles, the structure

factor is expected to be unity, and was thus not considered. SMSA(Q) was

determined from the total lipid concentration, the dielectric constant of the

solvent, the surface charge density of the lipid aggregates, and the ionic

strength of the solution. In the case of samples containing DMPG, the
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surface charge of the object can be calculated with the assumption of

complete dissociation of the Na1 counterions. However, in the case of

samples with Ca21, the surface charge is not known, and as such becomes

a variable parameter, since the amount of Ca21 ions bound to the lipids in the

membrane can, in principle, vary with the experimental conditions. In these

cases, both the surface charge density and ionic strength were not fixed

a priori, but were determined from the best fits to the data.

The form factor of a core shell disk (CSD) model, convoluted with the

instrumental resolution, was used to represent the scattering from a bicelle

(Nieh et al., 2001, 2002). Bilayer thickness was derived from the center-to-

center distance between the two hydrophilic regions (which represent the

lipid headgroups) sandwiching the hydrophobic region (consisting of two

acyl chain regions) of a single bilayer. The scattering length densities of

D2O ðrD2O
Þ and the hydrophobic region of the bilayer (rphobic) were

calculated to be 6.38 3 10�6 and �4.3 3 10�7 Å�2, respectively, whereas

that of the hydrophilic part of the lipid (rphilic ¼ 3.2 3 10�6 Å�2) was

obtained from the best fit to the data, as previously indicated by Nieh et al.

(2001, 2002). The value of the bilayer thickness was found to vary within the

limits of 50 6 5 Å, which is consistent with the total thickness of gel phase

DMPC bilayers (Hung and Chen, 2000). The only parameter allowed to vary

without any constraints was the radius of the bicelles.

The ULV form factor was based on a core shell sphere (CSS) model,

where the bilayer is approximated as a single layer of constant scattering

length density (rlipid ¼ 3.2 3 10�7 Å�2). In reality, the scattering length

density across the bilayer is not uniform due to the differences in the

composition of the headgroup and chain regions. However, the above model

with a constant value of rlipid (the single-well profile), which reduces the

number of fitting parameters as well as simplifies the calculation, is found to

be sufficient to describe the experimental data. The total radius of the vesicle

was taken to be the inner radius of the sphere plus the bilayer thickness. As

in the case of bicelles, the radius was not constrained, whereas the thickness

was restricted to lie between 25 and 45 Å.

Dynamic light scattering

For a dilute solution of spherical noninteracting particles, where each

particle, i, of radius Ri undergoes Brownian motion, the Stokes-Einstein

equation describes the relationship between Ri and the diffusion coefficient,

Di,

Di ¼ kT

6phwRi

; (1)

where k, T, and hw are the Boltzmann constant, absolute temperature, and

the viscosity, in our case, of D2O, respectively. For nonspherical particles

(e.g., disks, cylinders, etc.), an equivalent hydrodynamic radius, RHi is used

to replace Ri in Eq. 1. In the DLS measurement, the time-dependant intensity

autocorrelation function, G(t), is obtained, and is given by

GðtÞ ¼
ð‘
0

IðtÞIðt1 tÞdt; (2)

where t is the time delay. From the Siegert relation,G(t) can be expressed in

terms of the field autocorrelation function, g(t) as

GðtÞ ¼ 11 ggðtÞ2; (3)

where g is the instrumental coherence factor. g(t) represents the time decay

of the position autocorrelation function of the particles and in a polydisperse

system can be written as

gðtÞ ¼ +
i

Aie
�DiQ

2
t
: (4)

In this expression, Q is the scattering vector and Ai represents the light-

scattering amplitude of the particle i with diffusion coefficient Di.

Cumulant analysis methods and regularization methods such as CONTIN

are usually employed in analyzing the experimental data to obtain the

diffusion coefficient (Santos and Castanho, 1996). Cumulant analysis is

usually applied to systems having a monomodal and sometimes bimodal size

distribution so that the characteristic function g(t) of the size probability

distribution is expanded as a series of cumulants. At small t, the first

cumulant can be expressed in the form of DeffQ
2, where Deff is the effective

diffusion coefficient.

For analysis methods such as CONTIN, the aim is to solve Eq. 4 through

eigenvalue decomposition combined with regularization, a smoothing

technique. The size distribution function can then be resolved in terms of

the eigenvalues, Di (or RHi), and the average hydrodynamic radius, RH, is

obtained by normalizing it to the scattered intensity of the particles

(z-average), but not by their volume (Pencer et al., 2001). We mostly used

cumulant analysis to interpret our data from monodisperse samples, whereas

CONTIN sometimes was used for samples with bimodal size distributions to

understand possible structures in the system. In some cases, the size

distribution function obtained from the CONTIN analysis has three or more

maxima. Currently, we do not know whether these distributions are reliable

or if they are artifacts due to strong interparticle interactions.

DLS was performed on a DynaPro/MS-X (Protein Solutions, Charlottes-

ville, VA), which was designed to measure the scattering intensity at a fixed

scattering angle (u) of 908, containing 256 channels covering shift times of

between 1 and 105 ms. The instrument was equipped with a power-

adjustable laser source having a l of 782.8 nm and a temperature-controlled

sample cell. l in the solution is inversely proportional to its refractive index,

ns, and hence Q is linearly proportional to ns. Since the solutions are dilute

(\2 wt %), we may take ns to be the same as that of D2O, which according to

Bertie and Lan (1995) is 1.325 for l ¼ 782.8 nm at 258C. Further, ns is
weakly dependent on temperature; ns of H2O at 108C and 508C for a similar

wavelength (l ¼ 706.52 nm) differ by ;0.3% (Lide, 1990), which yields

a difference of only;0.6% in RH. We were unable to find any measurement

of the refractive index of D2O for l ¼ 782.8 nm in the temperature range of

interest reported in the literature. Hence, we have taken ns to be a constant in

our analysis. The resultant error on RH should be negligible, since the

temperature dependence of the D2O ns can be expected to be similar to that

of H2O. On the other hand, the significant temperature dependence of D2O

viscosity, hw (Cho et al., 1999), was taken into account when calculating RH.

The intensity overflow limit for the detector was;73 106 counts/s. The

intensity time correlation function was at first obtained by averaging over

a period of acquisition times, usually ;10 s, as a function of t. The

normalized G(t), GðtÞ; was then obtained from the average of 30 or more

acquisitions. Before experimentation, the DLS setup was tested using

standard polystyrene microbead solutions demonstrating that a precise RH

value could be obtained for samples with particle size between 1 nm and

1 mmwith an error of62%. Due to multiple scattering, DLS was not carried

out on turbid samples.

RESULTS AND DISCUSSION

Nondoped solutions

For DMPC/DHPC systems, we have previously observed the

formation of MLVs at low lipid concentrations (#0.01 g/mL,

�1 wt %) and over a temperature range between 108C and

458C (Nieh et al., 2002). Note that the gel-to-La phase

transition of pure DMPC multibilayers occurs at TM ¼ 238C.
Bicelles were observed at higher lipid concentrations ($5 wt
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%) and T � 108C. In the case of ULVs and the much smaller

bicelles, a transparent solution is normally observed.

However, some solutions were found to be rather turbid

and could not be studied using DLS. The turbidity of these

samples indicates the presence of large aggregates in the

system, probably MLVs. These samples are denoted as

dispersions in Tables 1–3.

Ca21-doped solutions

Table 1 is a summary of the phase behavior of the Ca21-

doped system, as measured by DLS. Generally speaking, RH

of bicelles is in the range of 100 Å, whereas that of ULVs

varied from 300 Å to [1000 Å. Fig. 1 A shows the size

distribution function for the 2:1 DMPC/Ca21 mixture at

three different lipid concentrations. Depending on Clp, 2:1

DMPC/Ca21 can either form bicelles (2 wt %), ULVs (0.25

wt %), or some other structures giving rise to multimodal

size distributions (1 wt %). For an exponentially decaying

correlation function, shown in Fig. 1 B, both cumulant

(dotted curves) and CONTIN analyses give good fits to the

experimental data (solid curves). However, for Clp¼ 1 wt %,

the cumulant method proved to be inadequate, since the

decay of the autocorrelation function is not a single

exponential. Although the CONTINmethod produces a more

consistent fit to the experimental data, the size distribution

function (Fig. 1 A) is characterized by three peaks

(multimodal distribution), making it, at present, difficult to

determine the precise structures. As mentioned previously,

the system might indeed contain aggregates with various

structures or the distribution obtained is an artifact due to

strong interparticle interactions. The structure of these

systems can only be determined through SANS.

A partial phase diagram of the Ca21-doped system is

shown in Fig. 2. In the next section we discuss the effect of T,
Clp, and salt composition (DMPC/Ca21) on the various

structural parameters of this system.

T\ TM

Weakly doped systems (DMPC/Ca21 $ 10). Table 1 shows

that weakly doped systems (DMPC/Ca21 $ 10:1) contain

monodisperse bicelles at the highest concentration (2 wt %),

the only exception being the sample with the lowest Ca21

concentration (DMPC/Ca21 ¼ 50:1), which is made up of

TABLE 1 Summary of DLS results from Ca21-doped samples at various temperatures, dopant compositions, and total

lipid concentrations

Temperature (8C)

\TM [TM

10 15 25 35 45

DMPC/Ca21 Clp wt % Type RH (Å) Type RH (Å) Type RH (Å) Type RH (Å) Type RH (Å)

50 2 B/U* 71/1612 B/U 70/2083 Dispy Disp Disp

1 ULV 491 ULV 499 Disp Disp Disp

0.5 Disp Disp Disp Disp Disp

0.25 Disp Disp Disp Disp Disp

20 2 Bic 77 Bic 78 Disp Disp Disp

1 ULV 530 ULV 524 Disp Disp Disp

0.5 Disp Disp Disp Disp Disp

0.25 Disp Disp Disp Disp Disp

10 2 Bic 90 Bic 88 Disp Disp Disp

1 ULV 335 ULV 318 ULV 306 ULV 573 ULV 601

0.5 Disp Disp Disp Disp Disp

0.25 Disp Disp Disp ULV 918 ULV 918

5 2 Bic 82 Bic 70 Disp Disp Disp

1 ULV 303 ULV 298 ULV 401 ULV 399 ULV 413

0.5 ULV 831 ULV 841 ULV 888 ULV 873 ULV 902

0.25 ULV 537 ULV 535 ULV 598 ULV 612 ULV 633

2 2 Bic 97 Bic 96 Disp Disp Disp

1 MMz MM MM ULV 398 ULV 375

0.5 Disp Disp Disp Disp Disp

0.25 ULV 504 ULV 462 ULV 475 ULV 474 ULV 512

1 2 Bic 95 Bic 97 Disp Disp Disp

1 MM MM MM ULV 432 ULV 447

0.5 Disp Disp Disp Disp Disp

0.25 ULV 427 ULV 443 ULV 458 ULV 479 ULV 493

*B/U, bimodal distribution obtained through CONTIN analysis.
yDisp, dispersions.
zMM, samples for which CONTIN analysis gives multimodal size distributions.
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a combination of bicelles and large ULVs. As these samples

are diluted, the opaqueness of the samples increases,

probably indicating the formation of a dispersion.

The SANS data for solutions of DMPC/Ca21 ¼ 20,

presented in Fig. 3 A, are representative of the bicellar phase.
From the best fit to the data, the bilayer thickness and the

bicellar radius were found to be;50 and;110 Å (Table 4),

respectively. This value of the bilayer thickness is consistent

with the thickness of gel phase DMPC bilayers (Hung and

Chen, 2000).

A transition from bicelles to ULVs was found in solutions

with DMPC/Ca21 molar ratios $10 as the sample was

diluted to 1 wt %. Further dilution (concentration #0.5 wt

%) resulted in the sample becoming opaque (Struppe and

Vold, 1998), with DMPC precipitating out of solution as

a result of DHPC demixing from DMPC. In the ULV regime

(1 wt %), RH decreased with increasing amounts of Ca21.

This observation does not follow the prediction of the VCM

put forth by Oberdisse and Porte (1997) that predicts an

increase in the vesicular size with increasing salt concentra-

tion. As VCM does not take into account the association of

salts with the surface of the membrane, the decreasing ULV

size may possibly be explained by the fact that Ca21 ions

bind with DMPC, imparting a charge density to the ULVs.

As a result of this charge, the ULVs become smaller with

increased surface charge density, which is predicted by

VCM.

Moderately doped systems (DMPC/Ca21 ¼ 5). Samples

with DMPC/Ca21 ¼ 5 start off as bicelles, at high lipid

concentrations, but are dominated by the presence of ULVs

at lower lipid concentrations. This lipid/salt ratio is unique in

its ability to form stable ULVs. Going from 1.0 wt % to 0.5

wt %, RH increased from 310 Å to 870 Å. However, diluting

the system further to 0.25 wt % resulted in RH of 550 Å. One

possible explanation for this variation in RH is that upon

dilution, the total lipid concentration, ionic strength of the

solution, and the charge density on the ULV surface all

change simultaneously. VCM predicts that a decrease of the

former two parameters would result in a slow decrease in

vesicular size. On the other hand, a decrease in charge

TABLE 2 Summary of DLS results from DMPG-doped samples at various temperatures, dopant compositions,

and total concentrations

Temperature (8C)

\TM [TM

10 15 25 35 45

DMPC/DMPG Clp wt % Type RH (Å) Type RH (Å) Type RH (Å) Type RH (Å) Type RH (Å)

305 2 Bic 92 Bic 93 Disp* Disp Disp

1 MMy B/ULVz 101/2404 Disp Disp Disp

0.5 MM MM Disp Disp Disp

0.25 Disp Disp Disp Disp Disp

255 2 Bic 82 Bic 84 Disp Disp Disp

1 MM B/ULV 130/1203 Disp Disp Disp

0.5 MM MM ULV 424 Disp Disp

0.25 MM MM MM ULV 772 ULV 831

205 2 Bic 99 Bic 83 Disp Disp Disp

1 MM MM Disp Disp Disp

0.5 MM MM MM MM MM

0.25 Disp Disp Disp Disp Disp

155 2 Bic 70 Bic 70 Disp Disp Disp

1 MM MM Disp Disp Disp

0.5 MM MM ULV 387 ULV 320 ULV 324

0.25 Disp Disp Disp Disp Disp

65 2 MM Bic 44§ MM MM MM

1 MM MM MM ULV 302 ULV 297

0.5 MM MM MM MM MM

0.25 MM MM MM MM MM

35 2 MM Bic 30§ MM MM MM

1 MM MM B/Uz 94/1550 ULV 177 ULV 179

0.5 MM MM MM MM MM

0.25 MM MM MM MM MM

20 2 MM Bic 19§ MM MM MM

1 ! 0.25 MM MM MM MM MM

11 All MM MM MM MM MM

*Disp, dispersions.
yMM, samples for which CONTIN analysis gives multimodal size distributions.
zB/U, bimodal distribution obtained through CONTIN analysis.
§Single exponential decay of DLS measurement was obtained at 208C instead of 158C.
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density would dramatically increase the vesicular size. As

a result, vesicular size is directly dependent on whichever of

these parameters dominates. It is possible that the dissoci-

ation of Ca21 ions from the lipids might overwhelm both the

dilution and salinity effects resulting in a substantial change

in RH in the concentration range between 1 wt % and 0.5 wt

%, whereas the dilution and salt effects may dominate when

Clp changes from 0.5 wt % to 0.25 wt %.

Highly doped samples (DMPC/Ca21 # 2). Unlike the

weakly doped samples, the phase sequence for highly doped

systems upon dilution is as follows: bicelle ! unknown

aggregates ! ULV. The bicelles seen at the highest lipid

concentrations are very similar to those observed at other

doping ratios. However, the size distribution function for 1

wt % solutions at 158C, obtained from CONTIN analysis

(Fig. 1 B), shows a trimodal distribution of RH. As mentioned

previously, this method is better suited for systems ex-

hibiting either unimodal or bimodal distributions of RH. As

such, the trimodal distribution obtained might not truly

reflect the structure of this solution. For solutions at 0.5 wt

%, a stable GðtÞ could not be obtained as the intensity was

close to the count rate limit of the instrument, and hence the

size of the aggregates is not known. The most dilute samples

(0.25 wt %) yielded monodispersed ULVs with RH ; 450 Å.

The presence of ULVs in the most dilute sample was

verified from SANS data (Fig. 3 B shows that for DMPC/

Ca21 2:1). Table 5 shows that the vesicular shell thickness

(one bilayer thick) is ;38 Å, smaller than the thickness

observed in bicelles, possibly resulting from higher inter-

mixing levels of DMPC and DHPC taking place in ULVs.

Note that the average outer radius of the vesicles, Rves, is 340

Å (Table 5), smaller than the 500 Å radius obtained from

DLS (Table 1). This may be explained by the fact that Rves

from the SANS model was obtained on the basis of the

volume average (Hayter, 1985), whereas, as mentioned

previously, the RH from DLS measurements is derived based

on the intensity average (z-average) (Pencer et al., 2001). For
Clp ¼ 0.5 wt %, SANS data (Fig. 3 B) contain weak

oscillations along the scattering curve, indicative of

reasonably monodisperse ULVs. At low Q, the scattering

data of 0.5 wt % and 1 wt % samples exhibit a slope of;�2.

This is characteristic of objects with a large and reasonably

flat surface, possibly large ULVs, MLVs, or extended

lamellae.

Thus for Ca21-doped mixtures at T # TM (Fig. 2), we can

summarize the results as follows: a), For Clp $ 2 wt %,

bicelles are the predominant or only morphology present in

all solutions studied. b), For 0.5 wt % # Clp # 1 wt %,

further doping the DMPC/DHPC with Ca21 to a lipid/salt

ratio of 5:1 has the effect of transforming a dispersion

(possibly MLVs) into ULVs as a result of Ca21 ions binding

with lipid molecules and thus increasing the charge density

of the bilayers. However, strongly doped mixtures with the

same Clp form a variety of structures. c), For Clp ¼ 0.25 wt

%, not only do ULVs form upon increasing Ca21 con-

centration, but they are also stable at the highest Ca21

concentration. d), At constant Clp, increasing the Ca21

concentration yields ULVs with a smaller RH.

T[ TM

We have previously reported, over a similar range of

concentrations, but at temperatures greater than TM, the

transformation of bicellar mixtures into MLVs, or ULVs

(Nieh et al., 2001, 2002, 2003). One can explain the

structural transitions by considering the following scenarios.

One is the decrease in bilayer rigidity above TM, which can in
principle favor the formation of ULVs (Israelachvili, 1992).

Another is the phase separation of DHPC and DMPC

resulting in the formation of DMPC MLVs and DHPC

TABLE 3 Summary of DLS results from both Ca21- and DMPG-doped samples at various temperatures, dopant compositions, and

total concentrations

Temperature (8C)

\TM [TM

DMPC ratios 10 15 25 35 45

DMPG Ca21 Clp wt % Type RH (Å) Type RH (Å) Type RH (Å) Type RH (Å) Type RH (Å)

155 50 All Disp* Disp Disp Disp Disp

155 2 2 Bic 103 Bic 102 ULV 368 MM MM

1 MMy MM MM MM MM

0.5 Disp Disp Disp MM MM

0.25 ULV 460 ULV 469 ULV 514 ULV 522 ULV 526

10 50 2 Bic 61 Bic 67 Bic 91 ULV 288 ULV 335

1 MM MM MM MM MM

0.5 MM MM MM MM MM

0.25 MM MM MM MM MM

10 5 All Disp Disp Disp Disp Disp

10 2 All Disp Disp Disp Disp Disp

*Disp, dispersions.
yMM, samples for which CONTIN analysis gives multimodal size distributions.
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micelles. Finally, an unbinding of individual bilayers from

the MLVs may be taking place, producing ULVs (Mutz and

Helfrich, 1989). All of them, to a greater or lesser extent,

may play a role in the resultant morphologies. For the phase

diagram at T[ Tm (Fig. 2), the phase transitions tentatively

attributed to the above-mentioned factors will be discussed

in detail.

Weakly doped systems (DMPC/Ca21 $ 10). Nearly all of

the weakly doped mixtures became turbid and exceeded the

maximal intensity limit for DLS at elevated T. This is

possibly indicative of MLV formation due to the demixing of

DMPC and DHPC (Struppe and Vold, 1998). However, at

a DMPC/Ca21 ratio of 10:1, dilution caused the formation of

a dispersion at intermediate concentrations between two

ULV phases. Of note is that the size of the most dilute ULVs

(0.25 wt %) is ;900 Å, in contrast to ;300–600 Å for

samples at a higher concentration (1 wt %). Suffice it to say

that more studies are needed to unravel the details of these

transitions. Also, as the temperature increases from 258C, we

FIGURE 1 (A) RH distribution function obtained from CONTIN analysis

of the normalized autocorrelation function GðtÞ (B) for 2:1 DMPC/Ca21

samples at various concentrations (Clp ¼ 2, 0.5, and 0.25 wt %) and 158C. A
single modal distribution with RH ; 100 Å is found for 2 wt % samples,

representing bicelles, whereas RH of ;450 Å for the Clp ¼ 0.25 wt %

mixture is indicative of ULVs. However, the trimodal distribution function

for Clp ¼ 1 wt % samples either represents the coexistence of heterogeneous

structures or is an artifact due to strong interparticle interactions. (B)GðtÞ for
2:1 DMPC/Ca21 samples. Cumulant fits are depicted by dotted curves,

whereas CONTIN fits are represented by solid curves. The 1 wt % sample

exhibits a multimodal distribution (A) and could not be adequately described

by the cumulant fit.

FIGURE 2 Structural phase diagram of Ca21-doped samples as a function

of T, Clp, and the amount of Ca21 dopant based on DLS results listed in

Table 1. The phases represented by different symbols are: ULVs (circles);

dispersion (multicircles); bicelles (bow ties); coexistence of bicelles and

ULVs (circle 1 bow tie); and samples exhibiting multimodal (squares with

cross inside).
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observe the formation of ULVs from the dispersion, possibly

due to the unbinding of MLVs in this most dilute sample,

instead of the expected demixing of the two lipids (Struppe

and Vold, 1998).

Moderately doped systems (DMPC/Ca21 ¼ 5). For

moderately doped systems (DMPC/Ca21 5:1) and T[ TM,
ULVs dominate the phase diagram, although the highest

lipid concentration now gives rise to a dispersion (possibly

MLVs) rather than bicelles. Further, the ULV radii are

similar for T[TM and T\ TM. However, the size of ULVs
shows a maximum at a concentration of 0.5 wt % (Table 1).

Strongly doped systems (DMPC/Ca21 # 2). When the

temperature is raised above the main transition, DLS studies

show that highly Ca21-doped samples at 1 wt % form ULVs,

whereas at lower temperatures they contain unresolved

structures. RH of very dilute samples shows a weak

temperature dependence (Table 1), such that at 458C dilute

ULVs are larger than those formed at higher concentrations.

This is most noticeable in the DMPC/Ca21 2:1 sample,

where at 458C, RH is 535 Å for 0.25 wt % and 394 Å for 1 wt

%. However, Rves as determined by SANS (Table 5)

indicates that these ULVs are in fact of similar size, and

that only over time does the radius increase. This may be due

to long-range electrostatic interactions between the ULVs,

which can lead to lower values of the hydrodynamic radius,

RH, as measured by DLS (Philipse and Vrij, 1988; Riese

et al., 2000). Also, the DLS studies could not be carried out

on samples of Clp¼ 0.5 wt %, as in the case of T\TM, since
the scattering intensity exceeded the limit of the instrument.

In summary, above the DMPC main transition tempera-

ture (TM [ ;238C), a dispersion (presumably MLVs)

predominates in weakly charged systems. For moderately

and heavily doped samples, ULVs are observed at Clp of 1

and 0.25 wt %. Also, structures that cannot be resolved by

DLS, and unexpectedly large ULVs are found in 0.5 wt %

samples with DMPC/Ca21 # 10, at low and high temper-

atures, respectively.

DMPG-doped solutions

Unlike Ca21 ions, DMPG lipid molecules integrate with the

DMPC/DHPC bilayer and impart a higher charge density for

the same molar dopant ratio. Further, the charge imparted to

the bilayer is independent of dilution. The various structures

determined from DLS measurements of DMPG-doped

mixtures are shown in Fig. 4 and are summarized in Table 2.

T\ TM

Weakly doped systems (DMPC/DMPG $ 255). We take

weakly DMPG-doped samples to be composed of DMPC/

DMPG ratios $ 255. After doping with DMPG, all of the 2

wt % mixtures became transparent at low T, and RH values

indicate the presence of monodispersed bicelles for all

FIGURE 3 (A) SANS data for a 2 wt % sample of 20:1 DMPC/Ca21 at

108C. The best fit using a core shell disk (CSD) model (solid curve) shows
good agreement with the data and is representative of bicelles. The fit

parameters are listed in Table 4. (B) SANS data for 2:1 DMPC/Ca21 samples

at 108C for Clp values between 0.25 wt % and 1 wt %. Monodisperse ULVs

are observed in the 0.25 wt % sample and the solid curve is the best fit using

a core shell spherical (CSS) model. The fit parameters are shown in Table 5.

For 1 wt % and 0.5 wt % samples, SANS data indicate a mixture of

structures with the low-Q intensity exhibiting a Q�2 dependence, indicative

of large-sized particles. To better visualize the data, and fits to the data, they

have been multiplied by arbitrary rescaling factors.

TABLE 4 Best-fit parameters from SANS data of 2 wt % bicelle

solutions at 108C doped either with Ca21 or DMPG

Dopant hRbici (Å) Bilayer Thickness (Å) Charge (e/bicelle)

Ca21 20:1 106 6 4 50 6 2 –

Ca21 2:1 106 6 4 50 6 2 –

DMPG 305:1 113 6 5 50 6 2 –

DMPG 205:1 117 6 4 50 6 1 –

DMPG 155:1 117 6 5 50 6 2 –

DMPG 65:1 104 6 3 43 6 2 19 6 2

DMPG 35:1 99 6 3 44 6 2 32 6 3
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samples at temperatures between 108C and 158C. Diluting
these samples results in either a bicelle ! ULV !
dispersion transition or a bicelle ! dispersion transition.

Moderately doped systems (205$DMPC/DMPG$ 155).
Systems with DMPC/DMPG ratios between 155:1 and 205:1

exhibit a similar phase behavior as the above-mentioned

weakly doped systems. At the highest lipid concentrations,

bicelles are formed, whereas the most dilute samples form

a dispersion. As mentioned previously, this dispersion

probably occurs due to phase separation. The SANS data

(Fig. 5), collected 2 weeks after the DLS studies, show the

presence of ULVs for Clp ¼ 0.25 and 0.5 wt % for a DMPC/

DMPG ratio of 155:1 and T ¼ 108C. No Bragg peak (at Q;
0.1 Å�1) is observed, implying that there are no MLVs in the

solution. However, the turbidity of the sample decreased

over the 2-week interval, and hence it is possible that MLVs

initially present in the solution had transformed into ULVs

by the time the SANS studies were carried out.

Of note is that for a Clp¼ 2 wt %, the bicelles have radii of

;90 Å (Table 2), the only exception again being the sample

with a DMPC/DMPG ratio of 155:1, whose RH was

determined to be ;70 Å. A possible reason for this

exceptional behavior is discussed later.

Strongly doped systems (65 $ DMPC/DMPG). DLS

measurements indicated multimodal distributions for nearly

all concentrations and ratios studied. Moreover, the samples

were transparent, indicative of the presence of small

structures such as bicelles or ULVs. The complex size

distributions make DLS results difficult to interpret.

However, previous SANS measurements on this system

indicate the formation of bicelles, whose size is independent

of concentration (Nieh et al., 2002).

The complex multimodal size distribution is the result of

a nonexponential decay of the field autocorrelation function

observed at the high t regime. In the case of Ca21-doped

samples exhibiting this behavior, SANS shows an un-

resolved structure, which is reflected in the uncertainty of the

measured RH (e.g., Fig. 1 B, 1 wt % 2:1 at 108C). On the

other hand, SANS data of DMPG-doped systems, where

nonexponential decay of the autocorrelation function is

found, clearly show the existence of bicelles. The uncertainty

in the DLS data most probably stems from the presence of

complex interparticle interactions, as shown by Nägele and

Baur (1997), who have proposed the ‘‘dynamic cage effect’’

to explain this type of behavior. Unlike Ca21-doped

mixtures, the only water-soluble ions in DMPG-doped

samples are Na1 ions dissociating from the DMPG lipid

molecules themselves. As a result, these solutions are of low

ionic strengths. We therefore suspect that the DLS data are

affected by the strong interparticle interactions in these

systems, and give rise to the nonexponential decay of the

intensity autocorrelation functions, which could then be

interpreted as a population of larger particles. However,

currently, we are unable to unambiguously determine

whether or not the nonexponential decay seen for long

relaxation times results from the presence of particles of

different sizes or from long-range interactions between

particles of one size.

Stable bicelles were measured only for dilute samples near

TM. The RH of these bicelles is considerably reduced

compared with the weakly doped systems indicating that

the effective diffusion coefficient, Deff, derived from the

cumulant analysis becomes larger with increasing charge

density. The same phenomenon has been reported by other

groups (Philipse and Vrij, 1988; Riese et al., 2000), who

described the strong Q-dependence of Deff for charged

particles in an extremely low ionic strength solution (i.e.,

large Debye screening length). For such a system, the

structure factor, S(Q), has a peak centered at Qmax resulting

from the positional correlations between the particles. The

effective diffusion coefficient in such a case is dependent on

Q, and can be approximated as Deff ; Do/S(Q), where Do is

the diffusion coefficient in the absence of interparticle

interactions. The Q-dependence of Deff means that its value

could be much larger than that for a neutral particle of the

same size, as the value of Q in DLS is much smaller than the

Qmax of the system, so that S(Q), due to the repulsive

interparticle interactions, is �1.

TABLE 5 Best-fit parameters from SANS data of ULV solutions at various temperatures, times, lipid concentrations, and dopants

T (8C) Dopant ratio Clp wt % Time hRvesi (Å) Bilayer Thickness (Å) Polydispersity

10 Ca21 2:1 0.25 – 339 6 10 37 6 2 0.16 6 0.02

DMPG 155:1 0.5 – 330 6 10 39 6 2 0.18 6 0.03

0.25 – 319 6 15 40 6 3 0.19 6 0.02

45 Ca21 2:1 1 5 h 386 6 20 31 6 2 0.24 6 0.02

4 days 425 6 5 33 6 3 0.18 6 0.02

2 weeks 510 6 25 30 6 3 0.28 6 0.04

0.25 – 388 6 15 33 6 2 0.17 6 0.02

DMPG 155:1 1 – 378 6 15 31 6 3 0.23 6 0.01

0.5 3 h 381 6 10 34 6 2 0.16 6 0.02

4 days 382 6 15 34 6 2 0.15 6 0.02

2 weeks 332 6 10 32 6 3 0.19 6 0.02

0.25 – 363 6 20 33 6 2 0.22 6 0.03

DMPG:Ca21 1 – 415 6 5 33 6 2 0.11 6 0.02

155:2:1 0.25 – 267 6 20 32 6 2 0.22 6 0.03

Spontaneous Unilamellar Vesicles 2623

Biophysical Journal 86(4) 2615–2629



SANS data presented in Fig. 6 are consistent with the

conclusions derived from the DLS studies. An intensity peak

was observed in the vicinity of Qmax ¼ 0.013–0.014 Å�1,

indicative of strong interparticle interactions due to electro-

static repulsion. Note that Deff from DLS was measured at

Q ¼ 0.0011 Å�1, an order of magnitude smaller than the

Qmax determined by SANS. As a consequence, a smaller RH

(i.e., larger Deff, Table 2) is expected when Q � Qmax. To

verify that the variance of RH is mainly the result of strong

interparticle interactions, the bicellar size was determined

from SANS data. The best fits shown in Table 4 closely

agree with the corresponding SANS data (Fig. 5).

In summary, the low ionic strength of the solutions results

in strong interparticle interactions, and as such, DLS cannot

conclusively determine the structures present in DMPG-

doped solutions. However, judging from the SANS data,

bicelles generally exist at the highest concentrations (2 wt

%). Moreover, SANS data indicate the presence of relatively

monodisperse ULVs at 108C for samples with DMPC/

DMPG, 155:1 and Clp ¼ 0.25 wt % and 0.5 wt %.

T[ TM

Weakly and moderately doped systems (DMPC/DMPG $
155). Above the phase transition temperature, the amount of

charge in the weakly doped samples is not enough to prevent

the formation of a dispersion (presumably MLVs). However,

in some cases, dilution results in the formation of ULVs

(DMPC/DMPG ¼ 255, 0.5 wt % at 258C and 0.25 wt % at

358C and 458C). This is also generally true for moderately

doped samples, although at 0.5 wt %, non-MLV, weakly

turbid samples were observed. For a DMPC/DMPG ratio of

205:1, DLS shows a multimodal size distribution. However,

at a ratio of 155:1 only ULVs are formed. The RH for the 0.5

FIGURE 4 Structural phase diagram for DMPG-doped samples as a function of T, Clp, and the amount of DMPG dopant, based on DLS results shown in

Table 2. The phases represented by the symbols are: ULVs (circles); dispersion (multicircles); bicelles (bow ties); coexistence of bicelles and ULVs (circle1
bow tie); and multimodal size distribution from CONTIN analysis (squares with cross inside).
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wt % preparation is characteristic of a sample that is

reasonably monodisperse throughout the temperature range

from 258C to 458C. In Figs. 5 and 7, we present SANS data at

108C and 458C for DMPC/DMPG mixtures with a molar

ratio of 155:1 and several values of Clp. ULVs are observed

at both temperatures for Clp ¼ 0.25 wt % and 0.5 wt %,

whereas ULVs are only seen for the 1 wt % mixture at 458C.
Further analysis based on the CSS model and MSA structure

factor reveals detailed structural information of the ULVs,

and are summarized in Table 5. The Rves values are invariant

upon dilution, but increase from ;320 Å to ;380 Å as T
increases from 108C to 458C (Table 5). The bilayer thickness

obtained from fitting the data (Table 5) is smaller at higher T
(;32 Å, whereas bilayer thickness is;38 Å at low T), and is
consistent with the fact that the melted DMPC acyl chains

are more flexible in the high-T La phase, compared to their

‘‘stretched-out’’ state at low T.
Strongly doped samples (65 $ DMPC/DMPG). Highly

doped DMPG samples exhibit complex behavior both above

and below the main transition temperature. Particle inter-

actions in such strongly charged systems overwhelm the

propensity of DMPC to formMLVs, although it is difficult to

say with any certainty whether the dominant structures are

bicelles or ULVs. For two molar ratios of DMPC/DMPG

(65:1 and 35:1) and a Clp of 1 wt %, the samples exhibit

practically a single modal distribution (i.e., presence of one

dominant structure) at higher T, possibly as a result of ULV

formation.

In summary, there are two major differences between the

DMPG-doped systems at T[ TM and those at T\ TM. The
first is that at T[ TM and for the highest lipid concentration

(2 wt %), the bicelles become unstable and transform into

a dispersion (possibly MLVs) or a mixture of heterogeneous

structures. The second difference is that the range of DMPC/

DMPG molar ratios giving rise to ULVs is extended (i.e.,

between 35:1 and 155:1).

Both Ca21- and DMPG-doped solutions

Solutions doped with either high or low concentrations of

both Ca21 and DMPG have a translucent appearance,

regardless of temperature. This can be attributed either to

FIGURE 5 SANS data from 155:1 DMPC/DMPG samples for various Clp

at 108C . With the exception of the 1 wt % sample, ULVs are observed. The

best-fit parameters for ULVs are shown in Table 5. To better visualize the

data and the fits to the data, they have been multiplied by arbitrary rescaling

factors.

FIGURE 6 SANS data for 2 wt % samples of molar ratio 255:1 DMPC/

DMPG (circles) and 65:1 (triangles) at 108C. The crosses are the 2:1 DMPC/

Ca21 data at 108C. For all three samples the high-Q data collapse onto each

other indicating that all three samples have morphologies with the same

bilayer thickness. Curves corresponding to the symbols are the best fits. The

255:1 DMPC/DMPG and the 2:1 DMPC/Ca21 samples are best described

by the core shell disk (CSD). On the other hand, because of the strong

electrostatic interactions, the 65:1 DMPC/DMPG mixture is best fitted using

a combination of the CSD model and MSA structure factor. The best-fit

parameters for all three systems are shown in Table 4.

FIGURE 7 SANS data for various Clp 155:1 DMPC/DMPG samples at

458C. ULVs are observed in all cases. The best-fit parameters for ULVs are

shown in Table 5. To better visualize the data and the fits to the data, they

have been multiplied by arbitrary rescaling factors.
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Ca21-induced aggregation of ULVs, or to the formation of

MLVs due to the demixing of DMPC and DHPC. To remain

transparent, a solution has to contain a high concentration

of either DMPG or Ca21, not both. This observation is

consistent with the observation by Kaler et al. (1992), who

reported that ULV formation is not favored when both

positive-and negative-charged surfactant species are present

in equal quantities.

At T\ TM, RH values for mixtures of DMPC/DMPG ¼
155 and DMPC/Ca21 ¼ 2 indicate the presence of mono-

disperse particles. For the highest Clp bicelles of RH ; 100 Å

were observed, whereas the lowest Clp formed ULVs with

RH ; 480 Å. However, a multimodal distribution was found

for intermediate concentrations, whereas the intensity

exceeded the DLS instrumental limit for the sample of 0.5

wt % (Table 3). For T[358C, all of the samples with Clp #
1 wt % formed ULVs. ULVs in the 0.25 wt % sample were

especially stable over the entire temperature range studied

(108C # T # 458C).
Fig. 8 contains the SANS results for the 1 wt % and 0.25

wt % mixtures at 458C and their best fits using the CSS 1
MSA model. Note that unlike the singly doped systems (e.g.,

either Ca21 or DMPG), upon dilution the first SANS peak

shifts toward higher Q values indicating that Rves decreases

dramatically with decreasing Clp (Table 5). Such behavior is

consistent with our previous results (Nieh et al., 2001) as

well as the prediction by VCM (Oberdisse and Porte, 1997).

On the other hand, DLS data (Table 3) shows no clear trend

as a function of Clp. This conflict between the DLS results

and the SANS data (Table 5) as a function of Clp is possibly

due to the strong interparticle interactions affecting the value

of RH, which was calculated using the Stokes-Einstein

formula. Finally, DLS results for samples with molar ratios

of DMPC/DMPG ¼ 10 and DMPC/Ca21 ¼ 50, at 2 wt %

and higher dilutions, although not opaque, show multimodal

size distributions, indicating the presence of a variety of

structures.

Concentration effect and time evolution of the ULV

Although the spontaneous formation of ULVs has been

previously reported (see Introduction), as predicted by VCM,

their size has always been found to be concentration-

dependent (Schurtenberger et al., 1985; Kaler et al., 1989;

Oberdisse and Porte, 1997; Egelhaaf and Schurtenberger,

1999; Bergstrom and Pedersen, 2000). Our experimental

data from samples doped with both Ca21 and DMPG are

consistent with these observations. However, in striking

contrast are the samples that are doped with either Ca21 or

DMPG. Both of these mixtures contain monodisperse ULVs

whose size is invariant as a function of lipid concentration

(e.g., DMPC/Ca21 ¼ 2, at 458C, and DMPC/DMPG ¼ 155,

1–0.25 wt % at both 108C and 458C). The importance of

interparticle interactions can be deduced from the values of

the intervesicular distance and the Debye length. The

intervesicular distance (dves) can be estimated as

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p=3 R

3

ves � Rves � tbð Þ3� �
Clp

s
;

resulting in a value of ;1700 Å for the 1 wt % solution at

a DMPC/DMPG molar ratio of 155, using Rves ¼ 378 Å and

tb ¼ 31 Å (Table 5). The Debye length for this system is

;375 Å, which is comparable to (dves – 2 Rves), the typical

separation between the surfaces of two neighboring vesicles.

Hence, strong intervesicular interactions are present at these

concentrations. It is interesting that despite these strong

interactions, the ULV size remains invariant upon dilution.

Helfrich (1973) derived the curvature energy, F, for

a membrane to be ðkb=2Þ C11C2 � 2Coð Þ21kcC1C2; where
kb and kc are the bending and the Gaussian curvature moduli,

respectively, whereas C1 and C2 are the two principal

curvatures (for spherical vesicles C1¼ C2¼ 1/Rves) and Co is

the spontaneous curvature. Winterhalter and Helfrich (1992)

also found that imparting a charge to the system results in

a larger, effective kb while at the same time lowering the

effective kc. This contribution lowers the free energy and

favors the formation of vesicles. However, it is not clear if

this mechanism can account for the observed insensitivity of

the vesicle size to dilution.

To the best of our knowledge, in the only report of ULV

size as a function of time, Yatcilla et al. (1996) reported that

ULVs composed of cetyltrimethyl ammonium bromide

(CTAB) and sodium octyl sulfate rapidly increased in size

FIGURE 8 SANS data for various Clp samples doped with both DMPG

and Ca21 (DMPC/DMPG 155:1 and DMPC/Ca21 2:1) at 458C. The

triangles and circles represent 1 wt % and 0.25 wt % samples, respectively.

Solid curves are the best fits using the CSS model combined with the MSA

structure factor. The fits are in very good agreement with the data indicating

that both of these samples form ULVs. Of note is that the peak positions in

the curves are different, and reflect the fact that the ULVs differ in size. The

best-fit parameters are presented in Table 5. Both the data and the best fits are

multiplied by arbitrary rescaling factors for better viewing.
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after initial formation, and only attained equilibrium size

after an extended period of time. However, our SANS result

for the sample with DMPC/DMPG ¼ 155 (Clp ¼ 0.5 wt %)

demonstrates that these ULVs are stable and monodisperse

over a period of 4 days at 458C (Fig. 9 A). However, Rves

does get slightly smaller (332 6 10 Å) and polydispersity

increases after 2 weeks at 458C from 0.16 6 0.02 to 0.19 6
0.02, indicating either a very slow equilibration of the ULVs

or a gradual degradation of the lipids at these relatively high

temperatures.

Analysis of Ca21-doped ULVs (Fig. 9 B), on the other

hand, indicates a result much similar to that reported by

Yatcilla et al. (1996) where, after 4 days, Rves increased from

386 Å to 425 Å and finally, after 2 weeks of incubation at

458C, to 510 Å (Table 5). Polydispersity decreased after 4

days and then increased after 2 weeks. For this mixture, it

seems that the ULVs are continuously fusing and forming

larger ULVs with time. From the DMPG- and Ca21-doped

systems data, we speculate that the time dependence of the

Ca21-doped ULV size may be related to the fact that the

bilayer charge density varies with time as Ca21 ions desorb.

On the other hand, since the hydrophobic portion of DMPG

molecules is always embedded in the membrane, the surface

charge density is essentially fixed for DMPG-doped ULVs.

Effect of temperature on the stable ULVs

As mentioned previously and summarized in Table 5, for

samples with DMPC/DMPG ¼ 155 and DMPC/Ca21 ¼ 2,

the values for Rves obtained from SANS are larger above TM
than below. This observation is unexpected since the

bending modulus, kb, of the membrane increases as the

phase goes from La to gel, and therefore, so does the bending

free energy (Helfrich, 1973) for the membrane of same

curvature (i.e., 1/Rves for the vesicular case). Yuet and

Blankschtein (1996b) have proposed a theoretical model in

which they calculate the total free energy of surfactant

mixtures at a molecular level, and find that smaller ULVs can

be obtained upon increasing the asymmetry of hydrophobic

tail length between the two surfactants. Since the asymmetry

between long- and short-chain PCs increases when DMPC

is in the gel phase, this trend is in agreement with our

observations. However, it should be pointed out that the

above theory considers bilayers in the La phase, and may not

be applicable to the present situation. More recently, Jung

et al. (2001) have studied the formation of ULVs made up of

‘‘stiff’’ and ‘‘flexible’’ surfactants, CTAB/ sodium octyl

sulfate and CTAB/sodium perfluorooctanoate, respectively.

The stiffer mixture was found to give rise to smaller and

more monodisperse ULVs. This trend is again in agreement

with what we observe, although the fact that these experi-

ments were carried out in the La phase makes a direct

comparison somewhat more difficult.

Another possibility is that ULVs formed in the La phase,

are trapped in the gel phase. From the structural parameters,

we find the change in the ULV size across the transition to

correspond to ;10% decrease in the bilayer volume, which

is of the same order of magnitude as the change in the density

across the gel ! La phase transition.

CONCLUSIONS

The structure and particle size of charge-doped DMPC/

DHPC mixtures at low lipid concentrations (#2 wt %) have

been examined as a function of charge density, salt con-

centration, temperature, lipid concentration, and time. The

primary findings are as follows:

1. Contrary to almost all previously published experimental

results, SANS data show an invariant Rves value for

monodisperse ULVs doped either with DMPG (DMPC/

DMPG ¼ 155) or Ca21 ions (DMPC/Ca21 ¼ 2). The

FIGURE 9 SANS data of ULV time dependence for (A) 0.5 wt % 155:1

DMPC/DMPG and (B) 1 wt % 2:1 DMPC/Ca21 incubated at 458C. DMPG-

doped ULVs remain unchanged, both in size and polydispersity, over

a period of 4 days. However, both the size and the polydispersity of Ca21-

doped ULVs are found to vary with time. The best-fit parameters are shown

in Table 5. To better distinguish between the data and the best fits, arbitrary

rescaling factors have been used.
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invariance of Rves over a wide range of lipid concen-

trations and temperatures reflects the high stability of the

present ULVs. These properties (monodispersity, in-

variant Rves and temporal stability) are qualities that may

be appealing for drug delivery and other controlled

release applications.

2. The vesicle cell model proposed by Oberdisse and Porte

(1997) can, to some extent, explain the trend of Rves as

a function of surface charge density. However, this

theory does not predict the observed independence of

Rves on Clp in both of the singly doped systems.

3. The increase of Rves with increasing T in 155:1 DMPC/

DMPG mixtures and in some Ca21-doped samples might

be attributed to the changes in the bilayer rigidity. It is

also conceivable that the ULVs, formed in the La phase,

are trapped in the much more rigid gel phase. More

studies are required to understand this behavior.

The inclusion of brand names in this article is for completeness only and

does not imply endorsement by the National Institute of Standards and

Technology.
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