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Abstract. Results of Matsushima and Raghunathan imply that the first cohomology of
a cocompact irreducible lattice in a semisimple Lie group G, with coefficients in an irreducible
finite dimensional representation of G, vanishes unless the Lie groupisSO(n, 1) or SU(n, 1)and
the highest weight of the representation is an integral multiple of that of the standard
representation.

We show here that every cocompact arithmetic lattice in SO(n, 1) contains a subgroup of
finite index whose first cohomology is non-zero when the representation is one of the
exceptional types mentioned above.
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1. Introduction

In this paper we prove some results on the non-vanishing of certain first cohomology
groups. Werecall that if G is a real semisimple group without compact factors such that G is
notlocally isomorphic to SU(n, 1) or SO(n,1)and I' = G is any irreducible cocompact lattice
and p is a finite dimensional irreducible representation of G, then H*! (T, p) is zero. This
vanishing theorem is proved in [R1] when p is non-trivial, and when p is trivial, the
vanishing theorem is proved as a consequence of “property T” (in [K1] when G is not
locally isomorphic to Sp(n, 1) or the real rank one form of F + and [Kos] in the remaining
cases). See also [Mat] where a large number of groups are covered. '

In the remaining cases of G=50(n,1) or SU(n,1) suppose V is the standard
representation of G on C**!, V* the dual, sym'(V) (respectively sym!(V*)) the Ith-
symmetric power of V' (resp. of ¥'*), Q the quadratic form on V which is preserved by
SO(n, 1), Qsym'~2(V*) the space of elements of sym!(V'*) (i.e. polynomials) which are
divisible by Q. Let H, be the quotient space sym'(V*)/Qsym'~2(V*). If G = SU(n, 1),
p#sym'(V) and p 5 sym'(V*) for any I, then H*(T, p) =0 for any cocompact lattice
I'cS§U(n,1). If G = SO(n,1) and p # H, for any I, then H(T,, p) =0 for any cocompact
lattice I' = SO(n, 1). These two vanishing theorems are proved in [R1]. :

Thus only the cases (1) G=SU(n, 1), p = sym*(V) or sym'(V'*) and (2)G=50(n,1),
p = H;, remain to be considered. We note that in these two cases, the representation
p may be described as the irreducible representation of G whose highest weight is
I-times the highest weight of the standard representation.

In this paper we prove the following:
L]

Theorem 1. Let n > 4 be an integer and assume that n # 7. Let A = SO (n,1) be a cocom-
pact arithmetic lattice. Let 1>0 be an integer, V,, , the standard representation of
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SO(n, 1) and Q the quadratic form preserved by SO(n,1) on V,, ,. Let H, be the quotient

sym'(V¥, ,)/Qsym'™2(V'%,,). Then there exists a subgroup A’ of finite index in A such that

HY(A, H)) #0.

Remarks. (1) Theorem 1 holds even when n =7, provided A comes from an arithmetic
structure which is not of the type (in the notation of [T]) *D,, or °D,,.

(2) Theorem 1is provedforalln> 6in[L]. Thecasen = 5and ! = Ois handled in [L-M]
and [R-V]. The case of neven and | = Ois proved in [M1]. The case neven and /is non-zero
is proved in [M2]. Thus, Theorem 1 is new only for n= 5 and I # 0. However, our proof,
which is a continuation of [R-V], works uniformly for all n>4 and />0 and yields
additional information which we describe below in Theorem 2. The main point of interest
in our proof is that the non-vanishing of cohomology is obtained as a consequence of
a relative congruence subgroup property which was proved in [R-V] and is therefore
completely different from the usual proofs involving representation theory.

1.1. Notation. In this paper we only consider arithmetic lattices of SU(n, 1) which are
of the following kind. Assume that K is a totally real number field, L is a totally
imaginary quadratic extension of K, V is an (n + 1)-dimensional vector space over
L,hy:V x V- La bi-additive map which is hermitian with respect to the action of the
nontrivial element of the Galois group of L over K. Let G be the K-algebraic group
SU(hy). We assume that G(K®R) is isomorphic to the product of SU(n,1) with

a compact group. The groups I' that we consider are the ones coming from these
arithmetic structures on SU(n, 1). ‘

1.2. Notation. We now describe all the arithmetic lattices of SO(n, 1) (n > 4) except
those of SO(7,1) which arise from K-forms of the type ®D,, or *D,,. They arise as
follows. ~

Let K be a totally real number-field, D a central simple algebra over K of degree
d <2,V anm-dimensional D-vector space, and 1 an involution on D given by (tr(x) — x)
ifdis2and (x)ifdis 1,forall xin D. Let h:V x V— D be a biadditive map such that for
all A, peD and v,weV we have h(Av, uw) = 1(A)h(v, w) . Let H = SU(V, h) be the special
unitary group of this form h. We assume that k is so chosen that

H(K®R)=250(n,1) x a compact group,

where n+ 1 =md.

By [T], the only arithmetic lattices in SO(n,1) (n>>4, n#7) arise as SO(n, 1)-
conjugates of arithmetic subgroups of H(K), for some H as above.

1.3. Notation. Let A = SO(n, 1) be an arithmetic lattice as in (1.2). Let L/K be a quad-
ratic extension which is totally imaginary and which splits D (it is easy to see, using
weak approximation on K, that such an L exists). Let, for x in L, x — X be the action of
the non-trivial element of the Galois group of L/K. Let D; = D ® ¢ L. On D, , define the
involution 1 by 1(A®a)=1(1)®a. Let V; =V @, L and define h,:V, x V,—»D, by
hy(v, ®@a,,0,®a,)= h(v,,v,)®a, a, for all v,,v,eV and a,,a,e L. Consider the
K-algebraic group G = SU(V,, h;). Then it is easy to see that

| G(K®,R)=SU(n,1) x a compact group.
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Moreover, the arithmetic structure on SU (n, 1) is the same as the one defined in (1.1)for
a suitable h,,. , |

Thus, given an arithmetic lattice A of the type (1.2)in SO(n, 1), there are natural ways
of extending A to an arithmetic lattice I" in SU(n, 1), of the kind described in (1.1). We
will fix one such.

We have defined, in Theorem 1, the spaces V*, ; and the spaces H ;- We have the
quotient map sym'(V*, ,)—H,. If G is as in (1.1), and oe(AutG)(K), we have the
homomorphism ¢(I') - T, given by x — ¢~ ! x. This induces the map

HY(T,sym'(V¥, ,)) = H' (o(T), sym'(V%, ). (1)

We also have the inclusion map o(I')n H < ¢(I") and the quotient map above which
induce the map |

H'(o(T),sym'(V¥,,))~ H'(o(T) n H, H))). )
The composite of (1) and (2) yields a map, which we denote by
Res,: H'(I,sym'(V¥, ) > H(¢(T)nH, H)).

Denote by Res the product map I, ,.6yx, Res, - Then we have
Theorem 2. If n> 6, and n + 1 is even, then the map

Res:H'(C,sym'(V¥, )~ [ HY(e(D)nH,H,)
oe(AutG)(K)
is injective.

This paper is organized as follows. In §2, we prove a proposition (see (2.4)) which
relates the congruence subgroup kernels of two groups G and H with the injectivity of
certain restriction maps closely related to those that occur in Theorems 2 and 3. We
also show that the assumptions of (2.4) on G and H are satisfied for a large class of
groups G and H (see 2.7). In § 3, we prove Theorem 2 using (2.7) and (2.4). In §4, we
prove Theorem 2. A more involved version of (2.4), namely Proposition (2.5)is used. We
also prove an analogue of Theorem (2.7) in (4.4). In § 5, we deduce Theorem 1 from

Theorem (4.6), and a Theorem in [B-W] for certain cocompact arithmetic lattices in
SU(mn,1). ‘ :

2. The congruence subgroup kernel and H"

2.1. Notation. Let G be a linear algebraic simply connected semisimple group defined
over a number field K. Assume that G is absolutely almost simple. Let H be a simply
connected semi-simple group over K, i:H — G a morphism of algebraic groups over
K with finite kernel. If 4 is an algebra over K, we denote by G(4) the group of
A-rational points of G. We assume that IT,_ G(K,) and IT,_ H(K,) are both noncom-
pact. The group G(K) may be given the structure of a topological group whose
topology (called arithmetic (vesp.: congruence) topology) is obtained by designating
arithmetic (resp. congruence) subgroups of G(K) as open. The completion G(a) (resp.
G(c)) of G(K), with respect to the arithmetic (resp. congruence) topology is called the
arithmetic (resp. congruence) completion of G (note that by assumption II,..,G(K,) is
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not compact and therefore, by strong approximation, G(c) = G(A ), where A  denotes
the ring of finite adeles over K). The identity map G(K)— G(K) induces a natural
continuous homomorphism G(a)— G(c) whose kernel, as may be easily checked, is
a compact profinite group. We have thus an exact sequence of groups given by
1 - C(G)— G(a)— G(c)— 1, where C(G) is called the congruence subgroup kernel of G.
The map i:H — G induces natural continuous homomorphisms i(a): H (a) - G(a) and

i(c):H(c) = G(c) such that i(a)(C(H)) = C(G). Moreover the rectangles in the following
diagram commute:

1 C(G) - G(@) —» G(c) > 1
Til@ til@ 7Til)
1 C(H)— H(a) » H(c) > 1

By taking H = G and f:G— G an automorphism of G over K, we see that the group
(AutG)(K) acts on C(G). Moreover G(a) normalizes C(G). We denote by C(H,G,i)
the closed subgroup of C(G) generated by the collection {a(i(a)(C(H))); ce(AutG)(K)}
of subgroups of C(G). This group is normalized by G(K) = G(a) and since G(K) is
dense in G(a), we see that C(H, G, i) is normalized by G(a). We denote by Cy ¢ ; (or by
C when there is no ambiguity about H and i) the quotient group C(G)/C(H, G, i).
Let G be the quotient group G(a)/C. Then we have surjections G(a) -G —G(c) and
G(K) is a subgroup of G. We write G(K) G for the topological space obtained by
the relative topology on G(K) in G. It is then easy to see that an arithmetic group A is
open in G(K)nG if and only if Ano(H) is a congruence subgroup of ¢(H) for all
oe(AutG)(K).

We now consider (mainly for handling the case of SO(4, 1) and SO(5, 1)), a quotient of
G Let A be an arithmetic group in G(K) which satisfies the condition (x) below:

(%) there exists a congruence subgroup I' of G(K) such that for all ce H(K) we have:
o(H)nA>a(H)NT.

In particular, 6(H) n A is a congruence subgroup of G(K), i.e. A is openin G(K)n G,
by the remark made above. The completion of G(K) with respect to the topology
generated by designating A which satisfy (x) to be open, is denoted by G*. We clearly
have surjections G — G* > G(c). Write C* for the image of C in G* Note that
C*= C§ 6. depends on i and H.

It is immediate from the definitions that C --11m(A/A) where A runs through
arithmetic subgroups which are open in G(K)nG and A is the smallest congruence
subgroup of G(K) which contains A. It is also immediate that C* =1lim(A/A) where
A now runs through arithmetic subgroups which are open in G* N G(K) and A is as
before (here, lim denotes the inverse limit). In particular, we observe that C* is

contained in the closure of A in G* for every A, i.e. the closure I'* (of any congruence
subgroup I" of G(K)) contains C*,

2.2. Notation. Let p:(AutG)(K)—GL(E) be a rational representation on a finite
dimensional complex vector space E. Suppose that I’ = G(K) (resp. A = H(K)) is
a congruence subgroup of G (resp. H). We have homomorphisms 7: G(K) — (AutG)(K)
and rei:H(K)—(AutG)(K). Consider the cohomology group H'(T,pon) (resp.
H'(A, p°nei)). We have the homomorphism ¢:6~*(T) > T for all ce(AutG)(K) which
induces a map H'(0): H'(T, p) » H' (¢~ *(T"), p° o) which is given on a one-cocycle Z(y)
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by H(0)(Z() = p(0)~“(Z(0(3)). Thus we have a map H' (T, p) s H' (6~ 1(T'), p). We
also have the “restriction” map H* (¢~ }(I'), p) Ou Yi~*o™}(I), p). The composition

of these two maps will be denoted Res,:H' (T, p)— H'(i"*o~1(I), p). We denote by
Res the product mapIT, .6 Res, where

Res:H!(T,p)— []  H ("o~ (D), p).

oe(AutG)(K)

The representation p is defined over the algebraic closure K of K (and hence on
a finite extension K’ of K), since (AutG) is a reductive algebraic group over K. Therefore
E=Ey @ C where Ey, is a K'-vector space, and p(G(K)) = p(G(K')) = GL(Ex.).

Let I be a non-archimedian local field containing K'. Let K, and Q,, be the closures of
K and Qin [. Write E; = E;. ® ;.l. Let Q = GL(E,) be a compact subgroup Then it is
easily checked that there exists a compact open subgroup & (Q) of E, such that £(Q) is
stable under multiplication by the integers O, in [, and under the action of the group Q.

If T’ = G(K) is an arithmetic group, we have p(T') = p(G(l)) = GL(E,) and since I is
contained in a compact subgroup of G(1), it is clear that p(I") lies in a compact subgroup
Q of GL(E,). Let & = &£(Q) as above. Then & is stable under the action of " on E,. We
have

H(T,p)= H'(T,E) = H(, Ex.) ® . C
HI(F,EKI)®KII=H1(F,E1) =H1(r,év)®oll.

Given £e HY(T', p), we may restrict the class of ¢ to the subgroup I'n o (H) for every
o<(AutG)(K). We thus obtain a map

() H'(T, p) = [ TH (T no(H), p)
which we again denote by Res.

2.3. Lemma. Suppose that C* is finite. Then, the kernel of the map
Res:HY (T, &)— [[H (T na(H), &)

is atorsion group. Here I is a congruence subgroup of G(K) and Res is the restriction map
got by replacing p by & in (x).

Proof. Suppose £eH(T, £)is such that Res(£) = 0. Let Z be the one-cocycle represen-

ting (,Z:I' > &. We may view Z as a homomorphism 7, of I" into the semi-direct
product GL(&)x &:

) = (p(()v) Zl(v)>_

Since Res(¢) = 0, we have, for each o, and yea(H) T, a vector veé such that

1 —ov\[p@p) 0\/1 v
wo=(o 1) o 1)
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Let % be an open subgroup of GL(£)x &. It is easy to see that % contains an open
subgroup %’ of the form % ,x %, where %, = GL(&) is an open torsion free subgroup
and

U, = {(p(g) — Dw)ge¥,, weé}.
It is easy to see that
;W) ne(H)NT > p~ YU, ne(H)NT.

The group p~*(%,nT) is a congruence subgroup since the map p:G(K)— GL(E,)
extends to a map

p:G(K,) = G(l)—~ GL(E,).

Therefore, ©; * (%) is open in G* n G(K). This shows that 7, extends to a continuous
homomorphism t:T* — GL(&)x &. Then G(K)np~*(%,) =T, is a congruence sub-
group of G(K) and t3(I'f) =« %, x &. Since I'¥ o C*, and by assumption, C* is finite, the
group 73(C*)is a ﬁmte subgroup of the torsion-free group % ; and is therefore trivial.
Thus, we get a homomorphism ‘

w%:T(c) = GL(&)x & < GL(E,)x E,,

where I'(c) is the (congruence) closure of I' in G(c). It is easily shown that
HY(T'(c), E;) = 0. Therefore, Z(y) = p(y)w — w for some win E, for all yeI'. Since & is an
open subgroup of E,, there exists an integer M > Osuch that p we & (recall that ] o Q )
Hence pM¢é=0in HY ([, &) ie. fisa torsion.

24. PROPOSITION
If C* is finite, then
Res: H'(T,p)~ [] H'T no(H), p)

is injective.
Proof. Consider the commutative diagram

H' (T,8) ST] H'T.8)
le ;- lb
H'(T,E)—[[H'(T,E),

where a, d are restriction maps; b, ¢ are induced by the inclusion of & in E, and o runs
through all the elements of (AutG)(K).

Let F be the kernel of d. Then there exists a finite subset T of (AutG)(K) such that if we
let o run through only the elements of £ in the commutative diagram above but denote
the maps by the same letters, then kernel of d is again F. This is a consequence of the
well-known fact that for the arithmetic group I, the space H (T, E,) is finite dimen-
sional over I. We will therefore assume that in the above diagram the ¢’s lie in .

Clearly, ker(b) and ker(c) are torsion groups and by Lemma (1.3), ker(a) is also
torsion. Then,

ker(d) nIm(c) = c(c™ ' (ker(d))) = c(ker(dc)) = c(ker(ba))

. i
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is a torsion group. Since H'(T', E,) is torsion-free it follows that ker(d) nIm(c) = 0. But
Im(c)®,,! is H(T', E,) and therefore Im(c) is an open subgroup of H'(I', E;). Hence
0 =ker(d)Im(c) is an open subgroup of the l-vector space ker(d) i.e. ker(d) = 0. This
proves the proposition.

We now reformulate Proposition (2.4) slightly differently, replacing I' o(H) by the
group o(I')~ H and considering the restriction map defined at the beginning of (2.2).
This is because, we prefer to work with a fixed H and varying groups (). Thus, we
have

2.4. PROPOSITION (reformulated)
Let (G, H,1) be as in (2.1). Assume that C is finite. p,T are as in (2.2), then the map

Res:H'(T,p)—» [ HYG *o~'(),p)

' oe(AutG)}(K)
is injective. Consequently if H'(T, p) # 0 for some congruence subgroup I of G(K) then
HY(A, p) # 0 for some congruence subgroup A of H(K).

2.5. Notation. In place of H, we may even take infinitely many K-groups H,,, with
K-homomorphisms i,:H, —G with finite kernel. Instead of C(G, H,i) consider the
closed subgroup B of C(G) generated by the collection {C(G, H,,, i,,)} of subgroups of
C(G). The quotient group C(G)/Bis still denoted C. We define a new topology on G(K)
by designating an arithmetic subgroup A = G(K) to be open if there exists a congruence
subgroup I' of G(K) such that for all se(AutG)(K), and all ¢, we have

o(Hy)nA>a(H,)NT.

Then, the completion of G(K) with respect to this topology (we must check that a left
Cauchy sequence is right Cauchy; this can be readily checked; then, one can form the
completion; cf. [S1]) is again denoted by G*. We have, as before, a surjectionG —G*
and the image of C under this map is again denoted by C*. As in (2.2) we may consider
the restriction maps

H'\T,)~ ] H;'e 'T)p)

oe(AutGY(K)

for each m. We may then take the product of all these maps and obtain the big
restriction map :

HTp-T] 1 B e (.0

m ae(AutG)(K)

We then obtain the following.

2.6. PROPOSITION
Let (G,H,,,1i,) be as in (2.4). Assume that C* is finite. p, T are as in (2.2), then the map

H'T,p)-] I HG,*e *@),p)

m oe(AutG)HK)

is injective. Consequently if H*(L, p) # 0 for some congruence subgroup I" of G(K), then
H(A, p)# 0 for some congruence subgroup A of H, (K) for some m.
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Proof. The proof is exactly the same as that of Proposition (2.4), except that instead of
one group H, we have to consider infinitely many groups H,. We will need this
proposition to handle the case of SO(5, 1) and SO(4, 1).

2.7. Notation. Suppose K is a totally real number field, D a central simple algebra over
K such that every Archimedian completion K, of K splits D. Let W be a finite
dimensional right D-module equipped with a D-valued form h on W x W such that his
Hermitian with respect to the standard involution 1(:(x) = tr(x) — x on D if the degree
of D over K is 2 and 1(x)=x if D=K). Let H = Spin(h) be the spin group of the
Hermitian form h. We assume that h is so chosen, that for a fixed Archimedean
completion co of K, the group H(K ) is isomorphic to Spin(2m-1,1) and for all
other archimedean completions v of K, the group H(K,) is isomorphic to Spin(2m)
(here, m is the dimension of W over D). We now choose a totally imaginary quadratic
extension L over K such that L splits D. Let a—a be the nontrivial Galois automo-
rphism of (L/K). Write W, =W®y L, D;=D®yL. Given A=d®aeD; with
deD and aeL,let A =1(d)®deD,. Then we get an involution x — % of the second kind
on D;. On the free D; module W, x W, define a K-biinvariant map by writing, for
wy,w,eW and A, ueD;, h;(w; @A, w,®u) = Ah(w,,w,)u. Let G=SU(h;) be the
special unitary group of the form h; on W, which is Hermitian with respect to the

involution on D; defined above. We have then a K-homomorphism 1: H — G with finite
kernel.

2.8. Theorem. In the notation of (1.1), if the degree of D over K is 2, K#Q and
dim, (W) = 3, then C(G, H,i) is finite.

We refer to [R-V] for the proof. We also note that if K=Q, but the other
assumptions of (2.8) hold, then, by the Hasse—Minkowski theorem for quadratic forms,

it follows that the Q-ranks of H and G are both 1. Thus, the arithmetic lattice is not
cocompact.

3. Proof of Theorem 2

3.1. Notation. Let Qbe an abstract group. We consider the category € = #(Q) of finite
dimensional completely reducible complex representations of Q. If E, = E,e%, then
HY(Q,E,)is adirect summand of H*(Q, E 2).since E, = E, @ E, for some E’ €% and (1)
HY(Q,E,)=H'(Q, E,) @H'(Q,E}). Suppose that f Q—»Q’ is a homomorphlsm of
groups such thatif pisa sem1s1mple representation of (', then the composite of p and
f s a semisimple representation of Q. Let E’ be a semisimple representation of . Let
E” be an Q invariant subspace of E. We may write E' = E” @ E as Q modules. There is
a canonical restriction map (2) Res:H'(Q,E')—H'(Q, E'). In view of (1), we get
a projection map from H'(Q,E') into H'(Q,E”). We denote again by Res, the
composite of this projection with the restriction map.

3.2. Notation. Suppose m,n are integers with 1 <m <n. Let ¥, be an n-dimensional

vector space, and sym '(V}) the space of polynomials of degree I on V,.If0 <i,we have,
symi(V, /V, J* = sym {V*) and

sym'(Vy¥) = @ i, SYm (V) @ sym'~(V, /V,)*.
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Let Q be a non-degenerate quadratic form on V,. In particular, we have Qesym?(V*).
We have
Qsym'~2(V*) = {Pesym!(V*); Q divides P}.

With these notations, we have

3.3. Lemma. For alli>0, and m < n, we have

Qsym'~*(V¥) N [sym'(V*) ® sym' (¥, /V, )*] = 0.

Proof. Suppose that Qf = XA, B,, where f,A,, B, belong respectively to the spaces
sym'~(V}), sym‘(V'%), and sym'~((V,/V,)*). We may write V, = V,.® W, for some
subspace W, of ¥, and for g in sym*(V*), we may write g = g(x, y) for x in V,,and yin
W,.. Then, for all complex numbers a, we have

Q(ax,y)f(ax,y) =}, A,(ax)B,(y) =’} 4,B, = d'Qf.

This shows that Q f is divisible by Q(ax, y) for all a 0. This is impossible by the unique
factorization of polynomials, unless Qf = 0.

3.4. Notation. We continue the notation of (3.2). By Lemma (3.3) we may assume that
E;=sym'(V*)®sym' "V, /V, )* is a subspace of

H,=sym'V*/Qsym'~2V*,

Now let Q be a reductive‘subgroup of SO(Q) which maps V,, into itself. Then the
spaces E;, H, are all semisimple Q-modules, and therefore, H, = E, @ E, for an Q-stable
submodule E; of H,. We thus get the following inclusion of Q-modules

sym'V*=@E,c ®H, 1)

where the last sum is taken (I + 1)-times

3.5. COROLLARY of (2.8)
Let n+ 1 be even and suppose that n > 7. Then, the map
Res: HY([,sym' V¥, )» [ H'(c(MnH,sym'(V*,,))

as(AutG)(K)

is injective.

Proof. Observe that K # Q (cf. the remark after the statement of Theorem (2.8). The
corollary follows from Theorem (2.8) and Proposition (2.4).

3.6. Notation. Assume that n+1 is even and that n>7. Let H be as in (2.2).
By the Morita theory (see [Sch]) we may assume that the degree of D is always 2
(since (n + 1)-dimensional quadratic spaces may be thought of as ((r + 1)/2)-dimen-
sional Hermitian spaces over D = M,(K)). We write, as in (2.2), H = Spin(W, h). As is
easily seen, we can find a basis e,,...,e, of W over D such that if
W=e,D®---®Pe._D, then Spin(W,h)=Q is a K-algebraic group with
Q(K®R) = Spin(n — 2,1) x K’ where K’ is compact. Furthermore, W= W' @e, D is
an orthogonal direct sum.
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3.7. Lemma. Let (n+1) be even with n>7. Let H and Q be as in (3.6). Then the
restriction map

Res:H!(A,sym' V¥, )—» [] H'(:(A)NQsym'VE, )

te(AutH)(K)

in injective.

Proof. If K = Q, then Q-rank(H) = Q-rank(Q) = 1 and therefore the arithmetic group
is not cocompact. Therefore, K # Q and, by the main theorem of [R-V], the group
Cy/C(H,Q) is finite (this is where we need n > 7) and by Proposition (2.4), the lemma
follows.

Theorem 3. Let H, G be asin(2.2) withn + 1 even and n > 7. Then, for every congruence
subgroup I" of G(K), the map

Res:HY([,sym'(V*, . ))—» [] HYe(I)nH,H)

ce(AutG)(K)

is injective.

Proof. Let EeHY(T,sym'(V*,,)) be such that Res(¢) is zero. Then, for every
te(AutH)(K), we see that the restriction of ¢, as an element of H (z(c(I")n H)nQ, H,) is
zero. In the notation of (3.4) this means that the restriction of &£, as an element of
H'(t(c(T)nH)nQ, E,))is zero. But, by (1) of (3.4), it follows that Res(¢) as an element of
H'(t(c(M)H)NQ,sym'(V*, ) is zero. By Lemma (3.7), Res(¢) as an element of
HY(o(T)nH,sym'(V*, ,)) is zero. Now (3.5) shows that ¢ is zero.

3.8. Notation. We will now assume that n + 1is odd, with n + 1 > 9. In the notation of
(2.2), wehave D = K and @ is a quadratic form on an n + 1-dimensional K-vector space
W;set H, = Spin(W,Q).Let V= Wde,, ; K be an(n + 2)-dimensional K-vector space.
We may define a new quadratic form h on V by writing, for w in W and AeK

h(w+ 4, w+ ) = Q(w,w) + 126

for some scalar fe K such that the group H = Spin(¥; h)(K ®R) is isomorphic to the
product of Spin(n + 1,1) with a compact group. We may also find a subspace W’ of
codimension 1 in W such that (a) W= W'@e,,,K is an orthogonal direct sum for
some vector e, ; and (b) if /' denotes the restriction of & to W', then the group

= Spin(W’, h')(K ®¢R) is isomorphic to the product of Spin(n — 1, 1) with a com-
pact group. Let A < H(K)be a congruence subgroup. Then, by Lemma (3. 7) (notice that
n+ 2 is even!), we have

ResH (A, sym'V*, ,)» [[ H'(o(A)nH,,sym'V*,,) 1)
ce(AutH)K)
is injective.
Since V=W®e,, K, wesee that V,  ,= n+1@en+2C By (1) of (3.3), we get the
following relations of H,-modules
sym'V*,  =@®E,c ®H, )

where (¥) H, = sym' V¥, , /Qsym' 2 V*, .. We also note that h = Q on W.

i '
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3.9. Theorem. Suppose that n+ 1 is odd. We use the notation of (2.2) and (3.9). The map
Res:H'(I,sym'V*, ,)—» [ HYo([T)nH,,H)
ce(AutG)(K)
is an injection, provided n = 8.

Proof. Let W' =e, ., K®e,, ,K. For every teSpin(W", h)(K) we consider the map
ResH'(T,sym'V2, )~ [ H'o(D)nx(H,),w(H,))

oe(AutGH(K) -

where t(H,) is the quotient space defined in (x) with V,, ; replaced by 7(V,, ,).
Consider now the map Res of the Theorem. Suppose that for some ¢e H* (T, sym' V*, ,),
we have Res(l)=0. Considering the restriction to the smaller group H’,
Res,:H(T,sym' V¥, ,)—» H'(o(I') nH', H,) we obtain: Res, = 0in H'(¢(I')n H', H,), for all
ceAutG(K). Now (2) shows that sym' V%, | is an H' submodule of @ H,. Hence, by the
remarks in (3.1), Res,.= 0 in H(a(I) n H',sym' V'*, ). By the naturality of the restriction
map, we may replace V., by the space 7(V,,,) and obtain for all ¢ and =
Res(§) = 0eH' (o(T) nt(H'),sym't(V,,, )*). But,as an H'-module, the sum X _sym'zV, , | )*
is the same as the sum Z;sym'V*® sym' ™ (z(V,,.,)/V,)*. This, in turn, is sym' V*, ,. We
now apply the remarks in (3.1) to conclude that ¢ lies in the kernel of the map
Res:H'(I,sym'V¥, ,)—» [] HY(e(MnH, ,sym'V*,,)

ce(AutGY(K)
and from (1), we get Res(&) = 0in IT 6y H (6 (D) N H,sym'V*, ,). Now Theorem 2
(replace n by n + 1 there) shows that £ = 0.

4. The cases n =4 and 5

4.1. Notation We now assume that n =4 or 5. We use the same notation in these two
different cases in order to treat them simultaneously.

If n = 4, then we start with an arithmetic lattice in SO (4, 1), which, as we remarked in
(2.2), comes from a quadratic form Q s over K. We now choose fe K* as in (3.1) so that if
(Ws, Qs)is the quadratic space on which SO(Q ) operates, then W @ e, K = W has the
quadratic form Qg = Qs @® 04 on it. Write E = W,. Moreover, 8 is so chosen that if
Hg = Spin(Ws, Q¢), then H(K ® o R)is the product of Spin(5, 1) with a compact group.
Clearly, Hq contains Hs = H as a K-subgroup. We may write Wy as an orthogonal
direct sum W, @ ek with respect to Q5 such that, if Q, denotes the restriction of Q5 to
W, and H, = Spin(W,,Q,), then H,(K )= Spin(3,1). We may also choose a two-
dimensional space E’ over K with a quadratic form Q' so that if Wy =W, ®E,
0s=Qs®Q’, and Hy = Spin(W;, Qg), then Hy(K @ R) is isomorphic to the product
of Spin (7, 1) with a compact group. Choose a quadratic extension (L/K) as in (2.7) and
let Gg=SU(Wg ® L,Q, ® L) as in (2.7).

If n=75, then an arithmetic lattice in SO(n, 1) comes from a Hermitian form over
a central simple algebra D (of degree 2 over K) as in (1.2). Let E = E, be a free module
over D of rank 3 and h, a D-valued Hermitian form on E, with respect to the standard
involution on D described in (2.7). Set H; = H =Spin(E,, h;). Let h, denote the
restriction of H4 to E,. Write H, = Spin(E,, h,). Furthermore, we may choose E, so
that H,(K_)=Spin(3,1). We also choose a 1-dimensional space E; over D, and
a Hermitian form A’ on it such that if h,=h;® 4 is the Hermitian form on
E,=E;®E, and Hy = Spin(E, h,), then H,(K ®,R)is the product of Spin(7, 1) with
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acompact group. Let (L/K) denote a quadratic extension as in (3.1) and write, as in (2.2),
Gy =SU(W,® L1, ® L).

We note once again that H,, H¢, H, E, Gg stands for two different things depending
on the cases n =4 or 5. From now on nis 4 or 5. Note that Gg(K ® o R) is the product of
SU(7,1) and a compact group. Consider the standard action of SU(7,1) on C¥=V,.If
k = 3,4 or 5, then for the action of H, , ;(K) on V via H, ,,(K ) = Spin(k, 1), we have
Vo=V, ®C® ¥ where C®7*~' is the trivial Spin(k, 1) module of dimension
(8 — k — 1). We have thus surjective homomorphisms V§ — Vi, , and the restriction
maps of (3.1) may be defined. We also denote by Q,,Jr , the quadratlc form preserved by
H,.,onV,,, and write H =sym'V¥,,/Q,.sym' 2 V¥, ..

n

42. Lemma. The restriction map
Res:H'(Tg,sym'(VE)— [ H'(o(Tg)nHg,sym'(V§))
oe(AutGs)(K) )
is injective.
This is just a restatement of Lemma (3.7).

43. Notation. Let {H,} denote the collection of simply connected K-subgroups of H
such that for all ¢, (1) H,(K,)=Spin(3,1) and (2) H, = Spin(E,, h,) where E; is
a D-submodule of E such that E=E,@® E; as an orthogonal direct sum, H, is the
restriction of hto E,. Let C(H, {H,}) denote the group defined in (2.5). We also write
Hy=H(E,).

4.4. PROPOSITION
The group (C(H)/C(Hs, {H,}))* is finite.

Proof. Let A be an open subgroup of Hg(K)nH*. Let Q be a congruence subgroup
such that for all ¢ and all ¢ we have

Ano(H,) > o(H,nQ).

Let A* denote the smallest congruence subgroup of H¢(K) containing A. Let v be
a vector in W(K) such that vD isisotropic over K . Let r, be the reflection with respect
to v in AutH(K). Let Q' be a congruence subgroup such that r,Q'r, ' =Q. For
deA* N Q' we have,r dr; 16~ lies in the group H(vD + §(v)D) " Q and the latter liesin
A. But any element of A* may be represented by an element of A* Q' modulo A since
AQ' > A*. This shows that on the quotient group A*/A, the element r, acts trivially.
Since the group (C(H)/C(H,, {H,}))* is the inverse limit of the groups A* /A (see (2 1)),
it follows that r, acts trivially, and hence elements of H(K) of the form r,xr; *x™* act
trivially on the group (C(H,)/C(Hg,{H,}))*. The proposition now follows by the
projective simplicity of H(K) (see [To]).

4.5. COROLLARY

Let Ag be a congruence subgroup of H¢(K). Then the restriction map (for every ﬁnite
dimensional representation p of SO(5,1)) ' ,

Res:H' (0, )~ [ T1 H'G(Ag)nH,p)
¢ te(AutHs)
is injective.

%
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This is immediate from Proposition (4.4) and Proposition (2.6).

4.6. Theorem. Let I'y = G4(K) be a congruence subgroup. Then, in the notation of (4.1),
the restriction map ,

Res:H'(T'g,sym'(V¥)—> ] H'(o([g)nH,H)

ce(AutGs)(K)

is injective.

Proof. Suppose that £e H(I'y, sym'(V'})) is in the kernel of Res. Restricting further to
o(I'g " H), we obtain, for each o and ¢, Res(é) =0in HY(c(TgnH > H,). Correspond-
ing to the inclusion E, < E, we get a subspace V,, of ¥, , , and surjections V¥, , — Va.
Hence? asan H module, sym'(V*, | ) decomposes as @ E () where E (i) = sym"(V;j ®
sym' "V, .,/ V,)*. By Lemma (3.3), each E(i) is an H, stable subspace of H, and
therefore, Res(¢) = 0 in H'(a(Tg N H,, E (i) for all i.

We now replace o by o where Vg = V@ C* for the action of H, (and C* is the trivial H,,
module), and teGy leaves the space ¥, pointwise fixed. By using the naturality of the
restriction map, it follows that Res(¢) =0in H (¢(I'snH 5T (E () foralli,z,0.But, T is
so chosen that t(H,) = H, and (V) = V,. Hence, for all 7,0, we obtain, Res(£) =0 in

HY(6(Cgn Hy,sym' Vi @ sym' ~H(x(Vg)/V,)¥)).

But, as is easily checked, the 7’s act irreducibly on sym'(C*) = sym‘(V/V,) and hence
the sum over all i of X sym'V*®sym'~i(t(V,)/V,)*) is the sum over all i of
sym' Vi @sym'"{(V,/V,)*) which is sym'V*. Hence, Res({)=0 in the group
H'(o(Tgn H,,sym'V¥) for all o, §.

Therefore, if Ag denotes any one of the groups ¢(I'y)nH and &, =Res({)e
H'(Ag,sym'V¥), then Res(¢)eH' (Agn H,,,sym'V¥) for every ¢. By corollary (4.5), this
means that £, = 0. Now (4.2) shows that £ =0 and the Theorem is proved.

5. Proof of Theorem 1

5.1. n+ lisevenand greater than 8. By [T], every arithmeticlattice A in SO(n, 1) arises
as one of those in (1.2) with the degree of D over K being 2. We may extend A (by
replacing it with a subgroup of finite index, if necessary) to an arithmetic lattice I" of
SU(n, 1) as in (1.3). By replacing A and I" by subgroups of finite index if necessary, we
may assume, by [B-W], Ch. {8], Theorem (5.9), that

HY (I, sym'(V*)) #0. (1)
Now, Theorem 2 shows that if n > 9, then, the map ‘
Res: H!(T, sym!(V*))— [ H(¢(T') ~Spin(n, 1), H;) - ' @)

is injective. In particular, we see that the map

Res: H (T, sym'(V*))— [ H (o) nSO(n, 1), H,) » 3)

isinjective. Now (1) and (3)imply that for one of the groups A’ = ¢(I') n SO(n, 1) we have
HY(A,H,) #0.
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This proves Theorem 1 for odd n>9.

5.2. n+ lisodd and greater than 1. By [T], every arithmetic lattice A in SO(n, 1)is one
~of the form described in (3.8). Let I" be an arithmetic lattice in G =SU(n+1,1) as in
(3.8). As in (5.1) we may assume that

HYT,sym!(V*)) #0. (1)

Now, Theorem (3.9), and arguments similar to those in (5.1) to replace Spin(n, 1) by
S0O(n, 1) show that

HYA,H,)#0,
where A" = g(I)nSO(n,1) for some oe(AutG)(K). This proves Theorem 1 for even
n=38.
5.3. n=4or5. Wehavealready described the arithmeticlattices of SO(n, 1)in (4.1). Let
I'g be an arithmetic subgroup of SU(7,1) as in (4.6). We may assume that
H(T'g,sym'(V*)) #0 (1)

by replacing it by a subgroup of finite index if necessary. Now Theorem (4.6) implies
that

HY(A',H,) #0,
where A’ = ¢(I'g) nSO(n, 1) for some oe(AutG,)(K). This proves Theorem 1 forn=35
or 4.

54. n=6. As observed before, arithmetic lattices in SO(6,1) arise as unit groups
of quadratic forms Q, in 7 variables over K. Let W, Q., be the quadratic space over K.
We may write W, =W,®e, K, and denote by Q, the restriction of Q, to W, so
that

SO(Ws, 6)(K®qR) = SO(5,1) x K,

where K is a compact group. We may also find a quadratic space Wy = W, @ ez K with
a quadratic form Qg whose restriction to W, is Q, and

SO(Ws, Q)(K®R)=50(7,1) x Ky,
where K¢ is a compact group. Write

H,=sym'(W%)/Q,sym'~2(W*)
and ,
H,(6) =sym'(W§)/Qssym' ™ >(W¥).

Then, as a representation of H = Spin(5,1), H,(6) is a direct summand of H,. By
Theorem (4.4), the map

Res:H'(Tg, sym'(W%))— [] H*(a(T'g) " Spin(5,1), H,(6))

is injective. Therefore

Res:H' (T, sym'(W$))— [T H!(6(Ts) n Spin(5,1), H,)
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is injective. In particular

Res:H'(Tg, sym'(W%))— [ H(6(T's) ~ Spin(6,1), H)) (1)

is injective. We may choose, by Theorem 2 (and by [B-W], Theorem (5.9), Ch. (8)), I'y
such that

H'(T'g, sym'(W%) #0. @
Thus, Theorem 1 for n = 6, follows from (1) and (2).
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