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Rdsumd.- Des billes de latex wnt suspendues dans une solution micellaire isotrope qui h basse

tempdrature prd~ente une phase ndmatique. Nous observons qu h la transition [es billes sont

admises dans la phase ordonnde ou en sont rejetdes selon leur taille. Nou~ rendons compte de cette

observation par un moddle h deux paramktres d'ordre couplds. Les diagrammes de phases
expdrimentaux et thdoriques sont alors compards dans le voisinage de la transition.

Abstract. Latex polyballs are suspended in an isotropic micellar solution which exhibits a

nematic phase at low temperatures. At the transition, we observe that the particles are either

retained or expelled from the structured phase depending on their size. A mean field theory with

two coupled order parameters is proposed to account for this behavior at the transition. The

experimental and theoretical phase diagrams are in qualitative agreement.

1. Introduction.

Much attention has been focused on the stability of dispersions of colloidal particles in a fluid.

Very early [1-5], reversible phase separations have been observed in these systems. Phase

transitions in colloidal suspensions are divided into two classes I) disorder-order transitions

occur in systems dominated by repulsive interparticle potentials [3-5] and it) fluid-fluid or

fluid-solid transitions leading to two coexisting phases take place when the interparticle
potential is attractive [2, 6-9]. In regular systems the solvent is macroscopically isotropic and

then the interactions mediated by it keep the same symmetry. An interesting intermediate

situation arises when anisotropic interactions are induced by an applied field, for instance in

hydrodynamic flows or electromagnetic fields. The interparticle potential may then be

attractive along particular directions and repulsive along others, thus providing very original
phases. For instance, in an applied electric or magnetic field, colloidal suspensions may

become a homogeneous one phase suspension of flexible strings made up of linearly
aggregated particles, like pearl chains [10-12].

An alternative procedure to generate such anisotropic interactions would be to suspend
colloidal particles in an anisotropic medium, such as a liquid crystal. In addition to the
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common interactions observed in isotropic solvents, at least three extra specific forces are

expected in a structured fluid. The most intuitive of them is elastic in origin every change in

separation between two particles would modify the strain field in the structure and for weak

distortions the liquid crystal would respond elastically by giving rise to an interaction between

the particles [13, 14]. For instance in a nematic phase, the sign and the magnitude of the elastic

interaction would depend both on the anchoring conditions on the colloidal surfaces and on the

relative orientation of the displacement with respect to the local director of the mesophase.
While the first interaction is related to the orientational distortion of the order parameter, the

second one arises from the modification of its amplitude. Owing to specific wetting conditions

of the solvent on the particles, a non-uniform distribution of the magnitude of the order

parameter develops near each particle surface, over a distance of a few order parameter
correlation lengths. The overlapping of the surrounding layers of two particles would cause an

interaction between them [15-17]. The third interaction is even more subtle. This interaction

arises from orientational fluctuations in anisotropic mesophases. Between two particles, the

rigid boundary conditions suppress locally a number of fluctuating modes, namely those

having a lateral extension larger than the separation between the particles [18]. The associated

free energy decreases with decreasing separation between the surfaces. A remarkable feature is

that this interaction can fall off more slowly than the van der Waals interaction and should

become dominant at large separations.

On the other hand, the doping of a liquid crystal with dispersed colloidal particles has a great

interest from both a fundamental and practical standpoint. From the former it is the means to

impose a controlled density of defects in the long range organization. By coupling effects, one

may suspect that the physical properties of the mesophase would be altered, notably its elastic

moduli. Moreover the proliferation of defects is well-known to lead to phase transition [19] and

theory predicts that the first order nematic-isotropic transition may then split into a pair of

continuous transitions with a novel intermediate phase [20]. From a more practical viewpoint,
attention has been paid recently to a new kind of liquid crystal displays based on nematic

phases doped with small particles [21].

To our knowledge two kinds of experimental studies have been performed on nematic

mesophases in which inclusions have been added.

The first ones have followed the Brochard-de Gennes predictions [22] to circumvent the

limitation of high magnetic field required to orient liquid crystals exhibiting a very weak

anisotropy of diamagnetic susceptibility. They proposed doping the liquid crystal matrix with

well-dispersed anisotropic ferromagnetic grains. At some critical ferrofluid concentration, the

liquid crystalline matrix is oriented by the magnetic grains resulting in a mechanical coupling.
The strength of the magnetic field required to orient the whole sample is then reduced by many
orders of magnitude. In spite of many attempts only a few have succeeded in realization of

these systems [23, 24]. The difficulty is to maintain the particles dispersed in order to get the

collective behavior. Usually, the particles cluster even in the highly dilute regime.

Very recently a second type of systems has been investigated in order to obtain bistable

liquid crystal displays already mentioned above [21]. The material consists of small solid

inorganic particles (silica spheres) dispersed in thermotropic nematic phases. Inside the

dispersion, the particles form agglomerates without leading to phase separation. In terms of

light scattering, they are bistable with a first transparent state under homeotropic alignment and

a second scattering state without alignment (randomly aligned). The doping particles facilitate

a fast local switching from one state to the other either by a two-frequency addressing

technique or by thermal exchange from a focused laser beam. The reasons as to why the

aggregates allow the matrix to remain in a transparent homeotropic state on removal of the

aligning electric field are not yet well understood. Once the writing is performed thermally by
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switching back to the strongly scattering state with a focused laser beam, a fast erasure is

obtained by applying the electric field again.
In the present paper, we study the stability of a suspension of small panicles dispersed in a

nematic medium. First, in an experimental section, we describe the phase diagrams obtained

with a lyotropic system and spherical lattices of 200 h and 600 h diameter. With the larger
particles, a phase separation process occurs at the isotropic-nematic transition, expelling every
particle from the nematic phase into the isotropic phase. On the other hand, the smaller

particles are kept dispersed in the nematic phase up to a few percent in concentration. They
remain Brownian even in the nematic phase. A comparison of dynamic light scattering results

obtained in the isotropic and nematic phases show that the particles are well-dispersed over an

extended domain in the nematic phase. To describe the stability near the isotropic transition,

we develop in section 3 a very simple model (Landau-like) with two order parameters. One is

related to the particle density while the second is the usual nematic order parameter in its scalar

form (uniaxial mesophase). Specific anisotropic interactions between the particles are not

taken into account. We attempt to classify the different phase diagrams arising on varying the

coupling strength, which is related to the panicle size under strong anchoring. Finally,
section 4 is devoted to a short discussion and concluding remarks and wide perspectives
envisaged after this preliminary study.

We now present our experimental results.

2. Experimental results.

As mesophase matrix we have chosen an aqueous lyotropic system in order to favour the

dispersion of latex polyballs which are usually hydrophylic. A second advantage of the

lyotropic system is that the elastic constants are weaker than those of thermotropic systems,
reducing then the energetic cost to pay for the distortion of the nematic director field generated
by the particles. Moreover, these elastic constants may be varied over some range by adjusting
the surfactant concentration, giving some freedom to control the elastic interactions if

necessary.

Among the different lyotropic liquid crystals extensively studied, the binary mixture of

cesium pentadecafluorooctanoate (CSPFO) and water is certainly the simplest [25]. No

cosurfactants or salt are necessary to stabilize non-spherical micelles. This system is of special
interest because it exhibits a micellar nematic phase ND of discoid type over a large range of

concentration and temperature, ranging from about 0.2 to 0.65 weight fraction in surfactant

and from 12 to about 70°C [25]. This phase is intermediate to a lamellar phase
L~ at lower temperatures and an isotropic micellar phase Lj at higher temperatures. Note that

the Lj-No transition is weakly first order while the ND-L~ transition is second order over most

of the ND composition range. Typically the aspect ratio a/b of discoid micelles is in the range
of 0.2-0.55, depending on the temperature and surfactant concentration with a =

2.2 m.

CSPFO was prepared by neutralizing an aqueous solution of pentadecafluorooctanoic acid

(Aldrish Ltd. with ceasium carbonate (Aldrish Ltd. ). The neutralized solution was evaporated

to dryness and the salt was recrystallized from ethanol. The samples were prepared by
weighing CSPFO and aqueous suspensions of latex polyballs. Two types of dispersion of

different particle size were used, both being a generous gift from Dr. Joanicot (Rh6ne-Poulenc
company). The diameters of monodisperse latex particles from each batch were 120 and

60 nm. The polymer used for the latex is a styrene-butyl acrylate-acrylate acid copolymer. The

latex spheres were charged by carboxylic acid groups grafted onto the surfaces, with a charge
density of 260 ~LEq/g.

We do not expect significant changes in the CSPFO concentration due to adsorption onto the

latex particles at the concentrations used for the samples studied. Even in the highly unlikely
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case (latex particles and surfactant are both negatively charged in water) of a full covering of

polyballs with the surfactant, for a typical concentration of 3 wtfb and 40 wtfb respectively in

particles and CSPFO, the order of the surfactant loss is 0.001 of its total amount in solution.

2. I DOPING wiTH LARGE PARTICLES. We now describe the phase diagram obtained with the

two types of latex particles. We consider only cuts of the ternary diagram, keeping the ratio of

the amount of surfactant over water constant and varying the latex volume fraction and the

temperature. First, let us describe the phase diagram obtained with the larger polyballs.
Although only one cross-section at fixed molecular ratio of surfactant to water has been

extensively investigated, many complementary observations at different molecular ratios

suggest that the phase behavior with these large lattices is similar over most of the range of the

nematic phase. The stability of the suspension was characterized both by optical microscopy
and by macroscopic observation of bulk properties of a few grammes of the sample as a

function of temperature. After any change in temperature, sample turbidity and birefringence

were noted over the course of hours to determine precisely the phase separations and

transitions.

As long as the solvent is in the isotropic state, the latex particles are well-dispersed, giving
weakly turbid solutions in the case of dilute samples and quite opaque and white solutions as

the doping volume fraction, ~bj, is increased. This first result indicates that, firstly the

electrostatic repulsion between the latex spheres is still efficient in spite of the screening
arising from the dissociated surfactants [26], and secondly the depletion of micelles yields only

a weak attraction as expected when the ratio of the diameters of the two solutes is just ten or so

[27].

Whatever the latex content of the solution, as soon as the isotropic-nematic transition

temperature is reached from above, a liquid-liquid phase separation occurs (or a liquid-solid
phase separation for higher ~bj and for deep quenches). In a vial, a clear, translucent and

birefringent volume settles to the bottom while a very white and opaque volume creams up to

the top. This second result indicates that the latex content of the nematic phase is rather low,

I-e- the latex segregation into isotropic phase is fairly complete. The volume fraction of the

cream decreases as the temperature decreases. Observation under a microscope of samples
sandwiched between two sealed slides confirms the preceding conclusion. When the transition

temperature is reached, a uniform nucleation of nematic droplets occurs across the sample.
While the nematic droplets grow their interfaces push away the lattices through more and more

concentrated regions. During the coarsening of the nematic droplets, domains concentrated in

latex balls are finally isolated, making islands of various shapes with smooth edges. But the

morphology of these flocs relaxes to a spherical shape after a few minutes, indicating that the

latex particles contained inside are in a liquid state. No macroscopic fluctuations of shapes
have been observed, even very close to the transition. As the droplet sizes are often larger than

a few microns and the viscosity of lyotropic nematic phase is typically a few poises [28, 29].

the droplets do not display noticeable Brownian motions. During the phase separation process.

coalescence of flocs can occur especially in the early stages, giving rise to larger droplets
which reach the steady spherical shape after a while. To summarize, at a given temperature
below the transition temperature, the sample appears under a microscope as a dispersion of

polydisperse, macroscopic, isolated and motionless droplets surrounded by a nematic

medium, almost free of isolated latex particles, as illustrated by the photomicrograph shown in

figure la-

When the temperature is further decreased into the nematic domain, small birefringent
droplets are expelled from the fluid flocs. These nematic droplets can coalesce amongst

themselves inside the flocs, before coalescing with the nematic matrix. The volume of the latex

fjocs is then reduced while their optical contrast with the surrounding medium is enhanced.
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Fig. I. Below the isotropic-nematic transition, the 120 nm latex particles cluster a) near the transition

in spherical fluid flocs and b) far from the transition in fractal solid aggregates. The surrounding nematic

medium is free of isolated latex particles.

This behavior is completely reversible. On going back to higher temperatures the flocs swell

back to their initial size. Below some well-defined temperature, the latex flocs lose their liquid

nature. Gradually, the latex particles become motionless, this process starts at the core of the

flocs and then spreads to the edges. When the flocs are solid-like, they become slightly more

irregular, their edges seem to facet, and the collision of two of them results now in sticking and

no longer in coalescence. There is no noticeable change in their size on further decrease in the

temperature. A deep quench from a one-phase temperature to these temperatures where the

flocs are rigid, generates aggregates very different in shape. The aggregation is then controlled

by the coarsening process of the nematic phase, giving rise to very irregular fractal-like

aggregates, as shown in figure 16. When the concentration in latex particles is large enough,
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the aggregates tend to connect in an infinite network. Under heating, the multi-branched

aggregates melt back into the fluid droplets. This process starts from the edges. The aggregate

arms melt first and give droplets with a fluid outer shell. Their solid cores melt some time later.

A usual technique to determine the (T, ~b ii cut plane of the phase diagram would be to

measure the respective volume of each phase versus the temperature in a vial containing a few

grammes of the sample. With the present system, owing to its high viscosity, reaching
equilibrium is tedious. Indeed, after demixion, the denser nematic phase which is free of latex

particles needs always many days to sediment to the bottom. Note also that this technique is

doubtful when the solid flocs make some rigid networks as observed a few degrees below the

isotropic-nematic transition. A much faster alternative technique, owing to the much smaller

volumes involved, is to follow under a microscope the size of the spherical flocs in which the

latex particles are trapped. In a three-dimensional space, with uniform spherical latex particles,
the dependence of the volume fraction of particles ~bj on the floc radius R, is given by

~bj =

~bciRc/R)3 (11

where ~b~ is the characteristic closest packing fraction of an array (I.e. 0.7405 for hexagonal,
0.5236 for simple cubic, etc.. ) while R~ is the ultimate radius of a Hoc at the close packing

density. Consequently, successive measurements under cooling of the radii of a few flocs,

down to the temperatures at which the solid Hoc radii become fixed and equal to

R~, give the ratio of the volume fraction of insertions to the constant close packing density.
Since, according to the microscopic observation, the solid content of the nematic phase is

always zero, a phase diagram in the (t, ~b j/~b~ ) plane is obtained where t is the temperature shift

from the isotropic-nematic transition, T T~. A typical phase diagram is given in figure 2, for

the following sample composition, 26 wtfb CSPFO, 73.25 wtfb H~O and 0.75 wtfb latex

particles. The isotropic-nematic transition temperature T~ has been measured to be 19.68 °C.

Around 18.75 °C, I °C below the demixion temperature (Fig. 2), the flocs become solid-like

and get their minimal size. Just below the transition temperature, I.e. at t
=

0.02 °C, the

closest approach allowed by our experimental set-up, the size of the fluid droplets were found

to be about 2.8 times larger than that at I °C below the transition (Fig. 3).
Let us now consider the case of smaller doping particles.

2.2 DOPING WITH SMALL PARTICLES. In this section we report the results obtained with the

600 h particles. These polyballs can be suspended both in the isotropic and nematic phases,
giving the so-called IL and NL one-phases. Each homogeneous one phase will be named by a

two letter abbreviation ; the first one stands for the state of the solvent IN or I for nematic or

isotropic medium) while the second letter stands for the state of the particle dispersion IL or S

for liquid or solid). The 600 h particle phase diagram being much more complex than the

preceding one, we will restrict our consideration to the general trends, keeping the extensive

description [30] for a forthcoming paper. Let us start with an example to definitively prove the

existence of the NL phase.
Towards this goal, we consider the particular sample whose composition is 39.4 wtfb

CSPFO, 59.9 wtfb H20 and 0.7wtfb latex particles. The isotropic-nematic transition

temperature was found to be 34. 5 °C, the transition being slightly more strongly first order than

in the sample free of particles. Indeed, the range of the biphasic domain is expanded from

about 0. °C without lattices to 0.6 °C with them. Contrary to the preceding system, the two

coexisting phases are turbid, suggesting that latex particles are suspended both in the nematic

and in the isotropic phases. The NL one phase extends from 33.9 °C down to 31.6 °C. No

macroscopic phase separation is observed over the course of weeks at these temperatures.

Below 31.6 °C, a network texture emerges (see below) under microscope, but above, in the



N° 9 LATTICES IN A NEMATIC 1563

One phase region

a

N + IL ~

-l

~

IS

~/ Two phase region
E- N
~

-Z N + IS

© A O Liquid
-3 . + . Solid

0 O.5

41/4~

Fig. 2. -Temperature i,ersus latex concentration phase diagram cut obtained with three different

spherical flocs of I20 nm latex particles (see text). The floc solid state was detected by the cessation of

the motion of latex particles in the droplets. T~ the isotropic-nematic transition temperature with the initial

O.75 w% latex particles was 19.7 °C. ~b, is the closest packing fraction of lattices in the solid flocs at low

temperatures. The two-phase region corresponds to an equilibrium between a nematic phase free of latex

particles and an isotropic phase containing all the latex particles. Above the solid line the phase is

homogeneous and isotropic.

Fig. 3. Same spherical floc containing several hundreds of 120 nm latex particles a) swollen near the

isotropic-nematic transition and b) shrunk one degree lower.
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one phase temperature range, absolutely no latex flocs are observed. However an ordinary
optical microscope does not allow to distinguish such small particles and likewise aggregates
of a few particles to be distinguished. In order to definitively check whether the doping
particles remain well dispersed in the NL phase, we measured the Brownian diffusion

coefficient of particles by dynamic light scattering. As illustrated in figure 4, both in the

isotropic and the nematic solvent, the characteristic relaxation frequencies of the density
fluctuations were found to be proportional to the square of the scattering vector. The

temperatures of measurement were shifted by almost three degrees on either side of the

isotropic-nematic transition. The diffusion coefficient in the isotropic phase is about 1.4 times

that in the nematic phase, which is consistent with an increase of the global viscosity as

checked with a rheometer, namely about 54 cp for the IL phase and 73 cp for the NL phase.
From the latter results, and from the macroscopic and the microscopic observations we can

definitively conclude that the 6001 lattices are in suspension in the nematic matrix.
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Fig. 4. -Dynamic light scattering measurements of the relaxation frequencies of the 60 nm latex

particles suspended in the isotropic and in the nematic wlvent. The diffusion coefficients were found to

be I1.5 x
10~nm~ s~ ' and 8.I x

10~ nm~ s~ ' respectively in the two phases.

The maximum of latex particles allowed in the nematic phase depends on the molecular ratio

of the surfactant to water. The larger the surfactant fraction, the larger the volume fraction of

particles. In the most favorable case, up to more than 7 wtfl latex particles have been kept
dispersed. Under cooling, before reaching the lamellar phase, the doping particles interact

strongly amongst themselves, giving what is perceived under the microscope as a steady
greyi~h texture, similar to a frozen spinodal decomposition pattern in its fir~t ~tage. A

photomicrograph of such a pattern is shown in figure 5. The characteristic mesh size of the

texture grows as the temperature is decreased. However, under heating, this behavior is fully

reversible, attesting to the thermodynamic nature of these patterns. The higher the solid

content, the closer from the isotropic-nematic transition the occurrence of these patterns.

Finally, what is more intriguing is that the nematic matrix can always be well oriented between

slides, in spite of the dispersed particles and the texture at low temperatures, even in the

concentrated regime (up to about 3 fbw particles).
We now wish to account for the behavior of the two systems by developing a simple model.
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Fig. 5.- Characteristic texture emerging a few degrees below the isotropic-nematic transition,

suggesting that the 60 nm latex particles ~uspended in the nematic solvent interact with specific forces to

aggregate at some precise temperature.

3. Landau expansion and phase diagrams.

The system we consider here is made of a suspension of monodisperse hard sphere particles
dispersed in a nematic matrix. We will examine it in the vicinity of the nematic-isotropic

transition. The nematic solvent is chosen uniaxial so that the related second rank tensor order

parameter can be reduced to a scalar in a suitable coordinate system.
Our starting point is the following Landau expansion of the Helmholtz free energy density

f(Q, ~b)=)a(T)Q~-)Q~+~Q~+~(~b'n~b+~b~(4-3~b)/(1-~b2))+)Q~~b.

(2)

Three distinct contributions can be distinguished : the energy density of the solvent alone

f~, the energy density of the particle suspension j'p, and a coupling term l'c which links the

two. Let us discuss each one

J'~ (Q
=

a'IT Tjj) Q~ Q~ + Q~ (3j
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is the usual Landau expansion in the mean field approximation which describes the first order

isotropic-nematic transition [31]. The coefficients a', c and d are positive. The order parameter

Q is defined as Q
=

(3 cos~ o I ) where o is the angle between the director n and the
2

molecular axis vector u [31]. The average is over a small macroscopic volume. The

equilibrium value of Q is zero in the isotropic phase and is between zero and one in the nematic

phase

fp(~b
=

$
(~b in ~b + ~b

2(4 3 ~b j/(i ~b 2)) (4aj

is the Camaham-Starling free energy density of a fluid suspension of spheres interacting
together by steric repulsion [32], ~b being the volume fraction of particles. At high sphere

concentration, ~b » ~b *, when the particles are in solid state, fp can be rewritten as [33]

k~ T
fp(~b

= ~ (no ~b + 3 ~b in (~b/(i ~b/~b~))) (4b)

where no is an adjustable parameter so that (4a)
=

(4b) at ~b *(~ 0.52 ), and ~b~ is the closest

packing fraction.

An important choice in defining our Landau expansion concerns the coupling term,

fc(Q,
~b =

Q~ ~b (5)

Here we have retained only the lowest order term of the coupling. From a purely formal

standpoint, since Q has a tensorial origin, the lowest power in Q to be homogeneous in rank is

necessarily two since ~b is itself a scalar. On the other hand, from a physical standpoint,
kQ~/2 can be seen at zero order as the distortion cost that every doping particle produces in the

nematic director field. A precise relation for the coupling coefficient is not straightforward to

establish. Among the relevant parameters we can mention the elastic constants of the nematic

solvent, the diameter of the panicles and also the direct interactions between the nematic

molecules and the inclusions, I-e- the anchoring conditions. Under strong anchoring, the

coupling coefficient is expected to be directly proportional to the particle radius, kQ~ cc KR/V,

where K is a linear combination of the three nematic elastic moduli depending on the nature of

the alignment [31]. Notice from (2) that since k
»

0, as expected for spherical doping particles,
the isotropic-nematic transition would be delayed as the doping concentration is increased. The

elastic cost per unit is proportional to ~b as long as no specific interactions between the distorted

layers around each particle are considered. kQ~/2
can be seen as the excess chemical potential

of the particles in the nematic phase. Coupling terms of higher order in ~b should be included in

(5) to take into account the interactions mediated by the nematic solvent. In this preliminary
study we neglect these specific interactions though experimentally it seems we have some

evidence for them.

It is helpful to derive the possible topologies of phase diagrams directly from (2) by using the

common tangent rule in (T, ~b space, corresponding to the suitable experimental parameters.
Phase diagrams are calculated by the following method f(Q, ~b ) is first minimized with

respect to variations in Q, thus defining a function of one variable f (~b )
=

f (~b, Q (ib )I where

Q(~b) is the value of Q for which f is minimized at a given ~b. The common tangent

construction may now be applied to the minimized function f(~b ). Analytically, if there is a

multiphase coexistence, the common construction corresponds to satisfying both the chemical

potential ~,=(Jf/J~b), and the osmotic pressure P,= f(~b,)-~b, /1, conditions,
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u,
= u~ =

and P,
=

P~
=

where ~b, refer to the respective volume fractions of particles
in each phase.

On minimizing f(Q, ib with respect to Q, we simply obtain,

o~~fi~=o ~b*~bT<
~6j_c+~/c~-4d(a+k~b>

~
~Q(~b)

2D
~

~'

with ~b~,
=

2 c~/ (9 dk) a/k. Note that if T
»

To + 2 c~/ (9 da') then is always equal to zero

whatever the particle volume fraction ~b. Although the calculations on the minimized free

energy f(~b ) are mainly analytical, at some points a straightforward numerical treatment is

required. Actually a good qualitative feeling for the phase diagrams can be obtained just by

plotting the function f(~b at fixed value of T and looking for common tangents.
Let us now describe the phase diagrams obtained at different coupling strengths, keeping

fixed the other parameters, a', To, c and d. Three phase diagrams in the plane (T, ~b are

displayed in figure 6 corresponding to weak, moderate and strong coupling. In varying the

coupling coefficient k we can pass smoothly from one to another. Four thermodynamic one-

phases emerge in the phase diagrams. The IL and NL phases are homogeneous dispersions of

latex, respectively in an isotropic and nematic medium. Above a concentration threshold in

panicles, the latex organization is solid-like, leading to the IS and NS phases following the

nature of the surrounding solvent.

A common characteristic of the phase diagrams is that the transition temperature is lowered

as the colloidal particle concentration is increased as one would expect intuitively. Each

particle generates some degree of disorder around itself (the coupling coefficient is positive),
depending on the coupling strength, delaying locally the nematic structuration. The second

remark is that the isotropic-nematic transition becomes more first order when particles are

added, especially under strong coupling. For weak coupling, the first order character is just
slightly enhanced at the smaller doping concentrations (Fig. 6a). On the other hand, for strong

coupling, the transition becomes so much strongly first order (Fig. 6c), that almost all the

particles can be excluded from the nematic phase and kept inside the isotropic one.

For weak and moderate coupling, the diagrams exhibit two triple points, for a = aj and

a~ (Fig. 6). The former aj corresponds to the coexistence between the phases IL, NL and IS,

o o o

E
[

-0.5 lL IL ~

3
~

C ~
JS

(
~

ii ~ ~
~

i
_z

0 20 40 80 0 20 40 80 0 20 40 SO

Latex volwne fraction Latex volume fraction Latex volwne fraction

Fig. 6. Theoretical phase diagrams obtained with (2) at different coupling strengths with the following

numerical values kT/V 1.0, c =

O.3, d I.O, and a'
=

I.O. The one phase domains are named by a

two letter abbreviation (see text) while the two phase regions are shaded. a) weak coupling:
k

=
3.0, b) moderate coupling ; k

=

6.0, and c) strong coupling k 10.0.
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while the latter a~ corresponds to the coexistence between the phases NL, NS and IS. Under

strong coupling, the NL and the NS one phases disappear in favour of a pure nematic one phase

since the particles are all expelled from the nematic matrix. Then the preceding triple points
correspond to the coexistence with a N phase instead of NL phase. A remarkable feature for

moderate coupling is the emergence of new equilibria between two phases of type NL

providing the critical point C (Fig. 6b). Since no extra specific attractive interactions have been

considered in the free energy (2), the coupling under consideration is enough to drive the

second virial coefficient negative. However, a relevant test of this conclusion requires adding

~b
~ interaction terms in order to be consistent in the expansion (2). When a = a~ the new triple

point corresponds to the equilibrium between the two NL phases together with the IL phase.

4. Conclusion.

The model allows us to gain some insights into the preceding experimental observations. Both

the sign and the magnitude of the coupling term in (2) are crucial in the behavior at the

isotropic-nematic transition. As we have already mentioned, k is suspected to be positive for

spherical inclusions, because spherical particles would induce disorder in the nematic director

field. In consequence this term does not favor the transition to the nematic phase but rather

delays it, the drop in the transition temperature being greater for stronger coupling and larger
latex volume fraction. This feature has been observed with both large and small particles and is

illustrated in figure 2. The strength of the coupling term determines the width of the two phase
region. The stronger the coupling term, the larger the coexisting phase domain as illustrated in

figure 6. As we have already mentioned, the coupling term can be regarded as an exchange
chemical potential, characterizing the cost in free energy of transferring a spherical particle

from the isotropic to the nematic solvent. In consequence the system has some advantage in

concentrating the latex in the isotropic phase, in spite of the loss in mixing entropy, thereby
making the chemical potential in the two coexisting phases equal. But concentrating too much

can become too penalizing in terms of particle interaction so that the particles are definitively
admitted in the nematic phase. The stronger the coupling term, the higher the concentration at

which the dispersion in the nematic phase occurs. For too strong couplings the balance is never

reached and the particles aggregate outside the nematic phase, giving a complete segregation
like that we have observed with the larger particles.

In conclusion, we have experimentally verified that the dispersion of solid spherical particles
in a nematic matrix is workable, provided that the particle size is not too large whereby the

energy of the distorted volume stays limited. A simple two order parameter Landau expansion

accounts for such a behavior. The interaction between the two order parameters controls the

particle segregation at the isotropic-nematic transition. This model must be extended, notably
by adding some specific interaction terms with respect to the anisotropic nature of the solvent.

Thereby we can expect to account for the structuration responsible for the texture observed in

the nematic phase. Unfortunately to express analytically even with some approximations the

elastic interactions between two spheres immersed in a 3D nematic medium is not a

straightforward task, with both planar and homeotropic alignments. However numerical

simulations may bring some insights in order to model these anisotropic interactions. Some

attempts are currently underway in this direction.

However we did not yet explicitly show that the force responsible for the structuration was a

specific interaction mediated by the anisotropic solvent. Taking advantage of the fact that these

doped systems align quite easily in thin slabs, scattering techniques, especially using neutrons,

would allow us to test the anisotropy of the macroparticle doublet interactions. Another

exciting experimental extension would be the study of the consequences of the inclusions on
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the physical properties of the nematic matrix. Special attention should be paid to the

viscoelastic characteristic of the system.
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