
GENERATORS FOR ARITHMETIC GROUPS

R. SHARMA AND T. N. VENKATARAMANA

Abstract. We prove that any non-cocompact irreducible lattice
in a higher rank real semi-simple Lie group contains a subgroup of
finite index which is generated by three elements.

1. Introduction

In this paper we study the question of giving a small number of
generators for an arithmetic group. The question of a small number
of generators is also motivated by the congruence subgroup problem
(abbreviated to CSP in the sequel). Our main theorem says that if Γ
is a higher rank arithmetic group, which is non-uniform, then Γ has a
finite index subgroup which has at most THREE generators.

Our proof makes use of the methods and results of [T] and [R 4] on
certain unipotent generators for non-uniform arithmetic higher rank
groups, as also the classification of absolutely simple groups over num-
ber fields.

Let G be a connected semi-simple algebraic group over Q. Assume
that G is Q-simple i.e. that G has no connected normal algebraic
subgroups defined over Q. Suppose further, that R-rank(G) ≥ 2. Let
Γ be a subgroup of finite index in G(Z). We will refer to Γ as a “higher
rank” arithmetic group. Assume moreover, that Γ is non-uniform, that
is, the quotient space G(R)/Γ is not compact. With this notation, we
prove the following theorem, the main theorem of this paper.

Theorem 1. Every higher rank non-uniform arithmetic group Γ has
a subgroup Γ′ of finite index which is generated by at the most three
elements.
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The proof exploits the existence of certain unipotent elements in
the arithmetic group. The higher rank assumption ensures that if U+

and U− are opposing unipotent radicals of some maximal parabolic
Q-subgroups of the semi-simple algebraic group G, and M is their in-
tersection (note that M normalises both U+ and U−), then M(Z) will
have a “sufficiently generic” semi-simple element. There are generic
elements in U±(Z) which together with this generic element in M(Z)
will be shown to generate, in general, an arithmetic group. This is
already the case for the group SL(2, OK) where K/Q is a non-CM ex-
tension of degree greater than one (see section 2).

If γ is the above “generic” element, and u+ ∈ U+ and u− ∈ U− are
also “generic”, then let Γ be the group generated by the n-th powers
γn, (u+)n and (u−)n for some integer n. Clearly, Γ is generated by
three elements. It is easy to show that any arithmetic subgroup of
G(Z) contains a group of the form Γ for some integer n. The gener-
icity assumption will be shown to imply that for most groups G, Γ
intersects U+(Z) and U−(Z) in subgroups of finite index. Then a The-
orem of Tits ([T]) for Chevalley Groups and its generalisation to other
groups of Q-rank ≥ 2 by Raghunathan [R 4] (see also [V] for the case
when Q-rank (G)=1), implies that Γ is of finite index in G(Z).

The proof that Γ intersects U±(Z) in a lattice for most groups, is
reduced (see Proposition 15) to the existence of a torus in the Zariski
closure M0 of M(Z) -the group M0 is not equal to M - whose eigenspaces
(with a given eigenvalue) on the Lie algebra Lie(U±) are one dimen-
sional. The existence of such a torus for groups of Q − rank ≥ 3 is
proved by a case by case check, using the Tits diagrams (classification)
of simple algebraic groups over number fields. It turns out that in the
case of exceptional groups (of Q-rank ≥ 2), the existence of such a
torus is ensured by the results of Langlands [L] and Shahidi [Sh] who
(in the course of their work on the analytic continuation of certain in-
tertwining operators) analyse the action of the Levi subgroup L on the
Lie algebra Lie(U+) of the unipotent radical.

However, this approach fails for many groups of Q-rank one or two;
in these cases, we will have to examine the individual cases (i.e. their
Tits diagram), to produce an explicit system of three generators. Thus,
a large part of the proof (and a sizable part of the paper), involves, in
low rank groups, a case by case consideration of the Tits diagrams. In
many of these cases, the explicit system of generators is quite different
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from the general case (see sections 4 and 5).

We end this introduction with some notation and remarks. Given
a Q-simple semi-simple algebraic group, there is an absolutely almost
simple algebraic group G over a number field K such that G = RK/Q(G)
where RK/Q is the Weil restriction of scalars. Moreover, Q−rank(G) =
K − rank(G) and G(Z) is commensurate to G(OK) where OK is the
ring of integers in the number field. For these reasons, we use inter-
changeably, the group G over Q and an absolutely simple group (still
denoted G by an abuse of notation), defined over a number field K.

Given a group G, and element g, h ∈ G and a subset S ⊂ G, denote
by g(h) the conjugate ghg−1, and g(S) the set of elements ghg−1 with
h ∈ S. Denote by < S > the subgroup of G generated by the subset
S.

If Γ0 is a group, Γ, ∆ are subgroups, one says that Γ virtually
contains ∆ and writes Γ ≥ ∆ if the intersection Γ∩∆ has finite index
in ∆. One says that Γ is commensurate to ∆ and writes Γ ' ∆ if Γ
virtually contains ∆ (i.e. Γ ≥ ∆) and vice versa (i.e. ∆ ≥ Γ).

Remark 1. The assumption on higher rank is necessary. To see this,
supppose that G is any semi-simple group over Q; note that for all
arithmetic groups Γ with Γ′ of finite index in Γ, we have the inclusion
of the first cohomology groups H1(Γ) ⊂ H1(Γ′) (the cohomology with
Q coefficients). Suppose that the conclusion of Theorem 1 holds. Since
Γ′ is three-generated, it follows that H1(Γ) is at most three dimensional
over Q for all arithmetic groups. However, as is well known, once the
first Betti number is non-zero for a congruence subgroup Γ, it grows to
infinity for a suitable family of congruence subgroups of Γ. This shows
that H1(Γ) = 0 if Theorem 1 holds. Now, for many rank one groups
(the group of whose real points is isomorphic to SO(n,1) or SU(n,1)-
up to compact factors), there exist arithmetic groups whose first Betti
number is non-zero, by results of Millson, Kazhdan and Li. Also, any
lattice Γ in SL2(R) has a subgroup of finite index whose first Betti
number is arbitrarily large (the first Betti number grows to infinity
with the index of the subgroup).

Remark 2. We do not know if Theorem 1 holds even when Γ is a
uniform higher rank arithmetic group (i.e. G(R)/Γ is compact). The
method of proof in the present paper uses the existence of unipotent
elements and hence works only for non-uniform higher rank arithmetic
groups. One can show that if there exists an integer k such that every
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congruence subgroup Γ0 contains a congruence subgroup Γ′ which is
k-generated, then the congruence subgroup property (CSP) holds for
G.

Remark 3. By the results of [T], [R 4] and [V], it follows that given
a semi-simple algebraic group G over Q as in Theorem 1, there exists
an integer k (in fact k may be taken to be 2dim(U+)) such that ev-
ery higher rank non-uniform arithmetic group Γ ⊂ G(Q), contains a
subgroup Γ′′ of finite index which is generated by k elements. This is
because Γ∩U±(Z) is generated by dim(U+) elements and by the results
cited above, Γ′′ may be taken to be the group generated by Γ∩U+ and
Γ∩U−. Thus the point of Theorem 1 is that the number of generators
for a subgroup of finite index can be as small as 3. It seems imposible
to cut this number down to two (it is trivial to see that no subgroup
of finite index is one -generated).

Note. A sizeable part of this paper forms the thesis of R.Sharma, sub-
mitted in April, 2004 to the Tata Institute of Fundamental Research,
Mumbai for the award of a Ph.D. degree.
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2. Preliminary results on Rank one groups

2.1. The Group SL(2). In this subsection we prove Theorem 1 for
the case G = SL(2) over a number field E. The assumption of higher
rank translates into the condition that E has infinitely many units.
That is, E is neither Q nor an imaginary quadratic extension of Q.
It turns out that if E is not a CM field, that is, E is not a totally
imaginary quadratic extension of a totally real number field, then, the
proof is easier. We will therefore prove this part of the theorem first.

Proposition 2. Let E be a number field, which is not Q and which is
not a CM field. Let G = RE/Q(SL(2)). Then, any arithmetic subgroup
of G(Q) has a subgroup of finite index which has three generators.

Before we begin the proof of Proposition 2 , we prove a few Lemmata.
We will first assume that E is a non-CM number field with infinitely
many units. Let OE denote the ring of integers in the number field and
O∗

E denote the multiplicative group of units in the ring OE.

Lemma 3. Let ∆ be a subgroup of finite index in O∗
E and F the number

field generated by ∆. Then F = E.

Proof. If r1(K) and r2(K) are the number of inequivalent real and
complex embeddings of a number field K, then, by the Dirichlet Unit
Theorem, the rank of O∗

K is r1(K) + r2(K) − 1.

Let d be the degree of E over F . Let A be the set of real places of F .
To each a ∈ A, let x(a) be the number of real places of E lying above a
and y(a) the number of non-conjugate complex places of E lying above
a. Then, for each a ∈ A we have x(a) + 2y(a) = d, the degree of E
over F . Clearly, x(a) + y(a) ≥ 1 for each a.

Let B be the number of non-conjugate complex places of F . Then
all places of E lying above a place b ∈ B are imaginary. If their number
is y(b) , then we have y(b) = d for each b.

The rank of the group of units O∗
F of the number field F is, by the

Drichlet Unit Theorem, Card(A) + Card(B) − 1. That of O∗
E is

−1 +
∑

a∈A

(x(a) + y(a)) +
∑

b∈B

y(b).

By assumption, O∗
F and O∗

E have the same rank, since O∗
F contains ∆,

a subgroup of finite index in O∗
E. We thus have the equation

(2.1) Card(A) + Card(B) =
∑

a∈A

(x(a) + y(a)) +
∑

b∈B

y(b).
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Since x(a) + y(a) ≥ 1 and y(b) = d ≥ 1, equation 2.1 shows that if B
is non-empty, then d = 1 and E = F .

If B is empty, then F has no complex places, and so F is totally
real. Moreover, since x(a)+ y(a) ≥ 1, equation 2.1 shows that for each
a ∈ A, x(a) + y(a) = 1. Thus, either x(a) = 0 or y(a) = 0. If, for some
a, y(a) = 0 then the equation d = x(a) + 2y(a) shows that d = 1 and
E = F .

The only possibility left is that x(a) = 0 and y(a) = 1 for each a ∈ A,
and F is totally real. Therefore, for each archimedean (necessarily real)
place a of F , we have y(a) = 1 and d = 2y(a) = 2, that is there is only
one place of E lying above the place a of F and is a complex place,
whence E/F is a quadratic extension, which is totally imaginary. Hence
E is a CM field, which is ruled out by assumption. �

The field extension E over Q has only finitely many proper sub fields
E1, E2, · · · , Em (this follows trivially from Galois Theory, for example).

Lemma 4. Suppose that E is a number field which is not a CM field.
Then There exists an element θ ∈ O∗

E such that for any integer r ≥ 1,
the sub ring Z[θr] of OE generated by θr is a subgroup of finite index
in the additive group OE. In particular, Z[θr] ⊃ NOE for some integer
N . Consequently, there exists an element θ ∈ O∗

E which does not lie
in any of the subfields E1, · · · , Em as above, and for every such θ, the
sub-ring Z[θr] is a subgroup of of finite index in OE.

Proof. By Lemma 3 the intersection ∆i = O∗
E ∩Ei is of infinite index

in O∗
E. Let us now write the abelian group O∗

E additively. Then, we
have the Q -subspaces Wi = Q ⊗ ∆i of the vector space W = Q ⊗ O∗

E

(the latter of dimension r1(E)+r2(E)−1 over Q). Since Wi are finitely
many proper subspaces of W , it follows that there exists an element of
W (hence of the subgroup O∗

E) no rational multiple of which lies in Wi

for any i. Interpreting this statement multiplicatively, there exists an
element θ of O∗

E such that no integral power of θ lies in the sub fields
Ei for any i. Consequently, for any integer r 6= 0, the subfield Q[θrZ]
is all of E. In particular, the sub ring Z[θr] generated by θr is of finite
index in the ring OE. �

We now begin the proof of Proposition 2. Consider the matrices

u+ =

(

1 1
0 1

)

, u− =

(

1 0
1 1

)

. Abusing notation, denote by θ the ma-

trix

(

θ 0
0 θ−1

)

, where θ ∈ O∗
E is as in Lemma 4. Then, the group
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Γ =< ur
+, ur

−, θr > generated by ur
± and θr contains, for integers

m1, m2, · · ·ml, and n1, n2, · · ·nl, the element

θm1r

(urn1

+ )θm2r

(urn2

+ ) · · ·θmlr (urnl

+ ).

This element is simply the matrix

(

1 r
∑

niθ
2mir

0 1

)

. Picking suitable

mi, ni, we get from Lemma 4, an integer N such that

(

1 x
0 1

)

∈ Γ

for all x ∈ NOE. Similarly, all lower triangular matrices of the form
(

1 0
x 1

)

are in Γ for all x ∈ NOE. But the two subgroups U+(NOE) =
(

1 NOE

0 1

)

and U−(NOE) =

(

1 0
NOE 1

)

⊂ Γ generate a subgroup

of finite index in SL2(OE) ( by [Va]). Hence Γ is of finite index in
SL2(OE). It is clear that any subgroup of finite index in SL2(OE)
contains a three generated group Γ =< ur

+, θr, ur
− > for some r. This

completes the proof of Proposition 2.

2.2. The CM case. Suppose that F is a totally real number field of
degree k ≥ 2 and suppose that E/F is a totally imaginary quadratic
extension of F . There exists an element α ∈ E such that α2 = −β ∈ F
where β is a totally positive element of F (that is, β is positive in all
the archimedean (hence real) embeddings of F ). Let θ be an element
of infinite order in O∗

F as in Lemma 4, so that for any integer r, the
sub-ring Z[θr] of OF is a subgroup of finite index in OF (in Lemma
4, replace E by the totally real field F ). We have thus the following
analogue of Lemma 4, in the CM case.

Lemma 5. Suppose that E is a CM field and is a totally imaginary
quadratic extension of a totally real number field F . There exists an
element θ ∈ O∗

E such that for any integer r 6= 0, the ring Z[θr] generated
by θr is a subgroup of finite index in OF .

Proof. By the Dirichlet Unit Theorem, the groups O∗
E of units of E and

the group of units O∗
F of F have the same rank. Hence O∗

E contains O∗
F

as a subgroup of finite index. Therefore, we may apply the previous
lemma (Lemma 4), with E replaced by F (the latter is not a CM
field). �

Consider the elements h = h(θ) =

(

θ 0
0 θ−1

)

, u+ =

(

1 1
0 1

)

, and

u− =

(

1 0
α 1

)

of SL(2, OE). Given an arithmetic subgroup Γ0 of
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SL(2, OE), there exists an integer r such that the group Γ =< hr, ur
+, ur

− >
generated by the r-th powers hr, ur

+ and ur
− lies in Γ0.

Proposition 6. For every integer r, the group Γ in the foregoing para-
graph is arithmetic (i.e. is of finite index in SL(2, OE)). In particular,
every arithmetic subgroup of SL(2, OE) is virtually 3-generated.

Proof. Write the Bruhat decomposition for the element

ur
− =

(

1 0
rα 1

)

=

(

1 1
rα

0 1

) (

− 1
rα

0
0 −rα

) (

0 1
−1 0

) (

1 1
rα

0 1

)

By the choice of the element θ, the group generated by h(θ)r and
ur

+ contains, for some integer N > 0, the subgroup U+(NOF ) = {u =
(

1 Nb
0 1

)

: b ∈ OF}. Clearly, Γ ⊃ U+(NOF ). Define U−(NOF ) simi-

larly. Since α2 lies in the smaller field OF , a computation shows that
the conjugate ur

−(U+(NOF )) contains the subgroup v+(U−(N ′OF )) for

some integer N ′, where v+ is the element

(

1 1
rα

0 1

)

. Thus the group

v+(U−(N ′OF )) ⊂ Γ. Since the group U+ is commutative, we have
v+(U+(N ′OF )) = U+(N ′OF ) ⊂ Γ. Thus, v+(U−(NOF )) ⊂ Γ and
v+(U+(NOF )) ⊂ Γ.

By a Theorem of Vaserstein ([Va]), the group generated by U+(NOF )
and U−(N ′OF ) is a subgroup of finite index in SL(2, OF ). In partic-
ular, it contains some power hM = h(θ)M of h. Hence, by the last
paragraph, v+(hM) ∈ Γ.

Since a power of h already lies in Γ, we see that for some integer
r′, the commutator u1 of hr′ and v+(hr′) lies in Γ. This commutator

is nothing but the matrix

(

1 (θ2r′ − 1)( 1
rα

)
0 1

)

. Now, 1
α

= −α
β

, with

β ∈ F . Therefore, by Lemma 4, the subgroup generated by θr′ and
u1 contains, for some M ′, the subgroup U+(M ′OFα) consisting of el-

ements of the form

(

1 xM ′α
0 1

)

. Hence, U+(M ′OFα) ⊂ Γ. We have

already seen that U+(MOF ) ⊂ Γ. Now, up to a subgroup of finite
index, OE is the sum of OF and OFα since E/F is a quadratic exten-
sion generated by α. This shows (after changing M ′ if necessary by
a suitable multiple), that U+(M ′OE) ⊂ Γ. The conjugate of U+ by

the lower triangular matrix

(

1 0
α 1

)

is a unipotent group V opposed

to U+. By Vaserstein’s Theorem in [Va] (replacing U− by our opposite
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unipotent group V ) we see that Γ contains an arithmetic subgroup of
SL(2, OE) and is hence itself arithmetic. �

Note that in Proposition 6, α was assumed to be an element whose
square lies in F ; that is the trace of α over F is zero. For handling some
Q-rank one groups, we will need a more general version of Proposition 6,
where α is replaced by an element with non-zero trace. Let x ∈ E\F be
an integral element divisible by N ! (the product of the first N integers)
for a large rational integer N . Denote by U−(xOF ) the set of matrices

of the form

(

1 0
xa 0

)

with a ∈ OF . Denote by U+(rOF ) the group of

matrices of the form

(

1 ra
0 1

)

with a ∈ OF .

Proposition 7. The group generated by U+(rOF ) and U−(xOF ) is of
finite index in SL(2, OE).

Proof. Denote by Γ the group in the proposition. We first find an ele-

ment

(

a b
c d

)

in Γ such that ac 6= 0 and c lies in the smaller field F .

To do this, we use the existence of infinitely many units in F . Write
x2 = tx − n with t(= trE/F (x)) and n(= NE/F (x)) in F . Assume that
t 6= 0 since t = 0 has already been covered in Proposition 6. Given
a unit θ ∈ O∗

E consider the product element g ∈ SL(2, E) given by

g =

(

1 0
−xθ−1 1

) (

1 θ−1
t

0 1

) (

1 0
x 1

)

.

Now, normal subgroups of higher rank arithmetic groups are again
arithmetic ([M], [R 1], [R 2]). Since T (OF )(= T (OE)) normalises the
groups U+(rOF ) and U−(xOF ), it follows that to prove the arith-
meticity of Γ, it is enough to prove the arithmeticity of the group
generated by Γ and T (OF ). We may thus assume that Γ contains
T (OE) = T (OF ). Here the equality is up to subgroups of finite index.

If θ is a unit such that θ ≡ 1 (mod tOF ), then from the definition

of g and Γ it is clear that g ∈ Γ. Write g =

(

a b
c d

)

. A computation

shows that a = 1 + θ−1
t

x, c = 1−θ−1

t
n. Since x and 1 are linearly inde-

pendent over F (x /∈ F ), it follows that a 6= 0 and in fact that a /∈ F .
The expression for c shows that c 6= 0. It also shows that c lies in the
smaller field F .
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The Bruhat decomposition for g =

(

a b
c d

)

is given by

g =

(

a b
c d

)

=

(

1 ac−1

0 1

) (

c−1 0
0 c

) (

0 −1
1 0

) (

1 dc−1

0 1

)

.

Thus, Γ ⊃
(

a b
c d

)

(

1 rOF

0 1

)

=

(

1 ac−1

0 1

)
(

1 0
c2rOF 1

)

. Moreover Γ ⊃
(

1 rOF

0 1

)

=

(

1 ac−1

0 1

)
(

1 rOF

0 1

)

. The group ∆ generated by

(

1 rOF

0 1

)

and

(

1 0
c2rOF 1

)

contains, for some integer r′, U+(r′OF ) and U−(r′OF )

(since c and hence c2 lie in the field F ) Hence, by Vaserstein’s Theorem
([Va]) ∆ is an arithmetic subgroup of SL(2, OF ).

In particular, Γ contains the subgroup

(

1 ac−1

0 1

)

(θr′′Z) for some integer
r′′. By enlarging r′′ if necessary, assume that θr′′Z ⊂ Γ. Thus Γ contains
the commutator group

[

(

1 ac−1

0 1

)

, θr′′Z] =

(

1 ac−1(
∑

Z(θr′′k − 1))
0 1

)

where the sum is over all integers k. By the properties of the element
θ, the sum is a subgroup of finite index in the ring OF , whence, we

get an integer r0 such that Γ ⊃
(

1 ac−1r0OF

0 1

)

. Since Γ already

contains

(

1 rOF

0 1

)

, a does not lie in F , c lies in F , and OE contains

OF ⊕ r0ac−1OF for a suitable r0, it follows that for a suitable integer

r1, the subgroup

(

1 r1OE

0 1

)

lies in Γ. Now Γ is obviously Zariski

dense in SL(2, OE); moreover it intersects the unipotent radical U+

is an arithmetic group. Hence it intersects some opposite unipotent
radical also in an arithmetic group; but two such opposing unipotent
arithmetic groups generate an arithmetic group ([Va]). Therefore, Γ is
arithmetic. �

2.3. the group SU(2,1). In this section, we prove results on the
group SU(2, 1) (with respect to a quadratic extension L/K of a num-
ber field K), analogous to those in the section on SL2. These will
be needed in the proof of Theorem 1, in those cases where a suitable
SU(2, 1) embeds in G.
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Suppose that E/Q is a real quadratic extension, E = Q(
√

z) with
z > 0. Denote by x 7→ x = x∗ the action of the non-trivial element of

the Galois group of E/Q. Let h =





0 0 1
0 1 0
1 0 0



. We will view h as a

form in three variables on E3 which is hermitian with respect to this
non-trivial Galois automorphism. Set

G = SU(h) = SU(2, 1) = {g ∈ SL3(E) : tghg = h}.
Then G is an algebraic group over Q.

Define the groups

U+ = {





1 z − zz
2

0 1 −z
0 0 1









1 0 w
0 1 0
0 0 1



 : w + w = 0},

U− =t (U+), the subgroup of SU(2, 1) which is an opposite of U+ con-
sisting of matrices which are transposes of those in U+ and let T be
the diagonals in SU(2, 1). Then, up to subgroups of finite index, we

have T (Z) = {





θ 0 0
0 θ−2 0
0 0 θ



 : θ ∈ O∗
E}. Note that for a unit θ ∈ O∗

E,

we have θθ = ±1.

Suppose that F/Q is imaginary quadratic, t ∈ OF \Z and define the

group U+(tZ) as the one generated by the matrices





1 0 tx
√

z
0 1 0
0 0 1



,

and





1 tux − t2x2uu
2

0 1 −tux
0 0 1



 with x ∈ Z and u ∈ OE. Denote by U2α

the root group corresponding to the root 2α, where α is the simple
root for Gm(⊂ T ) occurring in LieU+. Here, the inclusion of Gm

in T is given by the map x 7→





x 0 0
0 1 0
0 0 x−1



. Note that the com-

mutator [U+(tZ), U+(Z)] is U2α(tZ) ⊂ U+(tZ). Hence U+(Z) nor-
malises U+(tZ). Note moreover that U+(tZ) contains the subgroup
U2α(t2Z + tZ)); now, the elements t and t2 are linearly independent
over Q, hence tZ + t2Z contains rZ for some integer r > 0.
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Proposition 8. If Γ ⊂ G(OF ) is such that for some r ≥ 1, the group
Γ contains the group generated by U+(rtZ) and U−(rZ), then Γ is of
finite index in G(OF ).

Proof. By the last remark in the paragraph preceding the proposition,
there exists an integer, we denote it again by r, such that the group Γ
contains U2α(rZ) and U−(rZ). Thus, by [V] (note that R− rank(G) =
2 since E/Q is real quadratic and G(R) = SL(3, R)), Γ contains a
subgroup of SU(2, 1)(Z) of finite index. Therefore, Γ contains the
group generated by U+(rtZ) and U+(rZ) for some integer r. The
group generated contains U+(r′OF ) for some integer r′ (since F/Q

is quadratic and t and 1 are linearly independent over Q). Clearly
Γ is Zariski dense in the group SU(2, 1) thought of as a group over
F . Therefore, by [V] again, we get: Γ is an arithmetic subgroup of
G(OF ). �

We now prove a slightly stronger version of the foregoing proposition.

Proposition 9. Suppose that E and F are as before, E = Q
√

z and
F = Q(t) with t2 ∈ Q, but t /∈ Q. Let Γ ⊂ G(OF ) be such that for
some integer r, Γ contains the groups U−(rZ) and U2α(rtZ). Then, Γ
is of finite index in G(OF ).

Proof. Consider the map f : SL(2) → SU(2, 1) given by

(

a b
c d

)

7→




a 0 b
√

z
0 1 0
c√
z

0 d



. The map f is defined over Q, takes the upper tri-

angular matrices with 1s on the diagonal to the group U2α and takes
the Weyl group element w into the 3× 3 matrix w′ which has non-zero
entries on the anti-diagonal and zeros elsewhere. Under conjugation

action by the element f(h) with h =

(

a 0
0 a−1

)

, the group U+(rZ) is

taken into U+(raZ). Under conjugation by w′, U− is taken into U+

and vice versa.

Write the Bruhat decomposition of u+ =

(

1 rt
0 1

)

, with respect

to the lower triangular group. We get u+ = v−
1 h1wu−

1 . Here, h1 =
(

−rt 0
0 − 1

rt

)

. If r is suitably large, then Γ contains u+ by assumption.

To prove arithmeticity, we may assume ( see the proof of Proposition
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7) that Γ ⊃ T (rZ). Then,

Γ ⊃u+ (U−(rZ)) ⊃v−
1 (Uα(rtZ)) ⊃v−

1 (U2α(r2t2Z)).

The last inclusion follows by taking commutators of elements of Uα(rtZ)

where, Uα(rtZ) is the group generated by the elements





1 rtx − r2t2xx
2

0 1 −rtx
0 0 1





with x ∈ OQ(
√

z). Note that t2 ∈ Q by assumption. Hence Γ ⊃v−
1

(U2α(r′Z)) for some integer r′.

Since v−
1 centralises all of U−, we obtain Γ ⊃ U−(rZ) ⊃v−

1 (U−(rZ)).

The conclusions of the last two paragraphs and [V] shows that there

exists a subgroup ∆ of finite index in SU(2, 1)(Z) such that Γ ⊃v−
1

(∆). In particular, for some integer r′, the group x(Γ) with x−1 =
v−
1 contains both the groups Uα(r′tZ) and Uα(rZ). Consequently, it

contains U+(r′OF ), a subgroup of finite index in the integral points
of the unipotent radical of a minimal parabolic subgroup of SU(2, 1)
over F (note that up to subgroups of finite index, tZ + Z = OF ). Note
also that the real rank of SU(2, 1)(F ⊗ R) = SL(3, C) is at least two.
Now, Γ is clearly Zariski dense in SU(2, 1) regarded as a group over F .
Therefore, by [V], x(Γ) is arithmetic, and hence Γ is arithmetic. �

2.4. Criteria for Groups of Rank One over Number Fields.
Suppose that K is a number field. Let G be an absolutely almost sim-
ple algebraic group with K-rank (G)≥ 1. Let S ' Gm be a maximal
K-split torus in G, P a parabolic subgroup containing S, and U+ the
unipotent radical of P . Let M ⊂ P be the centraliser of S in G. Let
M0 be the connected component of identity of the Zariski closure of
M(OK) in M . Write g for the Lie algebra of G. We have the root
space decomposition g = g±α ⊕ g0, where u = ⊕α>0gα is a decompo-
sition of LieU+ for the adjoint action of S. Denote by log : U+ → u

the log mapping on the unipotent group U+. It is an isomorphism of
K-varieties (not of groups in general). Define similarly U− to be the
unipotent K-group group with Lie algebra u− = ⊕α>0g−α. This is the
“opposite” unipotent group. There exists an element w ∈ N(S)/Z(S)
in the Weyl group of G (N(S) and Z(S) being the normaliser and the
centraliser of S in G), which conjugates U+ into U−. Further, the map
(u, m, v) 7→ umwv = g maps U+ × M × U+ isomorphically onto a
Zariski open subset of G.
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The following technical proposition will be used repeatedly in the
sequel.

Proposition 10. Suppose that K is any number field. Let G be of
K-rank ≥ 1. Let Γ ⊂ G(OK) be Zariski dense, and assume that R-
rank (G∞) ≥ 2. Suppose that there exists an element m0 ∈ M(OK) of
infinite order such that 1) all its eigenvalues are of infinite order in its
action on LieU+, 2) if g = umwv ∈ Γ , then there exists an integer
r 6= 0 such that u(mr

0) ∈ Γ. Then, Γ is arithmetic.

Proof. Let V be the Zariski closure of the intersection of U+ with Γ.
View U+ as a Q-group, be restriction of scalars. By assumption, for
a Zariski dense set of elements u ∈ U+(Q), there exists an integer
r = r(u) such that the commutator [mr

0, u] lies in Γ. If v denotes the
Q-Lie algebra of V , then, this means that, v contains vectors of the
form (Ad(mr

0)− 1)(logu) with logu spanning the Q-vector space u. By
fixing finitely many u′ which give a basis of u (as a Q-vector space),
we can find a common integer r such that (Ad(mr

0) − 1)logu ∈ v,
for all u; in other words, (Ad(mr

0) − 1)(u) ⊂ v. The assumption
on m0 now implies that v = u. Hence V = U+, which means that
Γ ∩ U+ ⊂ U+(OK) is Zariski dense in U+. By [R 5], Theorem (2.1), it
follows that Γ ∩ U+(OK) is of finite index in U+(OK).

Similarly, Γ intersects U−(OK) in an arithmetic group. Hence by
[R 4] and [V], Γ is arithmetic. �

From now on, in this section, we will assume that K-rank
of G is ONE. Consequently, u has the root space decomposition
u = gα ⊕ g2α. Assume that g2α 6= 0. Denote by U2α the subgroup
of G whose Lie algebra is g2α. This is an algebraic subgroup defined
over K.

It is easy to see that the group G0 whose Lie algebra is generated by
g±2α is necessarily semi-simple and K-simple. Moreover, it is immedi-
ate that S ⊂ G0. Note the Bruhat decomposition of G: G = P ∪UwP
where w ∈ N(S) is the Weyl group element such that conjugation by w
takes U+ into U− and U2α into U−2α. It is clear that UwP = UwMU
is a Zariski open subset of G.

Proposition 11. Suppose that K has infinitely many units, and that
K-rank (G) = 1. Suppose that Γ ⊂ G(OK) is a Zariski dense subgroup
such that Γ ⊃ U2α(rOK) for some integer r > 0. Suppose that rank-
(G∞) =

∑

v∈S∞

Kv-rank(G) ≥ 2. Then, Γ is of finite index in G(OK).



GENERATORS FOR ARITHMETIC GROUPS 15

Proof. Let g = uwmv be an element in Γ ∩ UwP . We obtain, Γ ⊃<g

(U2α(rOK)), U2α(rOK) >. The Bruhat decomposition for g and the
fact that u centralises U2α shows that Γ ⊃u< U−2α(r′OK), U2α(r′OK) >
for some integer r′. The group G0 is also of higher real rank, since
S ⊂ G0 and K has infinitely many units. Therefore by [V], the group
generated by U±2α(r′OK) is of finite index in G0(OK) and in particular,
contains S(r′′OK) for some r′′ > 0.

We have thus seen that Γ ⊃u (S(r′′OK)) for some integer r′′. Since
K-rank of G is one, the weights of S acting on u are α and 2α. Since
S(r′′OK) is infinite, there are elements in S(r′′OK) none of whose eigen-
values (in their action on u) is one. Therefore, Proposition 10 implies
that Γ is arithmetic. �

We continue with the notation of this subsection. There exists an
integer N such that the units θ of the number field K which are con-
gruent to 1 modulo N , form a torsion-free abelian group. Let F be
the field generated by these elements. There exists an element θ ∈ O∗

K

such that for all integers r > 0, the field Q[θr] = F (see Lemma 5).
Moreover, S(OF ) is of finite index in S(OK). We also have, 1) F = K
if K is not CM. 2) F is totally real, K totally imaginary quadratic
extension of F otherwise.

Given an element u+ ∈ U2α(OK) \ {1}, consider the subgroup V +

generated by the conjugates θj

(u+) of u+, as j varies over all inte-

gers. By Lemma 4, there exists an integer r such that V + ⊃ urOF

+
def
=

Exp(rOF log(u+)). Here Exp is the exponential map from Lie(U+)
onto U+ and log is its inverse map. By the Jacobson-Morozov The-
orem, there exists a homomorphism f : SL(2) → G defined over K

such that f

(

1 1
0 1

)

= u+. The Bruhat decomposition shows that the

image of the group of upper triangular matrices lies in P . Since all
maximal K-split tori in P are conjugate to S by elements of P (K), it
follows that there exists a p ∈ P (K) such that pf(D)p−1 = S, where
D is the group of diagonals in SL(2). Write p = um with u ∈ U and
m ∈ M . Now, M centralises S and u centralises u+ (since u+ lies in
U2α). Therefore, after replacing f by the map f ′ : x 7→ u(f(x)u−1, we

see that f ′(D) = S and f ′
(

1 1
0 1

)

= u+. We denote f ′ by f again, to

avoid too much notation.
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Proposition 12. Suppose that K has infinitely many units, and G an
absolutely almost simple group over K of K-rank one. Suppose that g2α

is one dimensional over K. Then every arithmetic subgroup of G(OK)
is virtually three generated.

Proof. Let u+ ∈ U2α(OK) and θ ∈ S(OK) be as above. Suppose that
γ ∈ G(OK) is in general position with respect to u+. Then, for every
r ≥ 1, the group Γ =< ur

+, θr, γr > is Zariski dense. It is enough to
prove that Γ is arithmetic.

By replacing r by a bigger integer if necessary, and using the fact

that Z[θr] has finite index in OF , we see that f

(

1 rOF

0 1

)

= urOF

+ ⊂ Γ.

Write w for the image of f

(

0 1
−1 0

)

= f(w0). Then, w takes U+

into U− under conjugation. Write u− for wu+w−1. Now, M(K) nor-
malises U2α and the latter is one dimensional. Therefore, m(urOF

+ ) =

f

(

1 0
ξrOF 1

)

def
= uξrOF

− , for some element ξ of the larger field K. If

ξ /∈ F , then by Proposition 7, the group generated by urOF

+ and uξrOF

−
contains f(∆) for some subgroup of finite index in SL(2, OK).

Pick an element g ∈ Γ of the form g = uwmv with u, v ∈ U+ and
m ∈ M . Then,

Γ ⊃<g (urOF

+ ), urOF

+ >⊃u<m (urOF

− ), urOF

+ >=u< uξrOF

− , urOF

+ >

If g is “generic”, then m is sufficiently generic, so that ξ /∈ F (oth-
erwise, m(u−) is always F -rational i.e. is in the image of SL(2, F )
under f , which lies in a smaller algebraic group namely the image of
RF/Q(SL(2)), and genericity implies that this is not possible for all
m). Then, by the conclusion of the last paragraph, Γ ⊃u f(S(rOF ))
for some integer r. Since u’s run through a Zariski dense subset of U ,
Proposition 10 implies that Γ is arithmetic. �
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3. Some General Results

In the following, we will, by restricting scalars to Q, think of the
group G as an algebraic group over Q. Thus, when we say that G(OK)
is Zariski dense in G, we mean that G(OK) is Zariski dense in G(K ⊗
C) = RK/Q(C). With this understanding, we prove the following slight
strengthening of the Borel density theorem.

Lemma 13. Let G be a connected semi-simple K-simple algebraic
group, and that G(OK) is infinite. Then, the arithmetic group G(OK)
is Zariski dense in the complex semi-simple group G(K ⊗ C).

Proof. By restriction of scalars, we may assume that K = Q. Suppose
that H is the connected component of identity of the Zariski closure
of GZ) in G(C). Then, as G(Q) commensurates G(Z), it follows that
G(Q) normalises H. The density of G(Q) in G(R) (weak approxima-
tion) shows that G(R) normalises H. Clearly, G(R) is Zariski dense in
G(C); hence G(C) normalises H. The definition of H shows that H
is defined over Q. Now, the Q-simplicity of G implies (since G(Z) is
infinite and hence H is non-trivial) that H = G. �

Remark 4. Since, G(OK) is a lattice in G(K ⊗ R), the Borel density
Theorem implies that the Zariski closure of G(OK) maps onto the qui-
tient of G(K⊗R) by a maximal normal compact subgroup. The point
of Lemma 13 is that the Zariski closure is G(K ⊗ C) i.e. includes the
compact factors of G(K ⊗ R) as well. Moreover, the proof does not
use the deep fact that G(OK) is a lattice (the Borel-HarishChandra
Theorem), but depends only on the fact that arithmetic groups have a
large commensurator.

The following is repeatedly used in the sequel.

Lemma 14. Let U be a unipotent group over a number field K. Then,
U(OK) is Zariski dense in U(K ⊗ C); moreover, if ∆ ⊂ U(OK) is a
subgroup which is Zariski dense in U(K ⊗C) then, ∆ is of finite index
in U(OK).

Proof. The proof is essentially given in Theorem (2.1) of [R 5], provided
K = Q. But, by restriction of scalars, we may assume that K = Q. �

3.1. Notation. Suppose G is a semi-simple linear algebraic group which
is absolutely almost simple and defined over a number field K, with

K-rank(G)≥ 1 and rank- (G∞)
def
=

∑

v∈S∞

Kv-rank (G) ≥ 2 (the last
condition says that G(OK) is a “higher rank lattice”). Let P ⊂ G be a
proper parabolic K-subgroup, U its unipotent radical, S ⊂ P a maxi-
mal K-split torus in G, and Φ+(S, P ) the roots of S occurring in the
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Lie algebra u of U . Let Φ− be the negative of the roots in Φ+(S, P ),
and u− = ⊕g−α be the sum of root spaces with α ∈ Φ+(S, P ). Then,
u− is the Lie algebra of a unipotent algebraic group U− defined over
K, called the “opposite” of U . Write the Levi decomposition P = MU
with S ⊂ M .

In the following, we will, by restricting scalars to Q, think of all these
groups G, M , U± as algebraic groups over Q. Thus, for example, when
we say that U+(OK) is Zariski dense in U+ we mean that U+(OK) is
Zariski dense in the complex group U+(K ⊗ C) = (RK/Q(U+))(C).

Denote by M0 the connected component of identity of the Zariski
closure of M(OK) in M , and let T0 ⊂ M0 be a maximal torus defined
over K. The groups M , M0 and T0 are all defined over Q and act on
the Q-Lie algebra u of RK/QU+ by inner conjugation in G. Write the
eigenspace decomposition u ⊗ C = ⊕χ∈X∗(T0)uχ for the action of T0 on
the complex lie algebra u ⊗ C.

Proposition 15. Suppose that each of the spaces uχ is one dimen-
sional. Then every arithmetic subgroup of G(OK) is virtually three
generated.

Proof. Let U be the set of pairs (m, v) ∈ M0 × u such that the span
∑

k∈Z C(mk

(v)) is all of u. Then, U is a Zariski open subset of M0 × u.
For, the condition says that if dimu = l, then there exist integers
k1, k2, · · · , kl such that the wedge product

mk1 (v) ∧ · · · ∧mkl (v) 6= 0,

which is a Zariski open condition for (m, v) ∈ M0 × u.

Let Γ0 be an arithmetic subgroup of G(K). Then, the intersection
Γ0 ∩ U is Zariski dense in RK/QU . Now, the map log : U → u is an
isomorphism of varieties over Q.

By assumption on M0, the group Γ0∩M0 is Zariski dense in M0 (the
Zariski closure of Γ0 ∩ M0 is of finite index in M0 since Γ0 is of finite
index in M(OK), and M0 is connected).

By the foregoing, we thus get elements m ∈ Γ0 ∩M0 and u ∈ U ∩Γ0

such that (m, logu) ∈ U . This means that the Z-span of mk

(logu) as
k varies, is Zariski dense in u. Therefore, the group U1 generated by
the elements mk

(u) with k ∈ Z is a Zariski dense subgroup of U ∩ Γ0.
Hence, by Lemma 14, U1 is of finite index in U ∩ Γ0.
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Similarly, we can find an element u− ∈ U− ∩ Γ0 such that the group
U−

1 generated by the conjugates mk

(u−) with k ∈ Z, is of finite index
in U− ∩ Γ0. Set

Γ =< m, u, u− >⊂ Γ0.

Now, Γ contains < U1, U
−
1 >. By [R 4] and [V], the latter group

is of finite index in Γ0, hence so is Γ. But Γ is three generated by
construction. �

Remark 5. The criterion of Proposition 15 depends on the group M0

(which is the connected component of identity of the Zariski closure of
M(OK)) and hence on the K-structure of the group. But, this depen-
dence is a rather mild one. However, the verification that the conditions
of Proposition 15 are satisfied is somewhat complicated, and is done
in the next few sections by using the Tits classification of absolutely
simple groups over number fields. Somewhat surprisingly, the criterion
works directly when K-rank (G)≥ 3 or for groups of exceptional type,
thanks to the analysis of the representations of M occurring in the Lie
algebra u carried out by Langlands and Shahidi (see [L] and [Sh]).

However, there are some classical groups of K-rank ≤ 2 (notably, if
G is of classical type A, C or D but is not of Chevalley type over the
number field), for which the criterion of Proposition 15 fails. To handle
these cases, we prove below some more lemmata of a general nature.

3.2. Notation. Let F be a field of characteristic zero, and G an abso-
lutely simple algebraic group over F . Let x ∈ G(F ) be an element of
infinite order. Fix a maximal torus T ⊂ G defined over F and Φ the
roots of T occurring in the Lie algebra g of G. We have the root space
decomposition g = t ⊕α∈Φ gα with t the Lie algebra of T . Now T (F )
is Zariski dense in T , hence there exists a Zariski open set V ⊂ T such
that for all v ∈ T (F )∩V, the values α(v) (α ∈ Φ) are all different and
distinct from 1. Fix y ∈ T (F ) ∩ V.

Lemma 16. There is a Zariski open set U of G such that the group
generated by x and gyg−1 is Zariski dense in G for all g ∈ U .

Proof. Let H be a proper connected Zariski closed subgroup of G con-
taining (or normalised by) the element y. Then, the Lie algebra h splits
into eigenspaces for the action of y. Since the values α(y) are all differ-
ent (and distinct from 1), it follows that h = t ∩ h⊕ gα ∩ h. Moreover,
gα = h ∩ gα if the latter is non-zero. Therefore, there exists a proper
connected subgroup H ′ containing T which also contains H (e.g. the
one with Lie algebra t ⊕ gα for all α such that h ∩ gα 6= 0).
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The collection of connected subgroups of G containing the maximal
torus T is finite since such subgroups are in one to one correspondence
with certain subsets of the finite set of roots Φ. Let H1, · · · , Hn be the
set of proper connected subgroups of G containing T . By replacing
x by a power of it, we may assume that the Zariski closure Z of the
group generated by x is connected. Since G is simple, the group gen-
erated by < gZg−1 : g ∈ G > is all of G. Hence, for each µ, the set
Zµ = {g ∈ G : gZg−1 ⊂ Hµ} is a proper Zariski closed set, whence its
complement Uµ is open. Therefore, U = ∩1≤µ≤nUµ is also Zariski open.

Let g ∈ U and H be the connected component of the Zariski closure
of the group generated by x and gyg−1. If H 6= G, then by the first
paragraph of the proof, there exists a proper connected subgroup H ′

containing H and the torus T . By the foregoing paragraph, H ′ must
be one of the Hµ whence, g /∈ Uµ, and so g /∈ U , a contradiction.
Therefore, H = G and the lemma is proved. �

3.3. Notation. Suppose that G is an absolutely simple algebraic group
over a number field K, with K-rank (G)≥ 2. Let S be a maximal split
torus, and Φ(G, S) the root system. Let Φ+ be a system of positive
roots, g the L:lie algebra of G. Let U0 be the subgroup of G whose Lie
algebra is ⊕α>0gα, and P0 the normaliser of U0 in G; then P0 = Z(S)U0

where Z(S) is the centraliser of S in G. Moreover, P0 is a minimal par-
abolic K-subgroup of G.

Let α ∈ Φ+ be the highest root and β > 0 a “second-highest” root.
Then, γ = α − β is a simple root. Let Uα and Uβ be the root groups
corresponding to α and β.

Proposition 17. Let Γ ⊂ G(OK) be a Zariski dense subgroup. Suppose
that there exists an integer r > 0 such that Γ ⊃ Uα(rOK) and Γ ⊃
Uβ(rOK). Then, Γ has finite index in G(OK).

Proof. This is proved in [V2]. We sketch the proof, since we will use
this repeatedly in the case of the groups of K-rank ≥ 2, for which
the criterion of Proposition 15 fails. If w denotes the longest Weyl
group element, then the double coset P0wU0 is a Zariski open subset
of G. Hence its intersection with Γ is Zariski dense in G. Fix an el-
ement g0 = p0wu0 ∈ Γ ∩ P0wU0 and consider an arbitrary element
g = pwu ∈ PwU ∩ Γ.

The subgroup V = UαUβ is normalised by all of P . By assumption,
there exists an integer r such that Γ ⊃ V (rOK). Hence Γ contains
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the group <g (V (rOK)), V (rOK) >. By the Bruhat decomposition of
g, and the fact that V is normalised by P , we find an integer r′ such
that g(V (rOK)) ⊃p (V −(r′OK)) where V − = U−αUw(β) is the conju-
gate of V by w. Note that −w(β) is again a second highest root. Write
γ = α + w(β). Then γ is a simple root. Moreover, it can be proved
that the commutator subgroup [Uα, Uw(β)] is not trivial and is all of
Uγ. Therefore, we get p(Uγ(rOK)) ⊂ Γ for a Zariski dense set of p′s (r
depends on the element p). It can be proved that the group generated
by p(Uγ) is all of the unipotent radical U1 of the maximal parabolic sub-
group corresponding to the simple root γ. Consequently, for some in-
teger r, U1(rOK) ⊂ Γ, and by [V2], a Zariski dense subgroup of G(OK)
which intersects the unipotent radical of a K-parabolic subgroup in an
arithmetic group, it itself arithmetic. Therefore, Γ is arithmetic. �

We will now deduce a corollary to Lemma 16 and Proposition 17.

Corollary 1. Under the notation and assumptions of this subsection,
suppose that every arithmetic subgroup Γ0 of G(OK) contains a 2 gen-
erated subgroup < a, b > which contains a group of the form

Uα(rOK)Uβ(rOK)

for some second highest root β. Then, every arithmetic subgroup of
G(OK) is virtually three-generated.

Proof. Given a, b ∈ Γ0 such that < a, b > contains the group (UαUβ)(rOK)
for some integer r, Lemma 16 implies the existence of an element c ∈ Γ
such that the group Γ =< a, b, c > generated by a, b, c is Zariski dense
in G (Γ0 itself is Zariski dense in G by the Borel density theorem).
Then, by Lemma 17, Γ is of finite index in Γ0. �
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4. Groups of K-rank ≥ 2

In this section, we verify that all arithmetic groups of K-rank at least
two are virtually three-generated. The proof proceeds case by case, us-
ing the Tits classification of algebraic groups over a number field K.
In most cases, we check that the hypotheses of criterion of Proposition
15 are satisfied. In the sequel, G is an absolutely almost simple group
defined over a number field K, with K-rank (G) ≥ 2. The degree of
K/Q is denoted k.

The classical groups over C come equipped with a natural (irre-
ducible) representation, which we refer to as the standard represen-
tation, and denote it St.

4.1. Groups of Inner Type A. In this subsection, we consider all
groups which are inner twists of SL(n) over K. By [T2], the only such
groups are SL(n) over number fields or SL(m) over central division
algebras over number fields.

4.1.1. SL(n) over number fields. G is SL(n) over the number field K.
The rank assumption means that n ≥ 3. Take P to be the parabolic

subgroup of SL(n) consisting of matrices of the form

(

g x
0 detg−1

)

,

where g ∈ GL(n−1), x =









x1

x2

· · ·
xn−1









is a column vector of size n−1, and

0 is the 1×(n−1) matrix whose entries are all zero. The Levi part M of

P may be taken to be GL(n− 1) = {
(

g 0
0 det(g−1)

)

: g ∈ GL(n− 1)}.
Recall that M0 is the connected component of identity of the Zariski
closure of M(OK). Hence M0 contains the subgroup H = SL(n−1), by
Lemma 13. Take T0 to be the diagonals in SL(n − 1). The unipotent

radical of P is the group

(

1 x
0 1

)

with x a column vector as before. As a

representation of GL(n−1)(C) (and therefore of H(C) = SL(n−1)(C)),
the Lie algebra u is nothing but St ⊗ det, the standard representation
twisted by the determinant. Restricted to the torus T0, thus u is the
standard representation, and is hence multiplicity free. By Proposition
15, it follows that every arithmetic subgroup of G(OK) is virtually
three-generated.
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4.1.2. SL(m) over division algebras. G = SLm(D) where D is a cen-
tral division algebra over the number field K, of degree d ≥ 2. The
rank assumption means that m ≥ 3. Consider the central simple alge-
bra D ⊗Q R, denoted D ⊗ R for short. Then, D ⊗ R is a product of
copies of Md(C), Md/2(H), and Md(R) where H is the division algebra
of Hamiltonian quaternions. We consider four cases.

Case 1. D ⊗ R 6= H× · · ·H.
Then, SL1(D ⊗ R) is a non-compact semi-simple Lie group with ei-

ther SLd(C) or SLd(R) or SLd/2(H) (the last can happen only if d ≥ 3
is even) as a non-compact factor. Then, the Zariski closure of the arith-
metic subgroup SL1(OD) of SL1(D) (for some order OD of D) is the
noncompact group SL1(D ⊗ R) by Lemma 13.

Take P to be the parabolic subgroup (with the obvious notation) P =
(

GL1(D) ∗
0 GLm−1(D)

)

, with unipotent radical U =

(

1 M1×m(D)
0 1

)

where M1×m(D) denotes the spaces of 1×m matrices with entries in the
division algebra D. The group M0 obviously contains (from the obser-

vation in the last paragraph) the group H =

(

SL1(D) 0
0 SLm−1(D)

)

,

with H(K ⊗ C) = [SLd(C) × SLd(m−1)(C)]k. Let T0 be the product of
the diagonals in each copy of SLd × SLd(m−1). As a representation of

H, the Lie algebra u of U is the direct sum ⊕Cd ⊗ (C(m−1)d)∗, where
the sum is over each copy of SLd × SL(m−1)d. Cd is the standard rep-
resentation of SLd and ∗ denotes its dual. It is then clear that as a
representation of the (product) diagonal torus T0, u is multiplicity free.
Hence the criterion of Proposition 15 applies. Every arithmetic sub-
group of G(OK) is virtually three-generated.

Case 2. D ⊗ R = H× · · · × H but m ≥ 4.
This can happen only if d = 2, and D ⊗ R = Hk. Take P to be

the parabolic subgroup P =

(

SLm−2(D) ∗
0 SL2(D)

)

and denote its

unipotent radical by U , with U =

(

1 M(m−2)×2(D)
0 1

)

. Then, as be-

fore, M0 contains H =

(

SLm−2(D) 0
0 SL2(D)

)

. Then, H(K ⊗ C) =

[SL(m−2)2(C) × SL4(C)]k. As a representation of H(K ⊗ C), u is the

k-fold direct sum C(m−2)2 ⊗ (C4)∗. Let T0 be the product of the diag-
onals in H(K ⊗ C). Then, it is clear that u is multiplicity free as a
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representation of T0. By Proposition 15 every arithmetic subgroup of
G(OK) is virtually three-generated.

Case 3. D ⊗ R = H× · · · × H, m = 3 but k ≥ 2.
In this case it turns out that the criterion of Proposition 15 fails ( we

will not prove that it fails), so we give an ad hoc argument that every
arithmetic subgroup of SL3(D) is virtually three-generated.

Since D ⊗ R = Hk, it follows that K is totally real. Since k ≥ 2,
K has infinitely many units. By lemma 3, for every subgroup ∆ of
finite index in O∗

K, Q[∆] = K. By Lemma 4, there exists an element
θ ∈ ∆ such that Q[θr] = K for all r ≥ 1. Consider the 3 × 3 - matrix

m =





θk1 0 0
0 θk2 0
0 0 θ−k1−k2



 which lies in SL3(OD) for some order OD in

D.

Consider the following matrices in SL3(D) given by u =





1 1 1
0 1 x
0 0 1



,

and u− =





1 0 0
y 1 0
z t 1



, where x, y, z, t are elements of the division al-

gebra such that no two of x, y, z, t, tx commute. We may assume that
they lie in the order OD. We will prove that for every r > 0, the
group Γ =< mr, ur, (u−)r > generated by the r-th powers of m, u, u−

is arithmetic. This will prove that every arithmetic subgroup of GOK)
is virtually three generated. We use the following notation. If i, j ≤ 3 ,
i 6= j and w is an element of OD, denote by xOKw

ij the subgroup 1+cwEij

where, c runs through elements of OK; Eij is the matrix whose ij-th

entry is 1 and all other entries are zero. We also write xOKw
ij ≤ Γ to

say that for some integer r′, the subgroup xr′OKw
ij is contained in Γ.

For ease of notation, we replace the r-th powers of m, u, u− by the
same letters m, u, u−; this should cause no confusion. Then, the group
<ml

(u) : l ∈ Z > virtually contains the subgroups (by the choice of θ;

see Lemma 4) xOK

12 , xOK

13 and xxOK

23 . Similarly, < ml(u−) : l ∈ Z > vir-

tually contains xOKy
21 , xOKz

31 and xOK t
32 . Since Γ contains all these groups,

by taking commutators, we get xOK t
12 = [xOK

13 , xtOK

32 ] ≤ Γ. Similarly,
xOKx

13 = [xOK

12 , xOKx
23 ] ≤ Γ, and xOK tx

13 = [xOK t
12 , xxOK

23 ] ≤ Γ. By taking
suitable repeated commutators, we obtain

xOK+OKtx+OKx+OKy
13 ≤ Γ.
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Since up to subgroups of finite index OD = OK +OKtx+OKx+OKy,
we see that xOD

13 ≤ Γ, and similarly, xOD

ij for all ij with i 6= j. There-
fore, Γ ⊃ U(OK) and U−(OK) for two opposing maximal unipotent
subgroups of G. By [R 4], Γ is then an arithmetic group.

Case 4. D ⊗ R = Hk, m = 3 and k = 1.
The assumptions mean that K = Q, and D⊗R = H. Consider the el-

ements m0 =





a b 0
c d 0
0 0 1



, u0 =





1 0 1
0 1 0
0 0 1



 = x13, u−
0 =





1 0 0
0 1 0
0 1 1



 =

x32. We assume that the matrix

(

a b
c d

)

is “generic”. In particular,

assume that c /∈ Q and that e = ca + dc does not commute with c.
Fix r ≥ 1 and put Γ =< mr

0, u
r
0, (u

−
0 )r >. By arguments similar to

the last case, it is enough to prove that Γ is an arithmetic subgroup of
SL3(OD) for some order OD of the division algebra D.

We have xZ
13 ≤ Γ and xZ

32 ≤ Γ. By taking commutators, we get
xZ

12 ≤ Γ.

The conjugate m0

(u0) =





1 0 a
0 1 c
0 0 1



. Hence we get





1 0 a
0 1 c
0 0 1





Z

≤

Γ. By taking commutators with xZ
12, we then get x

Z[c]
13 ≤ Γ. Taking

commutators with xZ
32 ≤ Γ, we obtain x

Z[c]
12 ≤ Γ as well.

Consider

(

a b
c d

) (

a
c

)

=

(

a2 + bc
ca + dc

)

=

(

a′

e

)

. Clearly, m2
0(u0) =





1 0 a′

0 1 e
0 0 1



 . By the argument of the last paragraph, taking commu-

tators of its conjugates with x
Z[c]
12 we obtain x

Z[e]Z[c]
13 ≤ Γ. Since e and

c do not commute and D has dimension 4 over Q, it follows that the
additive group Z[e]Z[c] is of finite index in an order OD of D. There-
fore, xOD

13 ≤ Γ. Taking commutators with xZ
32 ≤ Γ, we obtain xOD

12 ≤ Γ
(and xOD

13 ≤ Γ). Thus, Γ intersects the unipotent radical (consisting of
x12 and x13 root groups) of a parabolic subgroup of G. Clearly, Γ is
Zariski dense. Therefore by [V2] (see also [O]), Γ is arithmetic.

4.2. Groups of outer type A. Suppose that K is a number field
of degree k ≥ 1 over Q. Let E/K be a quadratic extension and
σ ∈ Gal(E/K) be the non-trivial element. Suppose that D is a central
division algebra over E of degree d ≥ 1 (as usual d2 is the dimension
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of D as a vector space over E). Assume there is an involution ∗ on D
such that its restriction to the centre E coincides with σ. If N ≥ 1 is
an integer, and g ∈ MN (D), with g = (gij) is an N × N matrix with
entries in D, then define g∗ as the matrix with ij-th entry given by
g∗

ij = (gij)
∗. Thus, MN (D) gets an involution g 7→ (tg)∗.

Fix an integer m ≥ 0. Consider the (m + 4) × (m + 4)-matrix

h =













02×2 02×m

(

0 1
1 0

)

0m×2 h0 0m×2
(

0 1
1 0

)

02×m 02×2













, where 0p×q denotes the zero matrix

of the relevant size. Here h0 is a non-singular m × m matrix with
entries in D such that (th0)

∗ = h0. Then h defines a Hermitian form
with respect to ∗ on the m + 4 dimensional vector space over D. The
algebraic group we consider is of the form

G = SUm+4(h, D) = {g ∈ SLm+4(D) : (tg)∗hg = h}.
Then G is an absolutely simple algebraic group over K. Since h con-

tains two copies of the “hyperbolic” Hermitian form J =

(

0 1
1 0

)

it

follows that K-rank (G)≥ 2. From the classification tables of [T2],
these G are the only outer forms of type A of K-rank at least two.

Arithmetic subgroups Γ0 of G are commensurate to G∩GLm+4(OD)
for some order OD of the division algebra D. Consider the subgroup

H = {





g 0 0
0 1m 0
0 0 J [(tg)∗]−1J−1



 : g ∈ SL2(D)}.

Since Γ0 ∩H is an arithmetic subgroup of H, it follows that Γ0 ∩ H '
SL2(OD). Since H(K ⊗ R) = SL2(D ⊗ R) is non-compact, it follows
from the Borel density theorem (see Lemma 13) that Γ0 ∩H is Zariski
dense in the group H(K⊗C) = [SL2d(C)×SL2d(C)]k. The intersection
of G with diagonals is at least two dimensional, and is a maximal K-
split torus S, if h0 is suitably chosen (that is, split off all the hyperbolic
forms in h0 in the same way as was done for two hyperbolic forms for h).

With respect to S, the intersection of unipotent upper triangular
matrices with G yields a maximal unipotent subgroup U0 of G and
the roots of S occurring in the Lie algebra u0 of U0 form a system
Φ+ of positive roots. If α and β are the highest and a second highest
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root in Φ+, then the group Uα(OK)Uβ(OK) is contained in the group

U = {





1 0 x
0 1 0
0 0 1



 : x ∈ M2(OD), (tx)∗ + JxJ = 0}. Now, as a module

over H(K ⊗ C) = [SL2d(C) × SL2d(C)]k, the Lie algebra LieU(C) is
isomorphic to [C2d ⊗ (C2d)∗]k and has distinct eigenvalues for the diag-
onals TH in H(K ⊗ C) (thought of as a product of copies of SL2d(C)).
Therefore, by section 3 (cf. the proof of Proposition 15), there exist
m0 ∈ Γ0 ∩ H, u0 ∈ U ∩ Γ0 such that the group generated by the con-

jugates {mj
0(u0) : j ∈ Z} contains the group U(rOK) for some integer

r. Now the criterion of Proposition 17 says that there exists a γ0 ∈ Γ0

such that the three-generated group Γ =< γ0, m0, u0 > is of finite index
in Γ0.

4.3. Groups of type B and inner type D. (i.e. type 1D1
n,r). In this

subsection, we consider groups of the form G = SO(f) with f a non-
degenerate quadratic form in n variables over K, n ≥ 5 (and n ≥ 8 if
n is even). Assume that f is a direct sum of two copies of a hyperbolic

form and another non-degenerate form f2: f =

(

0 1
1 0

)

⊕
(

0 1
1 0

)

⊕f2.

Put f1 =

(

0 1
1 0

)

⊕ f2. Then f =

(

0 1
1 0

)

⊕ f1. Then, K-rank

(G) ≥ 2. Consider the subgroup P = {





a x −xtx
2

0 SO(f1) −tx
0 0 a−1



 : a ∈

Gm, x ∈ Kn−2}. Then P is a parabolic subgroup of G with unipotent

radical U = {





1 x −xtx
2

0 1 −tx
0 0 1



 : x ∈ Kn−2}. Now, the group SO(f1) is

isotropic over K since f1 represents a zero. Moreover, since n− 2 ≥ 3,
SO(f1) is a semi-simple algebraic group over K. Hence by lemma
13 SO(f1)(OK) is Zariski dense in SO(f1)(K ⊗ C). Consequently,
M0 contains the subgroup SO(f1). Moreover, as a representation of
SO(f1)(K ⊗ C) = SO(n − 2)(C)k, the Lie algebra u(K ⊗ C) of U
is the standard representation Stk. Clearly, for a maximal torus in
SO(n− 2)(C), the standard representation is multiplicity free. There-
fore, the criterion of Proposition 15 applies: every arithmetic subgroup
of G(OK) is virtually three-generated.

4.4. Groups of type C and the rest of the Groups of type D.
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4.4.1. G = Sp2n over K with n ≥ 3. Denote by

κ =









0 0 · · · 0 1
0 0 · · · 1 0
0 · · · · · · · · · 0
1 0 · · · 0 0









the n × n matrix all of whose entries are zero, except for the anti-

diagonal ones, which are all equal to one. Let J =

(

0n κ
−κ 0n

)

be

the non-degenerate 2n × 2n skew symmetric matrix. Define the sym-
plectic group G = Sp2n = {g ∈ SL2n :t gJg = J}. The group

P = {
(

g 0
0 κtgκ−1

) (

1 x
0 1

)

: x + κtxκ = 0, g ∈ GLn} is a parabolic

subgroup. Denote by M the Levi subgroup of P such that x = 0.

Then, by Lemma 13, M0 ⊃ H ' SLn = {
(

g 0
0 κtgκ−1

)

}. As a rep-

resentation of H, the Lie algebra u of the unipotent radical U of P
is seen to be isomorphic to S2(Cn), the second symmetric power of
the standard representaqtion of H = SLn. Therefore, with respect to
the diagonal torus TH of H, the representation u is multiplicity free.
Therefore, by Proposition 15, every arithmetic subgroup of Sp2n(OK)
is three-generated.

4.4.2. Other Groups of type C and D. In this subsection, we will con-
sider all groups of type C or D, which are not covered in the previ-
ous subsections. Let D be a quaternionic division algebra over the
number field K. Let σ be an involution (of the first kind) on D. In
the case of type C (resp. type D), assume that the space Dσ of σ-
invariants in D is one dimensional (resp. three dimensional) over K.
Let m ≥ 0 be an integer. Consider the m + 4 dimensional matrix

h =













02 0

(

0 1
1 0

)

0 h0 0
(

0 1
1 0

)

0 0













, where h0 is a non-singular matrix with

entries in D, such that tσ(h0) = h0. We will view h as a non-degenerate
form on Dm+4 × Dm+4 with values in D, which is hermitian with re-
spect to the involution σ. The algebraic group which we consider is the
special unitary group of this hermitian form: G = SU(h) - an algebraic
group over K (if Dσ is three dimensional, then G is of type 1D or 2D
according as the discriminant of h is 1 or otherwise). With this choice
of h, it is immediate that K-rank (G) ≥ 2 (h has two copies of the
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hyperbolic form: cf. the subsection on groups of outer type A).

Since We needed K-rank (G) ≥ 2 we had split off two hyperbolic
planes from h. The form h0 may have more hyperbolic planes in it;
after splitting these off in a manner similar to that for h, we obtain a
form h1 which is anisotropic over K. We will assume that h0 is of this
type. Then, the intersection of G with the diagonals is a maximal K-
split torus S in G. The roots of S occurring in the group of unipotent
upper triangular matrices in G form a positive system Φ+. Choose α
the highest root and a second highest root β in Φ+.

The group UαUβ is contained in the unipotent group U = {





12 0 x
0 1 0
0 0 1



 :

x suitable} which is the unipotent radical of a parabolic subgroup.

Set H = {





g 0 0
0 1 0
0 0 J tgJ−1



 : g ∈ SL2(D)}. Then, M0 contains

H. Let Γ0 ⊂ G(OK) be an arithmetic subgroup. Then, there exist
m0 ∈ H(OK) ∩ Γ0 and u ∈ U(OK) ∩ Γ0 such that the group generated
by m0 and u (denoted as usual by < m0, u >) intersects (UαUβ)(OK)
in a subgroup of finite index. By Lemma 16, there exists an element
γ ∈ Γ0 such that Γ =< m0, u, γ > is Zariski dense in G(K ⊗ C). By
Proposition 17, Γ has finite index in Γ0: Γ0 is virtually three-generated.

4.5. The Exceptional Groups. In this subsection, we prove Theo-
rem 1 for all groups G of exceptional type of K-rank ≥ 2. In each of
these cases, we will locate a simple K-root in the Tits -Dynkin diagram
of G, such that the Levi subgroup (actually the group M0 contained
in the Levi) of the parabolic group corresponding to the simple root
contains a subgroup H with the following property. H(K ⊗ C) has a
maximal torus TH whose action on the Lie algebra u = Lie(U)(K ⊗C)
is multiplicity free. By Proposition 15, this implies that every arith-
metic subgroup of G(K) is virtually three-generated. The notation is
as in [T2].

4.5.1. the groups 3D2
4,2 and 6D2

4,2. In the Tits diagram, there is one
simple circled root α, and three other simple roots which are circled
together. The semi-simple part Mss of the Levi is therefore K-simple,
and hence contains (over C), the group SL2(C)3 (three-fold product of
SL(2)). Moreover, by Lemma 13, Mss(OK) is Zariski dense in Mss(K⊗
C). Thus, Mss ⊂ M0. According to [L] and [Sh], the representation u



30 R. SHARMA AND T. N. VENKATARAMANA

is the direct sum of St ⊗ St ⊗ St and 1 ⊗ St ⊗ 1 (St is the standard
representation and 1 is the trivial one). This is multiplicity free for the
product of the diagonals in the group SL(2)3.

4.5.2. Groups of type E6. There are three groups of inner type E6 with
K-rank ≥ 2.

Case 1. G =1 E28
6,2. The extreme left root in the diagram is circled.

Since its K-rank is ≥ 1, the group Mss of the Levi of the corresponding
maximal parabolic subgroup is non-compact. Then, as in (4.5.3), M0

contains Mss = SO(10) over C. According to [L], the representation
on u is one of the 1

2
-spin representation of SO(10) and has distinct

characters for the maximal torus.

Case 2. G =1 E16
6,2. Over the number field K, the diagram is that

of 1E16
6,2. The root in the middle of the diagram is circled. How-

ever, over any archimedean completion, the diagram can only be the
split form (1E16

6,2 can not transform into 1E28
6,2 over R or C). Conse-

quently, M(K ⊗R) contains SL3×SL2×SL3, whence , by Lemma 13,
M0 ⊃ SL3×SL2×SL3. According to [Sh], the representation of M0(C)
on u is the direct sum of StSL3

⊗StSL2
⊗∧2StSL3

(from now on we will
drop the subscript SL3 or SL2 for ease of notation), ∧2St⊗ Triv ⊗ St
and Triv ⊗ St ⊗ Triv. It is clear that restricted to the product of the
diagonals in SL3×SL2×SL3, the representation u has multiplicity one.

Case 3. G =1 E0
6,6. The same M0 as in Case 2 works, to prove

multiplicity one for the torus.

Now consider the groups of outer type E6 of K-rank ≥ 2. These are
2E16

′

6,2 , 2E16
′′

6,2 , and 2E2
6,4. In all these, the root at the extreme left is

circled. Then, since K-rank (M) ≥ 1, it follows that M0(C) ⊃ SL6.
The representation on u is (by [L], page 49, (x)) the direct sum of Triv
and ∧3(St) and the diagonal torus in SL6 has multiplicity one for its
action on u.

4.5.3. Groups of type E7. There are four groups of type E7 over a
number field K with K-rank ≥ 2. They are E31

7,2, E28
7,3, E9

7,4 and E0
7,7.

In all these, the root on the extreme right is circled, and M has K-rank
≥ 1. Hence M0(C) contains the semi-simple part of the Levi group M .
This is SO(12). According to [L], the representation u of SO(12) is
triv ⊕ 1

2
spin which has distinct eigenvalues for the torus in SO(12).

4.5.4. Groups of type E8. The groups with K-rank ≥ 2 are E28
8,4 and

E0
8,8. Consider the root on the extreme right in the diagram. The
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corresponding M has semi-simple (actually simple) part SO(14) which
is isotropic over K. The representation u, according to [L], is 1

2
-spin

⊕St and has multiplicity one for the maximal torus of SO(14).

4.5.5. The groups F4. There is only one K-rank ≥ 2 group, namely
the split one, denoted F 0

4,4. Take the root on the extreme left. Then

M0 ⊃ SO(7). The representation is triv ⊕ 1
2
spin and is multiplicity

free for the action of the maximal torus in SO(7).

4.5.6. Groups of type G2. . The only group is G0
2,2, the split form. For

the root on the extreme left, the group M0 contains SL(2) and the
representation u is Triv ⊕ Sym3 which has distinct eigenvalues for the
action of the maximal torus in SL(2).

This completes the proof of Theorem 1 for groups of K-rank ≥ 2.
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5. Classical Groups of Rank One

The case of groups G such that K-rank (G) = 1 and R−rank(G∞) ≥
2 is much more involved. We will have to consider many more cases,
both for classical and exceptional groups. In some cases, we will have
to supply ad hoc proofs, because the general criteria established in the
previous sections do not apply.

5.1. Groups of inner type A. The assumptions imply that G =
SL2(D) where D is a central division algebra over the number field K.

Case 1. D = K. Thus, G = SL2 over K. The assumption that
R− rank(G∞) ≥ 2 is equivalent to r1 + r2 ≥ 2. Therefore, K has infin-
itely many units. This case has been covered in Section (2.1) on SL(2).

Case 2. D 6= K, D ⊗Q R 6= H × · · · × H. Here H denotes the
algebra of Hamiltonian quaternions. Consider the parabolic subgroup

P = {
(

g 0
0 h

) (

1 x
0 1

)

: g, h ∈ GL1(D), Det(gh) = 1, x ∈ D}. Let U

be its unipotent radical. The assumption on D means that SL1(D⊗R)
is not compact, and SL1(D⊗Q C) contains SL1(OD) as a Zariski dense
subgroup (Lemma 13). Therefore, M0 contains the subgroup M1 with
M1(K ⊗ C) = [SL2(C)× SL2(C)]k. As a representation of M1(C), the
Lie algebra u = (LieU)(K ⊗ C) is [St ⊗ St∗]k and is multiplicity free
for the action of the maximal torus (2k-fold product of the diagonals
in SL2(C)). Therefore, every arithmetic subgroup of G(K) is virtually
three-generated.

Case 3. D 6= K and D⊗QR = Hk. Therefore, K is totally real of de-
gree k over Q. The assumption R−rank(G∞) ≥ 2 means that K 6= Q.
Let P , M be the parabolic subgroup and its Levi subgroup in Case 2 of

the present subsection. Fix m =

(

α 0
0 β

)

∈ M(K) such that δ = αβ−1

does not lie in K. Since D ⊗ R = Hk, it follows that the extension

K(δ)/K is a CM extension. Fix u+ =

(

1 1
0 1

)

and m0 =

(

θ 0
0 θ−1

)

where θ ∈ O∗
K is chosen as in Lemma 4. Fix γ ∈ G(OK) in general

position with respect to u+ and m0. Then, for every integer r, the
group Γ =< ur

+, mr
0, γ

r > generates a Zariski dense subgroup of G (see
Lemma 16). We will show that Γ is arithmetic, proving that every
arithmetic subgroup of G(K) is virtually 3-generated (since arithmetic
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groups contain a group of the form < γr, mr
0, u

r
+ > for some integer r).

Since Γ contains θr and u+, it follows that for some integer r′, Γ con-

tains the group V + =

(

1 r′OK

0 1

)

. Pick a generic element g ∈ Γ, with

Bruhat decomposition of the form g = umwv, where m =

(

α 0
0 β

)

may be assumed to be as in the foregoing paragraph. Then, Γ ⊃<g

(V +), V + >. Note that u, v centralise the group V +; put V − =w (V +).

One sees that Γ ⊃u<m (V −), V + >=u<

(

1 0
α−1βr′OK 1

)

,

(

1 r′OK

0 1

)

>.

By the result on SL(2) over CM fields (Proposition 7), Γ ⊃u (∆) for
some subgroup ∆ of finite index in SL2(OE), where E = K(α−1β) a
CM extension of K. In particular, there exists an integer r′′ such that
Γ ⊃u (θr′′Z). By Proposition 10, it follows that Γ is arithmetic.

5.2. Groups of outer type A.

5.2.1. The Groups SU(h) over fields. In this subsection, K is a
number field, E/K a quadratic extension whose non-trivial Galois au-
tomorphism is denoted σ. Let h : En+1 × En+1 → E denote a σ-

hermitian form which is isotropic over K, and write h =

(

0 1
1 0

)

⊕ h0

where h0 is anisotropic over K. Let G = SU(h) be the special uni-
tary group of this hermitian form. Then, K-rank (G)=1. The positive
roots are α and 2α. Assume that R-rank (G∞) ≥ 2. Therefore, R-rank
(SU(h0))∞ ≥ 1. The arguments are general when K has infinitely
many units or when n is large (i.e. n ≥ 4). But for small n and small
fields, the proofs become more complicated, and we give ad hoc argu-
ments. We thus have 5 cases to consider.

Case 1. K has infinitely many units. Note that the 2α root space is
one dimensional. Therefore, by the criterion of Proposition 12, every
arithmetic group is virtually 3 generated.

Case 2. K is Q or is an imaginary quadratic extension of Q but
n ≥ 4. Take P (resp. M) to be the parabolic subgroup of G (resp. Levi

subgroup of P ), consisting of matrices of the form





a ∗ ∗
0 b ∗
0 0 σ(a)−1
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(resp.





a 0 0
0 b 0
0 0 σ(a)−1



). Then, (M ⊃)M0 ⊃ M1 = SU(h0). The last

inclusion holds since the latter group is semi-simple (because n−2 ≥ 2;
we only use the hypothesis that n ≥ 3, so these observations apply to
the next two cases as well) and is non-compact at infinity, and therefore
contains an arithmetic subgroup as a Zariski dense subgroup (Lemma
13). Moreover, SU(h0)(C) = SLn−1(C), and its representation on the
Lie algebra u of the unipotent radical of P , is simply St ⊕ St∗ ⊕ triv.
Since M1(C) = SLn−1(C) with n − 1 ≥ 3, the standard representation
is not equivalent to its contragredient. Thus the diagonal torus T1 of
M1 has one dimensional eigenspaces in u. Hence arithmetic subgroups
of G(K) are virtually three- generated.

Case 3. n = 3, either K = Q and E/Q is real quadratic or K is an
imaginary quadratic extension of Q. Then, SU(h0)(C) = SL2(C), but
the torus T1 of the last case does not have multiplicity one in its action
on u. However, observe that M0 of the last case contains in addition

the torus T2 consisting of matrices









u 0 0 0
0 u−1 0 0
0 0 u−1 0
0 0 0 u









with u a unit

in the real quadratic extension E (E has infinitely many units). Put
T0 = T1T2. Now, T0 ⊂ M0 is a torus consisting of matrices of the form








u 0 0 0
0 u−1v 0 0
0 0 u−1v−1 0
0 0 0 u









with u, v ∈ Gm, and has ( as may be easily

seen) distinct eigenvalues in u : St⊕St∗⊕ triv = u, where u is as in the
previous case. Thus, arithmetic subgroups of G = SU(h) are virtually
three-generated.

Case 4. K = Q, n = 3 and E/Q is imaginary quadratic. Then,
U(h0) is not contained in M0 (of course, SU(h0) ⊂ M0). We give an
ad hoc argument in this particular case.

Write h0 =

(

λ1 0
0 λ2

)

with λ1, λ2 ∈ Q (every Hermitian form in two

variables is equivalent to one of this type). Now, h =

(

0 1
1 0

)

⊕ h0 is

viewed a hermitian (with respect to σ) form from E4 × E4 → E.
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Consider f =

(

0 1
1 0

)

⊕
(

λ1 0
0 λ2

)

as a quadratic form on Q4.

Now, the Q-group SU(h) contains the group H = SO(f) as a Q-
subgroup. Since SU(h0)∞ = SU(1, 1) is non-compact (as we have
seen before, this follows from the fact that the real rank of G∞ is
≥ 2), it follows that SO(f0)∞ = SO(1, 1) is also non-compact. Here

f0 =

(

λ1 0
0 λ2

)

is viewed as a quadratic form. Consequently, the group

SO(f)(R) ⊃ SO(1, 1)× SO(1, 1) and therefore has real rank ≥ 2.

Claim: H = SO(f) is a Q-simple group. For, if SO(f) is not Q-
simple, (since it is isogenous over C to the product SL2(C)× SL2(C))
then it is isogenous to SL2 × SL2 or SL2 × SL1(D) over Q (with D
a quaternionic division algebra over Q). Now, the only four dimen-
sional representations of SL2(C) × SL2(C) are St ⊗ St, or St ⊕ St, or
Triv⊗Triv⊕Triv⊗S2(St), or Triv2⊕Triv⊗St. Thus, if both the fac-
tors have to act non-trivially, then the only possible four dimensional
representations are St ⊕ St and St ⊗ St. But, St ⊕ St does not have
a quadratic form invariant under SL2 × SL2. Thus, the only possible
representation (over C), of SL2 × SL2 onto SO(4) is St ⊗ St.

It follows that the group SL2 × SL1(D) cannot have a four dimen-
sional representation defined over Q with image SO(f). Thus, SO(f)
must be isogenous to SL2×SL2. But then, the Q-rank of SO(f) is two,
whereas SO(f) has Q-rank one, being a subgroup of G. This proves
the claim.

Choose an element θ ∈ SO(h0) of infinite order. Pick non-trivial
elements u0 ∈ (SO(f) ∩ U+)(Z) and v0 ∈ U2α(Z). Then, the group
< θ, u0v0 > generated by θ and u0v0 contains θZ, and (since θ acts
by different characters on LieU2α and U+ ∩ SO(f)) also contains the
product unipotent group V + = V +(rZ) = [SO(f) ∩ U+(rZ])U2α(rZ)
for some integer r. Let γ ∈ G(Z) be an element in general position with
respect to θ and u0v0 as in Lemma 16. For an integer r, consider the
group Γ =< θr, (u0v0)

r, γr >. Then Γ is Zariski dense. By arguments
similar to the previous cases, to prove that every arithmetic group in
G(Z) is virtually three-generated, it is enough to show that Γ is arith-
metic for every r. Pick an element g ∈ Γ with Bruhat decomposition
g = umwv, say. Then, there exists an integer r′ such that u and v,
under conjugation, take V +(r′Z) into V +(rZ) (since the commutator of
u and v with V + lands inside U2α). Thus, Γ ⊃u<m (V −), V + > where
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V − =w (V +) as before. Hence, we get Γ ⊃u< U−2α(rZ), V +(rZ) >.

Consider the group < U−2α(rZ), U+
H(rZ) >. An element in U−2α(rZ)

has the Bruhat decomposition u1m1wv1 where u1, v1 ∈ U2α(Q) com-
mute with U+

H . Therefore, < U−2α(rZ), U+
H (rZ) > contains

<u1m1wv1 (U+
H (rZ)), U+

H(rZ) >=u1<m1 (U−
H(rZ)), U+

H (rZ) >

and the latter contains u1 < U−
H (r′Z), U+

H (r′Z) > for some integer r′.
Now, H is Q-simple by the claim above, and has R-rank two. Hence,
by [V], the latter group is of finite index in H(Z). It follows, in par-
ticular, that < U−2α(rZ), U+

H (rZ) >⊃u1 (θrZ) = θrZ for some integer r.
Therefore, from the foregoing paragraph, we get Γ ⊃uu1 (θrZ) =u (θrZ).
Then, Γ contains the commutator [u(θr), θr], with u running through
generic elements of U+ whence, Γ ⊃ U+(rZ) for some integer r. By
[V], Γ is arithmetic.

Case 5. n = 2, K is either Q or an imaginary quadratic extension
of Q.

We can take h =





0 0 1
0 1 0
1 0 0



 as a Hermitian form over a quadratic

extension E/K and G = SU(h) over K.
If K = Q, and E is imaginary quadratic, then the real rank of SU(h)

is one (the group of real points is SU(2, 1)), and in Theorem 1 we have
assumed that R − rank(G∞) ≥ 2. Hence, E is real quadratic and has
infinitely many units. If K is imaginary quadratic, then any quadratic
extension E of K has infinitely many units. We can therefore assume
that E has infinitely many units.

If P is the parabolic subgroup of G = SU(h) consisting of upper
triangular matrices in G, then it follows from the conclusion of the
last paragraph, that M0(C) = C∗ since M0(OK) contains the group

of matrices h =





u 0 0
0 u−2 0
0 0 u



 where u is a unit in E. The action of

M0(C) = C∗ on the Lie algebra u of the unipotent radical of P is given
by u = C(3)⊕C(−3)⊕C(0) where C(m) is the one dimensional module
over M0(C) = C∗ on which an element z ∈ C∗ acts by zm. Hence u is
multiplicity free for the M0(C) action, and we have proved Theorem 1
in this case.
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5.2.2. The Groups SU(h) over division algebras. In this subsec-
tion, K is a number field, E/K a quadratic extension, D a central
division algebra over E with an involution ∗ of the second kind, degree
(D)=d ≥ 2, k = [K : Q]. h : Dm+2 ×Dm+2 → D is a ∗-hermitian form
in m + 2 variables over D. h is of the form

h =

(

0 1
1 0

)

⊕ hm

where hm is an anisotropic hermitian form in m variables. The special
unitary group G = SU(h) of the hermitian form h is an absolutely
simple algebraic group over K, and under our assumptions, K-rank(G)
= 1.

Case 1. D ⊗ R 6= H× · · · × H.
Then, the group SL1(D ⊗ R) is not compact, and is semi-simple. If

U+ = {





1 ∗ ∗
0 1 ∗
0 0 1



}, U2α = {





1 0 x
0 1 0
0 0 1



 : x + x∗ = 0} and P is the

normaliser of U+ in G (then P is a parabolic subgroup of G), there is
the obvious Levi subgroup M of P . Since SL1(D) is non-compact at
infinity, it follows that M0 ⊃ M1, where, M1 = RE/K(SL1(D)). More-
over, M1(C) = SLd(C)×SLd(C), and as a module over M1(C), the Lie
algebra u2α of U2α is Cd ⊗ (Cd)∗. Thus, the weight spaces of the torus
T= diagonal× diagonal of SLd × SLd, on u2α are all one dimensional.
Hence, there exist m0 ∈ M1(OK), u0 ∈ U2α(OK) such that for every
integer r ≥ 1, there exists an integer r0 with < mr

0, u
r
0 >⊃ U2α(r0OK).

By Lemma 16, there exists an element γ ∈ G(OK) such that for any
integer r, the group Γ =< mr

0, u
r
0, γ

r > is Zariski dense in G(K⊗C). As
in the previous sections, it suffices to prove that Γ is arithmetic. Pick
g = umwv ∈ Γ. Then, Γ contains for some integers r′, r′′ the groups
g(U2α(r′OK)) ⊃u (U−2α(r”OK)) as well as U2α(r′OK) =u (U2α(r′OK).

Consider the group H = SU(J, D), where J is the hyperbolic her-
mitian (with respect to ∗) form in two variables given by the ma-

trix

(

0 1
1 0

)

. H is absolutely simple over K. Moreover, it contains

as a K-subgroup, the group MH = RE/K(GL1(D)), the embedding

given by g 7→
(

g 0
0 (g∗)−1

)

. Now, MH(K ⊗ R) = GL1(D ⊗ R) ⊃
R∗ × SL1(D ⊗ R). Since SL1(D ⊗ R) is not compact by assump-
tion, it follows that MH(K ⊗ R) has real rank ≥ 2. The groups U±2α

are maximal opposing unipotent subgroups of H, and hence by [V],
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the group < U2α(r′OK), U−2α(r′′OK) > is an arithmetic subgroup of
H(OK). Therefore, we get from the last paragraph, that Γ ⊃u (∆′)
for some subgroup ∆′ ⊂ H(OK) of finite index, which implies that
Γ ⊃u (∆) for some subgroup ∆ of finite index in SL1(OD) for some
order OD in D. Since SL1(OD) contains elements which do not have
eigenvalue 1 in their action on LieU+, it follows from Proposition 10
that Γ is arithmetic.

Case 2. D ⊗ R = H× · · · × H and m ≥ 2.
Then E is totally real (and so is K), and D must be a quater-

nionic division algebra over E. Moreover, SU(hm)(K ⊗ R) = {g ∈
SLm(D ⊗ R) : g∗hmg = hm} = {g = (g1, g2) ∈ SLm(H)k × SLm(H)k :
(gι

2, g
ι
1(hm, hm)(g1, g2) = (hm, hm)} where ι is the standard involution

on H induced to SLm(H)k. Thus, SLm(K ⊗ R) is isomorphic to
SLm(H)k. Since m ≥ 2, the group SLm(H)k is semi-simple and non-
compact, and contains a Zariski dense set of integral points , which
are SU(hm)(OK) = M1(OK). Take P to be the standard parabolic
subgroup of G = SU(h). Hence M0(C) ⊃ M1(C) = SL2m(C)k. As a
module over M1(C), the Lie algebra LieU+(C) = [C2⊗ (C2m)∗⊕C2m⊗
(C2)∗ ⊕ triv4]k. Choose a generic toral element m0 ∈ M1(OK), and an
element u0 = u1u1 ∈ U+(OK) with u1 ∈ Exp(gα) and u2 ∈ Exp(g2α).
Choose an element γ ∈ G(OK) of infinite order, in general position
with respect to u and m (Lemma 16). Then, for every integer r, the
group Γ =< ur

0, γ
r, mr

0 > is Zariski dense.

Let ∆ ⊂ U+ be the group generated by mjr
0 (ur

0) : j ∈ Z and Log :
U+ → u the log mapping. Then, log(∆) contains elements of the form
v1, · · · , vN with each vi an eigenvector for m0 ∈

∏

SL2m(C) = M1(C).
For the generic toral element m0, the number of distinct eigenvalues
on V1 = (C2)∗ ⊗ C2m ⊕ · · · ⊕ (C2)∗ ⊗ C2m (the direct sum taken k
times) is 2mk. Fix corresponding eigenvectors vi

1, · · · , vi
2m (1 ≤ i ≤ k

in V1. Pick similarly, 2mk eigenvectors (vi
1)

∗, · · · (vI
2m)∗ (1 ≤ i ≤ k

in V ∗
1 = (C2) ⊗ (C2m)∗ ⊕ · · · ⊕ (C2) ⊗ (C2m)∗ (the direct sum taken k

times) for m0. The trivial M1(C) module g2α is the k fold direct sum of
M2(C) with itself. Denote the ith component of this direct sum M2(C)i

(1 ≤ i ≤ k). By general position arguments (since the toral element
m0 is generic) it can be proved that for each i, the 2m − 1(≥ 3) vec-
tors vi

1(v
i
2)

∗ − vi
2(v

i
1)

∗, · · · , vi
1(v

i
2m)∗ − vi

2m(vi
1)

∗ together with the vector
vi
2(v

i
3)

∗ − vi
3(v

i
2)

∗, span all of the i-th component M2(C)i. We choose
u1 such that the element log(u1) has non-zero projections into each of
the eigenspaces of m0 in V1 ⊕V ∗

1 , and its projections vi
µ, (vi

µ)
∗ are as in
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the foregoing.

Therefore, Γ ⊃ Exp(∆) ⊃ U2α(r′OK) for some integer r′. To prove
Theorem 1 in this case, by standard arguments, it is enough to prove
that Γ is arithmetic. Take a generic element g = umwv ∈ Γ. Then,
Γ contains the group <g (U−2α(r′OK)), U2α(r′OK)ur′Z

1 > (recall that
u1 ∈ Exp(gα)). Thus, for some other integer (denoted again by r′ to
save notation), Γ contains u < U−2α(r′OK), ur′Z

1 U2α(r′OK) >.

Let us view h0 =





0 0 1
0 1 0
1 0 0



 as a Hermitian form for E/K. Set

H = SU(h0) ' SU(2, 1). This is an algebraic group over K, and
has corresponding upper triangular unipotent group U+

H . The Lie al-
gebra spanned by Elog(u1) and Elog(w(u1) is easily seen to be iso-
morphic to that of H with Lie(U+

H ) = Elog(u1) ⊕ [Elogu1, Elogu1]
(the square bracket denotes the commutator). From the conclusion
of the last paragraph, we get Γ ⊃<u (U−2α(r′OK), ur′Z

1 U2α(r′OK) >.
By [V], the latter group contains u(SU(2, 1)(r′OK)). Hence Γ con-
tains u(SU(2, 1)(r′OK)) as g = umwv varies, and for some fixed g′ =
u′m′wv′, contains u′

(SU(2, 1)(r′OK)) as well.

The toral element h ∈ SU(2, 1) of the form h =





θ 0 0
0 θ−2 0
0 0 θ



 acts

on the root space gα by the eigenvalues θ, · · · , θ and θ3 (as may be
easily seen). Therefore, h has no fixed vectors in gα. Now, by the last
paragraph, Γ contains the group u(h) (u generic). Hence, by Proposi-
tion 10, Γ is arithmetic.

Case 3. D ⊗ R = H2k and m ≤ 1, but k ≥ 2.
Again, E and K are totally real. G = SU(h) with G(K ⊗ R) =

SL3(H)k if m = 1 and SL2(H)k if m = 0. Fix θ ∈ O∗
K such that Z[θr]

is a subgroup of finite index in OK for all r 6= 0 (Lemma 4). Let α
be a totally positive element such that E = K(

√
α). Denote by t(θ)

(resp. u+) the matrix





θ 0 0
0 1 0
0 0 θ−1



 (resp.





1 0
√

α
0 1 0
0 0 1



) if m = 1

and the matrix

(

θ 0
0 θ−1

)

(resp.

(

1
√

α
0 1

)

) if m = 0. By the choice

of θ, the group < θr, ur
+ > contains, for every r, ur′OK

+ for some integer
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r′. Pick an element γ ∈ G(OK) in general position as in Proposition
16. Then for every r 6= 0, Γ =< tr, ur

+, γr >⊂ G(OK) is Zariski dense
in G(K ⊗ C). Pick a generic element g = um0wv ∈ Γ. Then,

Γ ⊃<g (urOK

+ ), urOK

+ >=u<m0 ((u−)rOK , urOK

+ > .

The element m0 is of the form





a 0 0
0 b 0
0 0 (a∗)−1



 with b ∈ SU(hm)

if m = 1 and

(

a 0
0 (a∗)−1

)

if m = 0 for some a ∈ D∗. Hence

m0(urOK

− )=





1 0 0
0 1 0√

α(aa∗)−1r′OK 0 1



, urOK

+ =





1 0 r′OK

0 1 0
0 0 1



 if m = 1

(and m0(ur′OK

− ) =

(

1 0
(aa∗)−1r′OK 1

)

, ur′OK

+ =

(

1 r′OK

0 1

)

if m = 0).

These two groups m0(u−) and u+ generate SL2 over K(c) if m = 1 and
SL2 over K if m = 0.

The element c = aa∗ ∈ D∗ has its reduced norm and trace in E. But,
in fact, Tr(c) and N(c) lie in K itself, as may be easily seen. Now, c
being in the quaternionic division algebra D over E with D⊗R = H2k,
generates a totally imaginary quadratic extension over the totally real
E. Hence K(c)/K is also totally imaginary quadratic extension. By
the SL(2) result i.e. Proposition 7 (K is a totally real number field with

infinitely many units), we get <m0 (ur′OK

− ), ur′OK

+ > is a subgroup of
finite index in SL2(OK(c)) if m = 1 and SL2(OK) if m = 0. In partic-

ular, the group <m0 (ur′OK

− ), ur′OK

+ > contains the group tr
′Z = t(θ)r′′Z

for some r′′ 6= 0.

Thus, Γ contains the group u(tr
′′Z), u is generic and t does not have

eigenvalue one in its action on the Lie algebra Lie U+. Therefore, by
Proposition 10, Γ is arithmetic.

Case 4. D ⊗ R = H2k, m = 1 and k = 1 (i.e. K = Q). In this
case, we will explicitly exhibit elements u+, u− and t in G(OK) such
that for every r 6= 0, the group Γ =< ur

+, ur
−, tr > is arithmetic. This

will prove Theorem 1 in this case. Since D ⊗ R is a product of the
Hamiltonian quaternions H, it follows that E/Q is real quadratic. Fix
a generic element a ∈ D∗. Then, the element aa∗ generates as in the
last case, an imaginary quadratic extension over Q. Pick an element
t2 ∈ Q(aa∗) \Q such that t22 ∈ Q. Now choose t1 ∈ D such that t21 ∈ E
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but t1 does not commute with t2. Write E = Q(
√

z) where z ∈ Q is
positive. Pick a unit θ ∈ O∗

E of infinite order.

Write

u+ =





1 1 −1
2

0 1 −1
0 0 1









1 0
√

z
0 1 0
0 0 1



 , u− =





1 0 0
t1 1 0

− t21
2

−t1 1









1 0 0
0 1 0

t2
√

z 0 1



 ,

and t =





θ 0 0
0 θ−2 0
0 0 θ



. Now, the group H = SU(2, 1) associated to

the extension E/Q embeds in G with the corresponding group of upper
and lower triangular unipotent matrices denoted U±

H .
Conjugating u+ by powers of t and taking the group generated by

these conjugates, we obtain that Γ intersects U+
H(rZ) in a subgroup of

finite index. Conjugate u− by powers of t and take the group gener-
ated by these conjugates. This is easily seen to contain U−2α(rt2Z) for
some integer r > 0. Thus, Γ ⊃ U−2α(rt2Z). Then, by Proposition 9
applied to this SU(2,1), we see that Γ also contains U±

H (r′OQ(t2)) for
some integer r′.

The group generated by the conjugates of u− by powers of t also

contains elements of the form u−α(t1x) =





1 0 0
t1x 1 0

− t2
1
xx∗

2
−t1x

∗ 1



. Hence

Γ ⊃ U−
H (rt1Z) with x ∈ OE, the ring of integers in E. Taking commuta-

tors of these elements with U−
H (rOQ(t2)) ⊂ Γ we obtain U−2α(rt1Z) ⊂ Γ

and U−2α(rt1t2Z) ⊂ Γ for some integer r. Since Γ, by the last para-
graph, also contains U+

H(rZ), we get, by Proposition 9, that Γ ⊃
SU(2, 1)(OQ(t1)) and Γ ⊃ SU(2, 1)(OQ(t1t2)).

The conclusions of the last two paragraphs imply that Γ contains
the group U1 generated by U+

H(rOQ(ξ)) with ξ ∈ {t1, t2, t1t2}. Since D
is a quaternionic division algebra over the quadratic extension E of Q,
it follows that the order OD contains as a subgroup of finite index, the
integral span of OQ(ξ) ⊗ OE with ξ ∈ {t1, t2, t1t2}. Thus, U1 contains
U+(r′′Z) for some integer r′′. Hence Γ intersects U+ in an arithmetic
subgroup.

Then, by [V], Γ is an arithmetic subgroup of G.
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Case 5. D ⊗ R = H2k, m = 0, k = 1 (i.e. K = Q). Then,
G(R) = SU(h)(R) = SL2(H). Therefore, G(R) has real rank one, and
in Theorem 1, this is excluded.

5.3. Groups of type B. G = SO(f) with f a non-degenerate qua-
dratic form in 2l+1 ≥ 5 variables over a number field K. f is the direct
sum of a hyperbolic form and an anisotropic form in 2l − 1 variables:

f =

(

0 1
1 0

)

⊕ fm

with m = 2l − 1 ≥ 3. Assume that R-rank (G∞) ≥ 2, where G∞ =

G(K⊗R). Take P to be the parabolic subgroup P = {





a ∗ ∗
0 b ∗
0 0 a−1



 ∈

G : a ∈ GL1/K, b ∈ SO(fm)}. The unipotent radical U+ of P consists

of matrices of the form





1 x −
P

x2
i

2
0 1m −tx
0 0 1



 with 1m the m × m identity

matrix, and x ∈ A2l−1, the affine 2l− 1-space over K. Denote by u the
Lie algebra of U+. Let U− be the transpose of U+ (it lies in G). Let

M be the Levi subgroup of P given by M = {





a 0 0
0 b 0
0 0 a−1



 ∈ P : a ∈

GL1/K, b ∈ SO(fm)}. Put H = SO(fm).

Case 1. H∞ = H(K ⊗ R) is non-compact. Then, H∞ is a non-
compact semi-simple group, hence H(OK) is Zariski dense in H(K⊗C).
Therefore, M0 ⊃ H. As a module over H(C) = SO(2l − 1, C),
u(C) = St = C2l−1 is the standard representation, and the maximal
torus TH of H(C) has distinct eigenvalues. Hence by Proposition 15,
Theorem 1 is true for G = SO(f) in this case.

Case 2. H∞ = H(K ⊗ R) is compact. Then, K is totally real, and
(2 ≤)R-rank (G∞) =R-rank (GL1(K ⊗R))=[K : Q], therefore K 6= Q.
Now, M0 is rather small. M(OK) is commensurate to GL1(OK) = O∗

K,

hence M0 = {





a 0 0
0 1 0
0 0 a−1



 ∈ G : a ∈ GL1/K}. In this case, we will

use the fact that SO(f) contains many PSL2(E) for totally imaginary
quadratic extensions of the totally real number field K.
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To see this, we first prove a lemma. Write the anisotropic form fm as
a direct sum fm = φ⊕φ′ with φ a quadratic form in two variables; here
φ is the restriction of fm to an arbitrary two dimensional subspace of
the quadratic space associated to fm. Write φ = 1 ⊕ λ) with λ ∈ K.

Form the quadratic forms Q =

(

0 1
1 0

)

⊕ φ, and Q1 =

(

0 1
1 0

)

⊕
1. Then, for any archimedean completion Kv of K, SO(Q)(Kv) =
SO(3, 1)(R) ' SL2(C). Let Spin(Q) denote the simply connected two
sheeted cover of SO(f).

Lemma 18. There exists a totally imaginary quadratic extension E/K
such that Spin(Q) is K-isomorphic to the group RE/K(SL2) where
RE/K denotes the Weil restriction of scalars.

Proof. By the argument of Case 4 of the claim in subsection (5.2.1),
SO(Q) is K-simple. Hence Spin(Q) = RE/K(H0) with H0 an abso-
lutely simple simply connected group over E, for some extension E/K,
say of degree d. Since SO(Q) is isotropic over K, so is H0 over E. Since
dim(SO(Q)/K) = 6, one sees that dim(H0) = 6

d
. But dim(H0) ≥ 3

since it is absolutely simple, hence d ≤ 2. Since Q is a form in four vari-
ables, Spin(Q) is not absolutely simple. Therefore, d = 2 (i.e. E/K is
a quadratic extension), and H0 has dimension 3 (and is isotropic over
E). Therefore, H0 = SL2. Since SO(Q)(Kv) = PSL2(C), it follows
that Spin(Kv) = SL2(C) = H0(E⊗Kv), for every archimedean (hence
real) completion of K. Hence E is a totally imaginary. �

The inclusion of the quadratic spaces Q1 and Q in f induce inclu-
sions of SO(Q1) and SO(Q) into SO(f) defined over K. They fur-
ther induce corresponding inclusions (defined over K) of the group
of unipotent upper (and lower) triangular matrices U±

Q1
and U±

Q into

the group U± defined at the beginning of this subsection. Let v ∈
U+

Q (OK) \ U+
Q1

(OK) (U+
Q1

is one dimensional). Then the SL2 result

(Proposition 7) shows that < vrOK , U−(rOK) > generates a subgroup
of finite index in SO(Q)(OK) (which is commensurate to SL2(OE)).

Let H = SO(Q1) ⊂ SO(f), U+
H = U+∩H be as in the last paragraph.

Let t =





θ 0 0
0 1m 0
0 0 θ−1



 be in M(OK), θ ∈ O∗
K such that Z[θr] of finite

index in OK (Lemma 4). Fix u+ ∈ U+
H (OK), u+ 6= 1. Let γ be in

general position with respect to t and u+. Write, for an integer r 6= 0,

Γ =< ur
+, tr, γr > .
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Then Γ is Zariski dense in G(K ⊗ C). Moreover, by the assump-

tions on θ, Γ contains the subgroup V +(r′) = ur′OK

+ for some r′. De-
fine V −(r′) as the w-conjugate of V +(r′). Pick a generic element
g = um′wv ∈ Γ. Then, Γ contains the group <g (V +(r′)), V + >=um′w

(V +(r′′), V +(r′) > for some r′′. The latter group contains u <m′

(V −(r′′)), V (r′′) > (replace r′′ by a larger r′′ if necessary).

If logu+ = X ∈ LieU+ ' Km, then for the generic m′, the vectors
X and m′

(X) span a two dimensional subspace W of the anisotropic
quadratic space (Km, fm). Write the restriction of fm to W as µφ
for some µ ∈ K, and φ as in the Lemma above, with φ(X, X) = 1,
say. Then, Γ contains u <m′w (exp(r′′OKX), exp(r′′OKX) > which is
u <w (exp(r′′Om

K(X)), exp(r′′OKX) > (note that m′ and w commute).
By the last but one paragraph (essentially Proposition 7), the latter
group contains u(∆) for some subgroup ∆ of finite index in SO(Q)(OK),
where Q is the four dimensional quadratic form as in the Lemma. Now,
∆ contains tr0Z for some r0. Hence Γ contains u(tr), with t ∈ M0(OK)∩
Γ. By Proposition 10, Γ is arithmetic. This proves Theorem 1 for K-
rank one groups of type B.

5.4. Groups of type C. The groups of type C are Sp2n over K
(which does not have K-rank 1), and certain special unitary groups
over quaternionic division algebras. In the case of K-rank one groups,
we need only consider the groups of the latter kind. Thus, let D be a
quaternionic central division algebra over K, σ : D → D an involution
of the first kind, such that the space of σ invariants in D is precisely
K: Dσ = K. Suppose h : Dn × Dn → D is a σ-hermitian form which
is a sum of a hyperbolic form in two variables and an anisotropic form:

h =

(

0 1
1 0

)

⊕ hn−2

with hn−2 an anisotropic hermitian form on Dn−2. The subgroup P of

G consisting of matrices of the form





g 0 0
0 h 0
0 0 (gσ)−1









1 z w
0 1n−2 0
0 −tz 1



 is

a parabolic subgroup with unipotent radical U+ consisting of matrices




1 z w
0 1n−2 0
0 −tz 1



 with w + wσ = 0. The commutator of U+ is U2α is the

set of matrices





1 0 w
0 1n−2 0
0 0 1



 with w + wσ = 0 having dimension 3
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over K. Then M is the Levi subgroup of P , with elements of the form




g 0 0
0 h 0
0 0 (gσ)−1



.

Case 1. D ⊗ R 6= H× · · · × H.
Then, SL1(D ⊗ R) is a non-compact semi-simple group. Therefore,

M0 contains SL1(D), embedded as the subgroup of M of matrices of the

form





g 0 0
0 1n−2 0
0 0 (gσ)−1



 with g ∈ SL1(D). Note that for any embed-

ding of K in C, we have SL1(D ⊗K C) = SL2(C). As a representation
of SL2(C), the module LieU2α is Sym2(C2) (since the space w = −wσ

is 3-dimensional) which is multiplicity free for the diagonal torus in
SL2(C). Therefore, there exists an m0 ∈ SL1(OD), and u0 ∈ U2α((OK)

such that the group generated by the elements mj
0(u0) : j ∈ Z has finite

index in U2α(OK).

Choose an element γ ∈ G(OK) in general position with respect to
m0, u0 as in Lemma 16. Write, for an integer r 6= 0, Γ =< mr

0, u
r
0, γ

r >.
Then, Γ is Zariski dense in G(K ⊗ C). By the last paragraph, Γ inter-
sects U2α(OK) in a subgroup V of finite index. Put w(V ) = V −.

If H denotes the subgroup generated by U±2α, then it is clear that
H is semi-simple, K simple and contains the above copy of SL(1, D).
Hence H is of higher rank. Thus, V and V − together generate an
arithmetic subgroup of H(K), by [V].

Let g = umwv ∈ Γ. Then, Γ ⊃<g (V ), V >=u<m (V), V >. By the
last paragraph, Γ ≥u (H(OK)) ⊃u (mZ

0 ). By Proposition 10, Γ is an
arithmetic subgroup of G(K), proving Theorem 1 in this case.

Case 2. D ⊗ R = Hk, k = [K : Q] ≥ 2. Then K is totally real,
and contains an element θ ∈ O∗

K such that the ring generated by θ
has finite index in the integers OK of K. Pick a non-trivial element
u+ ∈ U2α(OK) and let u− denotes its conjugate by the Weyl group

element w. Let t =





θ 0 0
0 1n−2 0
0 0 θ−1



 ∈ G(OK). For r 6= 0, the group

< tr, ur
+ >⊃ ur′OK

+ = V + for some integer R′ 6= 0. Choose γ ∈ G(OK)
in general position with respect to t, u0. Then, Γ =< ur

+, tr, γr > is
Zariski dense (Lemma 16). Then, V + ⊂ Γ. Pick a generic element
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g = umwv ∈ Γ. Then, Γ contains the subgroup <g (V +), V + >⊃u<m

(ur′′OK

+ ), ur′OK

+ > for some other integer r′′. If u+ =





1 0 w
0 1 0
0 0 1



 then

m(u+) =





1 0 0
0 1 0

(aσ)−1wa−1 0 1



 where m =





a 0 0
0 1 0
0 0 (aσ)−1



. Since m

is generic, the element ξ = (aσ)−1wa−1w−1 ∈ D generates a quadratic
(totally imaginary, by the assumption on D in this case) extension of

K. Therefore, by Proposition 7, the group <m (ur′OK

− ), ur′OK

+ > is an
arithmetic subgroup of SL2(K(ξ)). In particular, Γ contains u(tr0Z) for
some integer r0. The action of t on LieU+ has no fixed vectors. By
Proposition 10, Γ is arithmetic.

Case 3. D ⊗ R = H, k = 1 (i.e. K = Q).
Let H = SU(hn−2). Since R-rank (G) ≥ 2, it follows that R-rank

(H) ≥ 1. Thus, n− 2 ≥ 2. But then, H(R) = SU(hn−2,H) is isotropic
if and only if hn−2 represents a zero over R. Since n − 2 ≥ 2, and
a hermitian form in ≥ 2 variables over a quaternionic algebra (with
respect to an involution of the first kind whose fixed points are of
dimension one) represents a zero over Qp for every prime p, it follows
by the Hasse principle (see Ch 6, section (6.6), Claim (6.2) of [PR])
that hn−2 represents a a zero over Q as well, whence Q-rank (H) ≥ 1
and Q-rank (G) ≥ 2; this case is not under consideration in this section.

5.5. Classical groups of type D. Case 1. G = SO(f). Here,

f = J ⊕ f2n−2 with J =

(

0 1
1 0

)

being the hyperbolic form on Kr,

f2n−2 an anisotropic quadratic form in 2n − 2 variables over K, and
n ≥ 4 (i.e. n − 1 ≥ 3). Now, the real rank of SO(f)(K ⊗ R) is ≥ 2.
The argument for groups of type B applies without change.

We now assume that G = SUn(h, D). Here, D is a quaternionic cen-
tral division algebra over K with an involution σ of the first kind such
that the dimension of the set of fixed points Dσ is three (in the sym-

plectic case, this dimension was one). h = J⊕hn−2, where J =

(

0 1
1 0

)

is the hyperbolic form on D2 and hn−2 is an anisotropic hermitian form.
Let P , U+ and M be as in the symplectic case The only change from
that case is that the involution σ has three dimensional fixed space,
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hence U2α which consists of matrices of the form





1 0 w
0 1n−2 0
0 0 1



 with

w + wσ is one dimensional over K.
Case 2. K has infinitely many units. Then, by Proposition 12, The-

orem 1 holds in this case.

Case 3. K is an imaginary quadratic extension of Q. Then, SL1(D⊗
R) = SL2(C). Moreover, SU(hn−2)(K ⊗ R) = SO2n−4(C). Note
that n ≥ 4. Therefore, SO2n−4(C) is a semi-simple group. Hence,
M0(K ⊗ R) = M0(C) ⊃ SL2(C) × SO2n−4(C). Then, the product of
the diagonals in the latter group has multiplicity one in its action on
the Lie algebra LieU+(C) ' C2 ⊗ C2n−4 ⊕ triv. By Proposition 15,
Theorem 1 holds.

Case 4. K = Q and D⊗R 6= H. Then, SL1(D⊗R) is non-compact
and semi-simple. Now, the group SL1(D) × SL2/K is embedded in

SU(J, D) where J =

(

0 1
1 0

)

is the hyperbolic form in two variables.

Therefore, the real rank of SU(J, D) is ≥ 2.

Write hn−2 = λ1 ⊕ hn−3 for some λ ∈ Dσ −\{0}. After a scaling, we
may assume that λ = 1. Consider the group G1 = SU3(J ⊕ 1, D). Let
P1, U1 be the intersections of P and U with G1. They are respectively
a parabolic subgroup and its unipotent radical in H. By the last para-
graph, it follows that M0 ' SL1(D) ⊂ G1.

Now, the Tits diagram of G1 is that of 2A3 ' SU(1, 3) over Q,
where SU(1, 3) actually denotes the K-rank one group SU(B) with
B a hermitian form in four variables over a quadratic extension E of
Q, such that the maximal isotropic subspaces of E4 for the form B
are one dimensional. Thus, G1 is as in Cases 3 or 4 of subsection
(5.2.1). In Case 3 of (5.2.1), it is easy to see (and is observed there)
that M0 is not semi-simple. Therefore, only Case 4 of (5.2.1) applies.
In this case (see (5.2.1), Case 4), there is an embedded H = SO(1, 3)
in this G1 ' SU(1, 3) of real rank two. Choose the unipotent element
u0 ∈ H ∩ U1(Z) ⊂ U+(Z) and v0 ∈ (U1)−2α(Z) = U2α(Z) (the last
equality holds since the space g2α is one dimensional) and an element
θ ∈ M0 ∩ H as in (5.2.1), Case 4. Set V +(r) = H ∩ U+(rZ)U2α(rZ).
Then, by the argument of section (5.2.1), Case 4, V +(r) is contained
in the two-generated group < (θ)r, (u0v0)

r >. Let γ ∈ G(Z) be in
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general position with respect to u0v0 and θ. By Lemma 16, for each r,
the group Γ =< (u0v0)

r, θr, γr > is Zariski dense. To prove Theorem
1, it is sufficient (by the now familiar arguments) to prove that Γ is
arithmetic. Let V −(r) denote the w conjugate of V +(r).

Pick a generic element g = umwv ∈ Γ. Γ contains the group
<g (V +), V + >⊃u<m (V −(r′)), V +(r′) > for some r′. Thus, Γ con-
tains the subgroup u < U−2α(r′Z), UH(rZ) > where UH = U+ ∩ H; it
is proved in Case 4 of (5.2.1), that the group < U−2α(r′Z), UH(r′Z) >
contains θr′′Z for some r′′. Therefore, Γ contains u(θr′′Z). By Proposi-
tion 10, Γ is arithmetic.

Case 5. K = Q and D ⊗ R = H.

If, as before, J =

(

0 1
1 0

)

is the hyperbolic form in two variables over

the division algebra D, then, SU(J, D)(R) = {g ∈ SL2(H) : gσJg = J}
has R-rank 1. Recall that h = J ⊕ hn−2. Since R-rank (SU(h)) ≥ 2,
we must have R-rank (SU(hn−2)) ≥ 1. Hence hn−2 represents a zero
over R, and therefore, n − 2 ≥ 2.

If n−2 ≥ 3, then write hn−2 = h2⊕hn−4. Now, G0 = SU(J ⊕h2, D)
is an absolutely simple Q-subgroup of G. We will show that Q-rank
(G0) ≥ 2, which will prove the same for G, and contradicts our as-
sumption that Q-rank of G is one.

The group G0 is of type D4, with Q-rank one. Thus, In the diagram
of G0, there is one circled root.

[1]. If the anisotropic kernel M ′ is Q-simple, then, M ′(C) ⊃ SL3
2,

and therefore, < U+
G0

(Z), S0(Z) > (with S0 a suitable torus in M ′),
is two generated: say by u+ and θ. By considering an element γ ∈
G(OK), in general position it follows that < γr, θr, ur

+ > is Zariski
dense. Write V + for the group generated by θr and ur

+, and V −

for its conjugate by w. Since G0 contains the 2α root group U2α

it follows that V + is normalised by the unipotent arithmetic group
U+(rZ). Consequently, given g = umwv ∈ Γ ∩ U+MwU+, Γ con-
tains the group <g (V +), V + >=u<m (V −), V + >. The latter contains
∆ =u< U−2α(rZ), U+

G0
(rZ) >. Since G0 is of higher real rank (and of

Q-rank one), any Zariski dense subgroup of G0(Z) intersecting U+
G0

(Z)
in an arithmetic group is of finite index in G0(Z) by [V]. Therefore, ∆
is of finite index in G0(Z) and hence Γ ⊃u (S0(r

′Z)) for some integer
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r′. Now, non-trivial elements of S0(r
′Z), act by eigenvalues 6= 1 on the

α root space gα. An argument similar to the proof of Proposition 10
shows that the Zariski closure v of Γ ∩ U+ has Lie algebra which con-
tains gα. The latter generates u. Therefore, v = u and Γ ⊃ U+(r′′Z)
for some r′′. Thus, by [V], Γ is arithmetic, and Theorem 1 holds.

[2]. If the anisotropic kernel is not Q-simple, then, there is at least
one simple root connected to the above circled root, and the root groups
corresponding to ± the simple roots connected to the circled root to-
gether generate a group G1 isomorphic to SL3 over C. Over R, G1

cannot be outer type SL3, since one root is already circled over Q (in
outer type A2, two roots over R, are circled together). Therefore, G1

is SL3 over R. Hence, over Q, G1 can only be SU(2, 1) with respect
to a real quadratic extension. Then again, the group < U+

G1
(rZ), θrZ >

is virtually two generated (for any r), and a general-position argument
as in the previous paragraph shows that Theorem 1 holds in this case
too.



50 R. SHARMA AND T. N. VENKATARAMANA

6. Exceptional groups of rank one

6.1. Groups of type 3D4 and 6D4. The only K-rank one groups
(according to [T2], p.58) are 3D9

4,1 and 6D9
4,1. The simple root that is

connected to all the others is circled. The anisotropic kernel M1 is,
over K, SL3

2. Moreover, the Galois group of K/K acts transitively on
the roots connected to this simple root. Thus, the anisotropic kernel
is an inner twist of the quasi-split group M ′ = RE/K(SL2) with E/K
either cubic (3D9

4,1) or sextic (6D9
4,1). M ′ is K-simple whence any inner

twist is K-simple (inner twist of a product is a product of inner twists).

Now, G being an inner twist of the quasi-split group G, is given by an
element of the Galois cohomology set H1(K,G). However, this element
is in the image of H1(K, M ′) (Proposition 4 (ii) of [T2]). Hence G con-
tains the K-subgroup M1 (inner twist of M ′), whence M1 is K-simple.

Since R-rank (M1(K ⊗ R)) ≥ 1 (it follows by looking at the Tits
diagrams, that G(Kv) has Kv-rank ≥ 2 for each archimedean place v
of K, because these forms do not occur over real or complex numbers),
that M1(K⊗R) is non-compact and semi-simple. Hence it follows from
Lemma 13 that the Zariski closure of M1(OK) is M1. Now, by [L], [Sh],
as a module over M1(C) = SL2(C)3, LieU+ = St⊗St⊗St. Therefore,
the torus of M1(C) given by the product of diagonal tori in SL2 acts
by multiplicity one on LieU+. By Proposition 15, Theorem 1 follows.

6.2. Groups of type E6. We consider only those of K-rank one.
Case 1. There are no inner type groups of rank one.

Case 2. G =2 E35
6,1. The anisotropic kernel M1 is K-simple (since

its Tits diagram is connected). It is also non-compact at infinity, since
R-rank of any non-compact form of E6 over Kv has Kv-rank ≥ 2 for
any archimedean completion of K. Hence, by Lemma 13, M0 ⊃ M1.
As a module over M1(C) = SL6(C), LieU+ is ∧3(C10) ([L], [Sh]), and
is multiplicity free for the diagonal torus in SL6. This completes the
proof.

Case 3. G =2 E29
6,1. The anisotropic kernel is non-compact at infinity

for the same reason as above. Hence, by Lemma 13, M1 ⊂ M0, with
M1 = SO(8). As an M1(C) = SO(8, C) module, the space LieU+ is (by
p. 568, 2E6-3 of [Sh]), St⊕ δ3 ⊕ δ5 where St, δ3 and δ5 are respectively,
the standard, and the two distinct spin modules. With respect to the
maximal torus of SO(8, C), the weights are x1, · · ·x4,

ε1x1+···+ε4x4

2
with
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εi = ±1, each occurring with multiplicity one. Therefore, Theorem 1
follows from Proposition 15.

6.3. Groups of type E7 or E8 or G2. There are no K-rank one forms
over number fields.

6.4. Groups of type F4. The K-rank one form is F 21
4,1. This is the

only exceptional group which can have rank one over some archimedean
completion of K.

Case 1. K is not totally real or K = Q or the anisotropic kernel
is non-compact at infinity. Then, the anisotropic kernel M1 is a form
of SO(7). Over C this is non-compact. In case K = Q again, this
is non-compact over R since G is of real rank ≥ 2. If K 6= Q is to-
tally real, then by assumption, M1 is non-compact at infinity. Thus,
LieU+ = St⊕∧3(C7) ([L], (xxii), p.52) is multiplicity free for the torus
of SO(7).

Case 2. K 6= Q totally real, and the anisotropic kernel is compact
at infinity. let g2α be the 2α root space. Then, the subgroup G1 of
G with Lie algebra g1 =< g−2α, g2α > must be locally isomorphic to
SO(1, 8). For, g1 has real rank one (since g has), is semi-simple, and its
obvious parabolic subgroup has abelian unipotent radical. Therefore,
it can only be SO(1, k). Since dim(g2α) = 7, it follows that k − 1 = 7
i.e. k = 8. Now, the anisotropic factor SO(7) of G1 = SO(1, 8) is an
anisotropic factor of F 21

4,1 as well.

Fix u+ ∈ U2α(OK), and θ ∈ Gm(OK) suitably chosen (as in Lemma
4). Fix γ ∈ G(OK) in general position with respect to u+, θ ( Propo-
sition 16). For each r, write Γ =< ur

+, θr, γr >. Then, 1) Γ is Zariski

dense in G(K⊗C) ( Proposition 16). 2) V + = V +(r′) == ur′OK

+ ⊂ Γ for
some integer r′. Put V − = V −(r′) for the w conjugate of V +(r′). 3) If
g = umwv ∈ Γ is generic, then Γ ⊃<g (V +), V + >⊃u<m (V −), V + >.
By using the result proved for SO(1, 8) (it is important to note that
K 6= Q is totally real, and that m ∈ SO(7) ⊂ SO(1, 8) to apply this
result), we see that u(θr′′Z) ⊂ Γ for some r′′ 6= 0. Then, by Proposition
10, Γ is arithmetic.
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