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ON SYSTEMS OF GENERATORS OF ARITHMETIC
SUBGROUPS OF HIGHER RANK GROUPS

T.N.VENKATARAMANA

We show that any two maximal disjoint unipotent sub-
groups of an irreducible non-cocompact lattice in a Lie
group of rank atleast two generates a lattice. The proof
uses techniques of the solution of the congruence sub-
group problem.

We show that any two maximal opposing unipotent subgroups of
an irreducible lattice in a higher rank Lie Group, generate a lattice
in the Lie Group. The method of proof is to use certain techniques
of the solution of the congruence subgroup problem of arithmetic
lattices in higher rank groups.

We freely use the notation and results of [3] without giving ex-
plicit references therein.

Let G be a simply connected absolutely almost simple linear al-
gebraic group defined and isotropic over a global field K. Let C/+

be the unimpotent radical (which is defined over K) of a minimal
parabolic A'-subgroup P + of G. Let U~~ be the unipotent radical of
another minimal parabolic A'-subgroup P~ of G which is opposed to
P + in the sense that U+ Γ\U~ = {1}. Let S be a finite set of places
of K including all the archimedian ones, if any. We call thering
A — Os — {x G K\ \x\v < 1 for all places v of A', not in S} the
ring of S-integers in K. Choose a faithful representation G <—» GLpj
defined over K and define G(Os) = {g G G gij G Os, 1 < i,j <
N}. The subgroups in G which are of finite index in G(Os) are
called S-arithmetic groups. Define the 5-rank of G to be the sum

Kv — rank(G). Given a non-zero ideal α of A and an algebraic

ves
A'-subgroup H of G define H(a) = {h G H; h{j = £2 j(modα), where
δij = 0 if 2\ φ j and δij = 1 if i = j}. Let A(5) denote the ring
of5-adeles of K.
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194 T.N.VENKATARAMANA

THEOREM . With the notation as above, let E(a) denote the
group generated by U~*~(a) and U~(a). Then E(a) is an S-arithmetic
subgroup of G(a) provided S — rank(G) > 2 and K — rank(G) =
\,Char(K)φ2.

REMARK. The theorem holds also when K — rank(G) > 2 and
is proved for G a classical group of K — rank(G) > 2 in [17], G is
a Chevalley group of K — rank(G) > 2 [15] and for G an arbitrary
group of K - rank(G) > 2 [11].

The theorem is proved for G = SX2 in [18] and Vaserstein has
informed us that he has a proof (unpublished) of the theorem when

We now give an outline of the proof. The proposition of Sec-
tion 1 says: a subgroup F(a) which is closely related to E(a) (and
normalises E(a) ) has the property that given g £ G(K) there exists
a nonzero ideal α of A such that gF(b)g~ι C F(a). This is used to
show that there is a completion G of G(K) with respect to which the
subgroups G(a) have open closures in G. We then show that there
is a continuous surjection π from G onto G(A(S)) where (A(5))
is the ring of 5-adeles of K. The main point is then to show that
the kernel C of π is central in G. Then by appealing to [13], we are
done.

In Section 2, we show that C is central when the semi-simple part
of the Levi component of the minimal parabolic subgroup P+ of G
is isotropic over Kυ for some v £ S. In Section 3, we prove the
same when G = 5t/(2,1) and in Section 4, by looking at suitable
embeddings of G — 5£/(2,1) and SL<ι in G, we prove that C is cen-
tral even in the case of G for which the semisimple part mentioned
above is anisotropic over Kυ for all v £ 5.

1. Construction of a completion G of G(K).

NOTATION 1.1. Let G,E(a) be as in the introduction. Assume
that 5 - rank(G) > 2 and that K - rank(G) = 1. Let F(a) denote
the group generated by C/+(α), U~(a), and M(α) where M+P+ΠP~.
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LEMMA 1.2.

(i) The group F(a) is Zariski dense in G.
(it) More generally, if p : G(K) -> GLn(C) or if p : G(K)+ ->

GLn(C) is a homomorphίsm of abstract groups (C is algebraically
closed), then the Zariski closure of p(F(ά) Π G(K)* is equal to the
Zariski closure of p(G(K)+)).

(iiϊ) The Zariski closure of p(G(K)+) is connected.

Proof The proof of (i) is easy: the Zariski closure of F(ά) in
G contains U+(a) and /7~(α), therefore contains £/+ and U~ and
therefore equals G.

Given a non-zero ideal f of A, let Uϊ denote the Zariski closure
of p(U+(f)). Clearly, if f C C and c is a nonzero ideal of A then
U+ C Uj}~. Since U\ is Noetherian, there exists a nonzero ideal f
of A such that U^ is minimal. Given any nonzero ideal c of A, we
have c Π b C c and by minimality of U^ , we have U£ = CΓjl̂  C t/^".
If a G P+(K) is given, then there exists a nonzero ideal c of A
such that c C b and αί7+(c)α~1 C U+(b). Taking Zariski closures in
GLn(C), we obtain: p(a)U+p(a)+ C f/6

+ C ί/c

+ = t/6

+ which means
that [/6

+ is normalised by p(P+(K)). It is easy to show that

aU+(b)a~ι -

using the facts that for any nonzero integer m,

(J λmb = K

and that P + contains a iί-split torus. Therefore U£ contains
p(U+(K)). We thus get: the Zariski closure of p(FQ) Π G(K)+)
contains ί7+ D U^b — U^~ which contains p(U+(K)) and by sym-
metry the Zariski closure of p(F() Π G(K)+) contains p(U~(K)).
This proves part (ii). Now (iii) follows from the fact that (G(K)~*~/
centre) is an abstract simple group [16]. D

DEFINITION 1.3. Let L/K be an algebraic extension and k C L
a subfield. Suppose / : G^/ί")4" —• k is a function whose G(K)+-
translates on the left (or right) span a finite dimensional vector
space (over k). We call / a G(/ί)+-finite function.
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COROLLARY 1.4. Let L,k be as above, f : G(K)+ —> k a
G(K)+-finite function. Suppose f vanishes on F(a) Π G(K)+. (A)
Then f vanishes on G(K)+. (B) Moreover, G(K)+-finite functions
with values in k form an integral domain.

Proof. (A) Immediate from (II) of Lemma 1.2. (B) Follows from
(iii) of Lemma 1.2. D

LEMMA 1.5. The group M(A) is infinite.

Proof Suppose Card(S) > 2. The group M contains a A'-split
torus Gm since 1 = K — rank(M), and Gm(A) contains, by the
Dirichlet unit theorem, a free abelian group of rank = (Card(S) —

i) > i
Suppose Qard(S) = 1, S = {v}. We have a nontrivial K-

homomorphism M —* Gm, with kernel Mo. Now, S— rank(Mo) =
S - rank(M) - S - rank(Gm) > 2 — 1 = 1. Therefore M0(Kυ)
is not compact; but, (by [2] and [4]), Mo (A) is a cocompact lat-
tice in Mo(Kv) and so MQ(A) is infinite. In particular M(A) is
infinite. D

We now state the main result of this section. We will prove it
later in the section after proving some preliminary results.

PROPOSITION 1.6. Given a nonzero ideal a of A and an element
of g G G(K), there exists a nonzero ideal b of A such that

gF{b)g~ι C F(a).

NOTATION 1.7. The map U~ x M x U+ —> G given by
(w~",ra,u+) H-> u"mw+ is a /^-isomorphism onto an open subset
Ω of G. Given x £ Ω, we may write x = u~mxux with u~ C
U~) mx £ M, ux £ C/+ and x κ-> ux is a /^-rational function
from Ω into C/+.

Given a nonzero ideal α of A and g £ G(K), consider the con-
jugate g~1F(a)g = g"1h~1F(a)hg for all h £ F(a). By Lemma
1.2, there exists an h £ F(a) such that hg £ Ω and so, by re-
placing g by hg if necessary we assume, as we may, that g £ Ω,
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while looking at g~ιF(a)g. Let 6χ be a nonzero ideal of A such that
g~ιG(a)g D G(bι). Then for any h G F(a)ng~1 we have

g~ιh-ιF{a)hg D g-lh~lp-(

n P+){W) = « P - u Λ i r n

For x G Ω denote by Mx the group x~λP~x Π P + = u~λMUx.
Then g^ficήg contains {M^(6i); h G F ί α j n ί i j " 1 } . Denote by Δ^
the subgroup of P~(b) generated by {Mhg(bι);h G F(ά) Π Ωg"1}.
We aim to show that Δ^ contains P+(bg) for some nonzero ideal bg

of A, with bg C b.
Let h G {F(α) Π Ω^"1}, with M^^^) - (uJ"/

1MuΛJ(&1),t;/ι =
uhgug whence Mkg(bι) — {vhMgV^ι){bι). There exists a nonzero
ideal b^ of A such that bh C 61 and such that Δ^ D (vhMgv^l){b\) D

b^v^1. We also have Mg(bh) C Mg(bι) C Δg. Denote by
))Vh] the subgroup of Ag generated by {mt^ra"1??^1; m G

M^(6Λ)}- Then Ag contains [Mg(bH),vh]. Observe that Mg(bh)
is normalised by Mg{b\) C Δg. Denote by Mg(bι)(vh) the set
{mvhm~ι\ m G M5(&χ)}. Then we get: Δ 5 D [71^(6/,), M5(6i)(ϋ/ι)],
and therefore Δ p D [^^(6^), [M^(&i), u/t]]. Let Hg be the sub-
group generated by {[Mg{bι), vh]; h G F(α) Π Ω^"1}. Define V+ =
[C/+,ί/+],V^+ - t / + / y + and pr : £/+ -> l^+ the quotient map.
Then V+ and VF+ are finite dimensional A'-vector spaces, on which
M(K) acts by A-linear transformations. We have the unique quo-
tient 7Γ : Mg —y Gm defined over K. Let

M°g = \x = (xυ)υes € Π M(KV); J[ \*(xυ)\ = l l

. Then (i) by [2] and [4], we have: Mg(b\) is a cocompact lattice in
Mg] (ii) Mg is compactly generated [1]; (iii) Mg(bι) is a finitely
generated group. (This follows from (i), (ii) and [5].) Moreover
every element of Mg(b\) is semisimple.

We assume, as we may, that b\ is an ideal so deep that no non-
trivial element of Mg(b\) — {1} has a nontrivial root of unity as an
eigenvalue in its action on W*. Let {7; 7 G F} be a finite nontrivial
set of generators of Mg(b\). For θ G Mg{b\) let θ* denote the linear
transformation induced by θ on
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If 7 6 F, write WΊ = (7* - l)W+. Then w ^ (7, - l)w is
a if-linear map of W+ onto WΊ. Since 7 is semisimple; (i) w κ->
(7* — l)κ; is an isomorphism of W7 onto itself (ii); WΊ is a direct
sum of irreducible ifftj-modules: WΊ = ®Wy, (iii) if Fpfr*^" 1]
denotes the subring generated by 7* and 7" 1 in Endκ(WΊ), then
"Fplif+iΊ*1] 1S a rinS without nilpotent elements. By Schur's lemma,
the commutant of the image of Fp[7*, 7"1] in Endκ(Wj) is a division
algebra over K and therefore ^ r a j F ^ * ^ " 1 ] Q End(Wj)} is an
integral domain and thus defines a prime ideal pj of Fpfy*^"1] :
pj = Ker(pj). We thus get a finite set X(*y) of prime ideals p
of Fpj/γ*^"1] and a decomposition WΊ = φ VFp of

modules such that the homomorphism Fp[7*, 7"1] —> Endκ{Wp) has
kernel p. Moreover, Fp[7*, 7"1] is a reduced ring acting faithfully on
WΊ whence f] p = (0). Let τrp G p - \J q;p-yp : WΊ -> Wp

denote the map w \—> I JJ πq j ^ . Then prplVP^ : Wp —* VFp is

nonsingular. We also denote by prp the composite U+ ^ W+ —>

REMARK 1.8. Let H C U+(K) be a subgroup normalised by
Mg(b). Then prp(H) C Wp is an (Fp[7Jtc,7~1]/p)-module. Moreover,
pr(H) contains prp(H).

Proof. Clearly pr(H) is a subgroup of W+, is therefore Fp-stable
and hencepr(H) is an Fp[7*,7~1]-module. Sinceprp : WΊ —* Wp and
W+ —> VF7 are given by multiplication by elements of Fpj^y*^"1],
we have: Prp(H) C Fp[Ί^](prp(H)) C F p ^ ^ ^ l ί M ^ ) ) C
pr{H). D

NOTATION 1.9. Let kp denote the quotient field of the do-
main Ap = Fpl^^-^/p. Now, Wp is an (Fp[73(e,7J7

1]/p)-module
and hence is a Ayvector space as well as a K-vector space. [We use
the fact that Wp splits as a direct sum of irreducible /ί[Ap] mod-
ules Wi and Ap acts faithfully on each Wi (7 does not have roots of
unity as eigenvalue) and by Schur's lemma, the commutant of Ap

is a division ring D whence kp C D and acts on W{. Thus kp acts
on Wp too.] Let Rp be the subring of Endκ(Wp) generated by kp
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and K. Then Rp is a finite dimensional A'-vector space and since 7
acts semisimply on Wp,Rp is a product of finite field extensions of
K. Now K is a global field and kp is an infinite field (again, kp is
infinite because 7 has no root of unity as an eigenvalue) and so kp

is also a global field, whence Rp is finite dimensional over kp. Now
Wp = ®Wt = φζsm(Rp) and so Wp is finite dimensional over Rp

and therefore Wp is a finite dimensional kp-vectoτ space.

LEMMA 1.10. Given 7 £ F and p £ X{Ί)) there exists a finite
set {vh} of elements ofU+(K), for h G F(a) Π ΩflΓ1 Π G(/O + , sue/*
ί/iαί ί/ie kp-span of {prp[η, Vh]} is all ofWp,

Proof Let A : Wp —» &p be a linear form over kp which vanishes

on all {prp\j,vh}] h £ F(ά)Πίϊg"1}. Then <p(/ι) = \oprp[^,vh] (for
Λ £ tig"1) has the property: <p(Λ) = 0 for h £ F(α) ΠΩ^~ Π G ( / ί ) + .(

Nowprp[7,υΛ] = prp[73)c,pr(ϋ/ι)] and pr(υh) = -=—rr with

and B(h) £ K\ both A(h) and B(h) are polynomial functions on
G(K) with β(Λ) φ 0 for all Λ G ΩflΓ1. We think of K as embedded
in i?p. Let {G} be a Aybasis of Rp and write J3(Λ) = Σe Be(h) G.
The function B{h) is polynomial on G(K)+ and hence the &p-valued
function Be(h) is a G(A")+-finite function. Now B(h)~ι £ ί ί hence
B(h)'1 = ^X € (Λ) €,X6(Λ) G fcp. ί h u s {XG(Λ)} are solutions
of linear equations whose coefficients are fcp-valued G(/ir)+-finite
functions on G(jfif)+, and by Corollary 1.4, such functions form a
domain. We may thus assume that X^(h) belong to the quotient

Ye(h)
field of i?p, and write x^(h) = , where Y^Z : G(K)+ —> kpZ(h)
are G(AΓ)+-finite functions. We finally get

φ(h) = A oprp[7* - l][pr(ϋΛ)] = λ oprpfr* - 1]. -ĝ -— =

Xopr9{{r.-l)C(h))
- Z(h)

(since λ is fcp-linear) and ψ{h) vanishes on F(α) Π Ωg~ Π G(K)+.
Therefore λ o prp(^ — l)C(h) = φ(h) is a C?(/ί)+-finite function
which vanishes on F(α) Π Ωg~~ Π G(K)+, and G(K) - Clg'1 is the
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set of zeros of a polynomial η(h) — Σηe(h) G. Thus, for all
G Φ(h)ηe(h) = 0 on G(K)+ Π F(a) and by Corollary 1.4, part
(ii), φ(h) Ξ 0 on G(K)+. This means that ψ{h) = Λ o (prp(7* —
l)pr(vh)) = 0 for all h G G(/ί) + Π ΩflΓ1,^ = u ^ . Taking
Λ = Z g " 1 , ^ G U+(K), we get: 14 = Z~1ug represents an arbi-
trary element of U(K)+, and

0 = A o (pr p( 7* - l)pr(U+(K))) = A o (pr p( 7* - 1)W+) = λ(Wp).

Thus λ = 0 on Wp whenever 0 = λ o (prp[η, uh], (h G F(a) Π Ω^"1 Π
G(K)+)). Hence {prp[7,14]; h G ̂ ( ^ n Ω ^ " 1 } contains a Aybasis of
Wp, but Wp is finite dimensional, whence the lemma follows. D

LEMMA 1.11. There exists a finite set {vh} = X of elements
of U+(K) with h G F(a) Π G(K)+ Π Ω^"1 such that (i) for every
7 G F αncί p G ̂ ( 7 ) , w7^ Λαz;e; ίΛe kp-span ofprp[y,Vh] is all of Wp

(ii) [7, VΛ] G ί/p for all 7 G -F, Vh G X. Ĥ e denote by Hx the group
generated by {[0,VA] : ̂  G X^, G M^(6i)}.

Proof, We get a finite set XγjP = {vh] satisfying the conditions of
Lemma 1.10. Take X = UXΊ#. D

LEMMA 1.12. Let c be a nonzero ideal of A, contained in b.
Then there exist a nonzero ideal Cp ί>/(Fp[7J(c,7~1]/p) and a subgroup
Hc C Ufa Π Hx such that

prP(Hc) D £ cp(prp[Ί,vh]).
vhex

Proof We have prp[y,Vh\ = (7* — l)prp(vh) Now, for any inte-
ger N,prp[η[N,υh] = (1 + 7* + + Ί*)prPb,Ίh] 6 k;Prp[-f,vh]
because 7* has no torsion eigenvalues. Therefore the Ayspan of
{ρrp[ηfN,Vh];υh G X} = Ayspan of {prp[r;vh];vh G X} which by
Lemma 1.11 is all of Wp. Choose now an integer N such that
hN>vh] G C/+(c) for all υh G X. Let cp C F p ^ ^ - 1 ] / ^ be the
ideal generated by (1 + 7* + + 7J^~1). Let Hc be the smallest
subgroup of U+(c) containing { [ 7 ^ , ^ ] ; ^ G X} and normalised by
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Mg(b). Then Hc is clearly contained in U^(c)ΠAg(
/y"1Vh'jv^1 G Ag

for 7 G Mg(bι)). Moreover, by Remark 1.8,

prp(Hc) D £ ( F p ^ ^ Ί/p) (1 + 7 + ' + 7?" Vpfr, **] D

D Σ cpPrph,vh]

D

LEMMA 1.13. Given a nonzero ideal C of A contained in b} there
is a subgroup Hc C U+(c) Π Hx such that pr(Hc) contains W^(bz)
where δ3 is a nonzero ideal of A contained in c.

Proof We have: Rp (££) I JJ Kv I is a product of local fields Lw.
K \ves )

Let

Si = K | 7 |L W < 1}, S2 = {w; \Ί\Lw > 1}, and 5 3 = {w; \η\Lw = 1}.

Let A:i(resp. k2) be the closure of kp in J J Lw ίresp. in

Lw). Now Fp[7^,7~ ]/p is a lattice in k\ x k2. Since p is

J rL

a (faithful) i?p-module, the module Wp ®κ J\ Kv is a direct sum of
υβS

{Lw}, with multiplicity mw. Let f/3 be a compact open subgroup of
. Then ^ cpF>bs^/J contains a lattice in

υh€X

Now {prp([7,v^]) : Vh G ^ } contains a Aybasis of top and since k{
is a local field (z = 1,2), each {L^ w; G ^i} is a finite dimensional
vector space over k{ and ^^kiprp[η^Vh\ = Σ ™>wLw. Thus, t/p

contains the nonzero JJ /^-submodule Σ rnwLw = Ep. Write
wes1us2

Eg = x*(^p) This is also a I JJ /C j-submodule of
\v€S )
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W(^ J J Kvy which is stable under M® (since it is stable under
K ves

the Zariski closure of Mg(b): by finite dimensionality, the sum over
x G Mg(b) is really a finite sum). We look at the action of 7 on
(W+ ® Y\KV)/EΊ. By the definition of 5χ and 5 2 , 7 has only
bounded eigenvalues in its action on W+/EΊ. Now the space ^P EΊ

is also Mg stable and on \W* ® J J i f v ) / ^ EΊ, every element 7

of / acts with bounded eigenvalues. We now use the fact that

( JJ U*(KV) I xi Mg is compactly generated, to conclude ί(VK+ ®
ves J

XI Kv) xι M® and therefore) I JJ Kυ ® W+ I / ^ EΊ * Mg is com-

pactly generated. On the other hand, the image og Mg in

Aut\(HKv)®W+/ΣEΊ
I Ί€F

This implies that

is bounded, as we have just observed.

Σ **(Ep) = Σ

(EPCUPCW®1[KV).

We have: prp(Hc) Π Up(c pr(Hc) Π Up) contains a lattice in Up

whence pr(Hc) contains a lattice Lc in W+ ® J J /ίυ, such that (i)

Lc C Σ p r p ( ί ί c ) Πf/pC H^+(cλ) by Lemma 1.12. (Here λ G Â * is

such that for all ideals α of A, pr([/+(α)) C W+(α, A)), (ii) Lc is
M5(6)-stable. It can then be shown easily (see [13], Section (2.10))
that Lc D H/Γ+(62), whenever Lc C W+ ® J J /ί v is a lattice satisfying

(i) and (ii), where δ2 C A is a nonzero ideal. Take 63 = b2 Π C. The
proof of the lemma is over. D

LEMMA 1.14. There exists a non-zero ideal 64 of A such that
Ag contains U^ib^),

Proof. From Lemma 1.13, we have any nonzero ideal C of A, an
Hc such that H D HC,HC C U+(c) and pr(Hc) D W+(b3), with



GENERATORS FOR ARITHMETIC GROUPS 203

63 C C C b. Now, [W+(a),W+(a)} contains V+(a2μ) for a fixed
μ G if* and varying nonzero ideals α of A. In particular, [HC,HC]
contains [^+(63), W+fa)] D V+(b2

3μ), whence Hx D V+(b2

3μ). Let
b4 C 6§μ Π &3A-1 Π A. Then for a; G J7+(64) we have p φ ) G VK+(i3)
(by definition of A) C pr(Hc) and so (14) there exists an h G Hc

such that x/r 1 G F+(c). Thus J7+(64) C HcV+(c) C #*V+(c).
Now we replace c by c Π 63μ = c'. Then for the corresponding
ideals V3, b'3 we have: U+(b'4) C #*V+(c') C HxV

+(b3μ) C # χ .
We recall that Ag = [Mp(6^), [ M ^ ) , υΛ]j and that for υh G X,
we have [Mg(bι),Vh] G -ί/χ. Therefore if 65 = UVheχbh, then Δ^ D
[M^(65),/ίχ] and we have just shown that Hx D U+(b4). Thus
Ag D [Λίp(65),C^+(&4)] Again, by argumments similar to (2.10) of
[13], it is easy to show that [M5(65), C/+(64)] D U+(b6), for a nonzero
ideal &6 of A. This proves the lemma. D

We now complete the proof of Proposition 1.6: we have seen that
g~1F(ά)g D Ag D U+(b6) and Δ^ D Mg(bι). The group generated
by U+(bβ) and Mg(bι) contains P+{b+) for some nonzero ideal b+ of
A, hence g-χF(a)g D P+(b+). By symmetry g~1F(a)g D P~(6) for
a nonzero ideal b of A whence g~1F(a)g D F(b), with b = &_ Π fe+.

NOTATION AND DEFINITIONS 1.15. We construct £. Consider
the group G(K)+ (instead of G(ϋT)). By [7], G(K)/G(K)+ is finite
and therefore we may (and we do) replace G(A),G(a) and F(a)
by their intersections with G(K)+ without affecting questions of
5-arithmeticity. We denote the intersections by G(A),G(a) and
F(a). Define a topology on G(K)+ by taking the sets {gF(a);g G
G(/ ί ) + , a nonzero ideal of A} to be open. We then get a left uniform
structure and a right uniform structure on G(K)+. We now call
a sequence {xn} in G(K)+ to be Cauchy if and only if {xn} is
Cauchy with respect to both the uniform structures on G(K)+ i.e.
if and only if for every non-zero ideal α of A, there exists an integer
/ = /(α) > 0 such that x^Xm G F(ά),xmx~Ύ G F{μ) for all m,n>l
Define two Cauchy sequences {xn}, {Vn} to be equivalent if and only
if for every nonzero ideal α of A, there exists an integer / = /(α) > 0
such that x~ιyn £ F(a), XnVΰ1 £ i ? ( α ) f° r a ^ n > I. It is now routine
to check that equivalence classes of Cauchy sequences in G(K)+

form a topological group Q with G(K)+ being a dense subgroup.
Let C be the kernel of the map Q —> G(A(S)). By [12] ,Lemma
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(2.10), the map is surjective. Clearly C is a closed normal subgroup
og G- We also observe that U+(A(S)) and U~(A(S)) are embedded
in G (as closures of U+(K) and U~(K) respectively).

LEMMA 1.16. Suppose C is centralised by G(K)+. Then C is
centralised by G(K)+. Then C is finite and F(a) is an S-arithmetic
subgroup ofG(K)~*~.

Proof, Let F(a) be the closure of F(a) in G Then F(a) is open in
G and therefore C ΠF(a) is open in C. By assumption, and density
of G(K)+ in G , we see that C is central in G and so we get a central
extension

C/C n F(a) -* G/C ΓΊ F(α) -* G(A(S)) -> 1,

where C/C Π F(α) is a discrete group. Thus G/C Π F(α) is a locally
compact central extension of G(A(S)), split over G(K)+ and by
[10], C/C Π .F(α) is a quotient of μ(K) the group of nt/ι-roots of
unity in /iΓ for all n. This shows that C itself is finite, and so, F(a)
is 5-arithmetic (see proof of (1.10) in [11]). Π

NOTATION 1.17. Let Ga denote the closure of F(a) in G(K)+
in the 5-congruence topology on G(K)+. Then, by [12], Ga is a
congruence subgroup. Since F(a) is stable under conjugation by
M(A), we see that M(A) acts by conjugation on the double coset
F(a)\G(a)/F(a). Let if be a if-isotropic if-simple algebraic K-
subgroup of G, let 7ί be the closure of H Π G(K)+ in G,Ho the
closure of H n C(/ί)+ in G(α(5)),ίf0 is the closure of H Π F(a)
in the 5-congruence topology on G(K)+. We get an extension

l - > C n W - » « - * # o - D I -

1.18. Suppose a subgroup B of M(A) acts trivially on
the subset F(a)\F(a)HaF(a)/F(a) of the double coset
F(a)\F(a)/HF(a)/F(a)j for all but finitely many nonzero ideals a
of A. Then C Γ\7ί is centralised by B.

Proof. L e t c G C ί l W a n d i e S . Then c = lim (hm) for a
771—> OO

Cauchy sequence {hm} in H. Since c G C, its image in G(A(S)) is
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1, i.e. hm G H if m > /(α), for any fixed nonzero ideal a C A which
is sufficiently deep. Therefore bhmb~λ — ζmhmηm (by assumption)
where ξm,7/m E F(a). This shows that ζm —> 1 and ηm —> 1 in G,
which implies that bcb~ι = c. D

2. Centrality of C when Mo is not abelian.

NOTATION 2.1. We denote by Mo, the connected component
of identity of the Zariski closure M\ of M(A). We assume in this
section that [Mo, Mo] is not trivial. Therefore [Mo, Mo] is a semisim-
ple A'-group, let Mi denote the simply connected cover of [Mo, Mo].
Now, Mi (A) is Zariski dense in Mi since Mi (A) Π Mo is Zariski
dense in Mo. Since Mi is simply connected, by [8] and [9], Mχ(A)
has strong approximation.

LEMMA 2.2. There exists a congruence subgroup B of M\(A)
such that for any two nonzero ideals^ a and b of A with a + b = A,
the group generated by M\(a) and M\(b) contains B.

Proof. This is an easy consequence of strong approximation. For
details see [12], Section (4.12). D

2.3. PROOF OF CENTRALITY. We borrow the notation of (4.8)
of [12]. Let f(g) be the function defined there. Write, as in (1.5),
g — u~mgug for g £ Ga. This can be done if α is a sufficiently deep
ideal. With respect to the representation W in (4.8) of [12], f(g) is
defined, and u~mg,ug have the properties: f(g) = \{mod α),

where N is a large integer depending only on (G, W) and if
T 6 End(W),Tij denotes its (ij)th entry of viewed as a matrix,
with respect to the basis defined in (4.8), [12]. Let B be as in (2.2).
Take θ e M1(f(g)2N). Then θgθ~ι = φu-θ-ι){θmgθ~ι)(θugθ-λ) =
[θ,u~]u~mgug[(mgug)~ι,θ) and [0,tίj] and [(mgug)~ι,θ) lie in F(a).
This shows that in F(α)\G(α)/F(α), Mλ{f(gfN) acts trivially on g.
Since F(a) is dense in Ga in the 5-congruence topology on
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one can find h G F(a) such that gh = 1 mod(f(g)2N), and therefore
f(g)2N and f(gh)2N are coprime. We have proved that Mι(f(gh)2N)
fixes gh = g in the double coset. Apply Lemma 2.2 to conclude
that B fixes every # in the double coset F(a)\G(a)/F(a). Now , by
Lemma 1.18, C is centralised by B C G(K)+, and since G(/f) + is
simple modulo its centre, G(K)+ centralises C.

3. Centrality of C when G = 5ί/(2,1). We first prove a
lemma which is very similar to Lemma (2.1) of [14].

LEMMA 3.1. Suppose a and b are two elements of A such that
a A + bB = A. Let L/K be a finite separable extension. Consider
the K-group T = RL/κ(C*m) where RL/K is the Weil restriction of
scalars, let N be a positive integer and consider the group TΛib,N in

T(A) generated by {T((a + bx)N);x G A}. Then the index fa,b,N of
Ta,b,N in T(A) is bounded by a constant independent ofa,b.

Proof. It is easy to reduce to the case when L/K is a Galois
extension. Let d = degree of (L/K). We will show that fa,b,N <
G(d,N,K) where G is a function of d, N and K. Let 5 be the
places of L lying above the places of S. Then T(A) = T(Os) is
commensurable with O~ = Gm(0~). Moreover if α C A is a nonzero
ideal and α = α ®os Og denotes the ideal in Og generated by α,
then Γ(o) = G m (α). Now T(A)/TaAN is a quotient of T(A)/T[(a +

bx)N] = G m (0^)/G m [ (α + bx)N] and the latter is a subgroup of

(0-ς/(a + bx)Ny the group of units in (Og/(a + bx)N). This shows

that if ψ[(a + bx)N] denotes the cardinality of (Og/(a + bx)N)*, then
fa,b,N divides ψ[(a + bx)N] for all x G A. We have, therefore:

fa,b,N < gcd{φ(a + bx)N : x £ A}.

Write a + bx = pi - pk, & product of primes of A. Each pi decom-
poses as a product of primes B of O^. Hence

N

»=i β\P
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Therefore

k k

φ[(a + bx)N] = Π ]\{Normβ)N-\Normβ - 1).

Since L/K is Galois, for a given p;, we have Normβ =
for some integer / t dividing d, for each β\p{. Moreover the number
fi of β lying above pi also divides d (in fact /t r t divides d). We thus
get:

k

(1)
2 = 1

Let / > 1 be a prime and suppose le\gcd{φ[(a + bx)N]] x G
Then by (1) we have:

(2)

Case 1: Char(K) = 0 oτ N = 1:
Let e' be the smallest integer such that Adef > e. Then ef =

[~ — 1] + 1 , where x ι-> [x] is the "integral part" function. Let q > 1
ιe'r~

be a prime, suppose qh divides the degree d(e') of K{ y 1)1 K. We

may write

(3) (a,K(ιy/ϊ)/K) = σm

where (α, K( ιy/ϊ)/K) is the Artin symbol and σ G Gal(K( ιy/ϊ)/K)
is a generator. Let Kb/K be the classifield corresponding to (b) in

A. Let E be the compositum of Kb and K( ιy/ϊ)/K is σ.
(A) If q is odd or if q is 2 and m even, then x(m — x) φ 0

(mod g) has solutions. We write

where £ restricted to K( ι\/l/K) is trivial. This can be done by
(3). We may represent each of the bracketed terms in (4) by (an
infinite family of) prime ideals pi, p2, p3, p4 by the Cebotarev density
theorem. Then from (4) we get:

(5)
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and so there exists λ 6 K* such that A Ξ I (mod 6) and a' = aλ =

P1P2P3P4 (by Artin Reciprocity) i.e. o! £ A and a' = a (mod 6),

therefore o! = aλ = Pip2p3p4 This shows from (2), that

φ[(a + bx)N] = f[(Normpi)lN-1)r*f*((Normwpiy* - l ) r .

We have le\φ(a+bx)N. We are in the case 0 =Chax(K) or N = 1.
4

If Char (K) =p>0 then TV = 1, whence /e| Π ( ( ^ P θ Λ ~ i Γ I f :

Char (jfif) = 0, we use the infinitude of the solutions {pi} to (4),
to pick pi such that Norm(p ) is a power of a prime pi > I. Then

4

again le\ J\((Npi)^ — l ) r . Let e2 be the largest power of / dividing
2 = 1

(NpiY* — 1. We have e < r2e\ + rie2 + r^e^ + r4e4. Let βM be
the maximum of ei,e2,e3,e4. Then e < iejtfd (since rt < cί) which
shows that e^ > e;. Therefore, for some i,le' divides (Npi)^ — 1.

But (pi,K(ι<(/ϊ)/K) sends ιi/ϊ into ( ^VT)^07*771^0, therefore the

order of (p{i,K( ι\ίϊ)jK) is equal to 1. From (4) and the fact that

σ\K( ιy/l) = σ, we know that

(Pi,K( li/ϊ)lK) = σx or σm~x or σ"1 or σ.

We therefore get: one of the numbers x/i, (m — x)/2, —/β or /4 is

divisible by the degree d(e) of /ί( l\f\)jK and hence by ςr71. By the
choice of x(x(m — x) φ 0), this means that d(e) divides /t for some
i and /i|c? for each i. Therefore qh divides d if q is an odd prime or

else if (α,K( ly\)/K) — σm where m is even,
(B) If q = 2 but m is odd, and

(β,A'(l^Γ)/A') = σ-,

we write

(6) (c

and represent σ771^""1^ and σ by primes pi,p2,p3. Then (pi,
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3

By (2), we have Γ\ JI((-/Vpi)Λ — l)Γ t (we use an argument similar

to the one in (A) to choose pt such that l\(Norm pi)). If e2 is the
largest power of / dividing (N pi)^ — 1 and CM — max{ei, β2, ββ},
then e < Σriei < SdβM < ^dβM whence ef < e^, i.e. /e divides
(NpiY1 — 1 for some i. Now (6) shows that one of the numbers
/im, —/2?/3 is divisible by ςfΛ, and since m is odd and q = 2, this
means ς^l/i or /*2 or fo and each /; divides d. We have thus proved
in all cases that if qh is a prime power dividing the degree d(e'),
then qh divides by a constant depending only on (K, d) provided O
= Char (K) or N = 1. Now le> = /[e/4d"1]+1 is bounded which means
that le is bounded by G(K, d, 1) whenever le\gcd{φ(a + bx)N x £ A}
and we are in case 1. Thus in Case 1, /α,&,i is bounded by G(/iΓ, d, 1)
and if Char (K) = 0 then /α,ί>,jv is bounded by G(K, d,l).

Case 2: Char(K) = p' > 0, and TV > 1. Let pM > N

(choose M = 1 + f ^ ^ l y Then τfbι C ΓαΛ7V, because (Γ(α +

bx)fM C T((a + bx)N) which shows that Card (T(A)/TaAN) <

pM(Card(S)-l) ^ {T{A)/TaAN) i.e. /β f 6 f J V <

and we have shown in Case 1 that /α,6,i < G(d, UΓ, 1). Therefore
/α,6,AΓ < G(K, d, N) in all cases. D

NOTATION 3.2. We observe that for G — 577(2,1), for any
K-algebra A, we have

ί /0 0 l \ 1 /0 0 Γ
G(A) ={ge SL3(L ® A); σ(V) O l θ L } = O l O

I \1OO/ J \l00j

where L/K is a Galois extension of degree 2 whose Galois group is
generated by σ, σ acts on L ® A by its action on L and on the group
SLz(L ® A) by acting entrywise, *g is the transpose of the matrix
g. Then

U+(K) = { I 0 1 (-x) I N(x) = trL/κ(y), x,y € L
LOO 1

U-(K) = i 1 0 iV(x) = trL/κ(y), x,y e L
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M(K) =

Thus, M = i?L/κ(Gm). Take W to be the standard representation
of G on L3 and f(g) = απ(j) i.e. the (1, l)-th entry of g. Look at
the action of M(Os) on F(α)\G(σ)/F(α), one can write

(011 012 013

021 022 0

031 032 033

(an 0 0
0 an/an 0
0 0 δϊi1/ \0 0 1

Suppose /9 : 5L2 —• 5f/(2,1) is a iί-representation (nontrivial)
such that

then J ί ^ M ί e G J c Λ f | . Moreover, / |/» { " ^ ) | = a or

α2 as can be easily seen. If g £ [p(SL2)], then (*) shows that M(a2)

acts trivially on # = /> I , I . Therefore M((a + bx)2) acts trivially

on g in F(α)\F(α)p(5L2)i?(α)/F(α). Now Lemma 2.2 shows that
there is a fixed subgroup To of M(Os) such that To acts trivially
on F(a)\F(a)[p(SL2)]aF(a)/F(a). Hence, if Hp = p{SL2), then by
Lemma 1.18, To acts trivially on C Π 7ίp.

Then Γo acts trivially on HpnC, and HP(K) acts on CnHp. But,
if 2 ^ Char (A') then Γo and Wp(if) generate G(A')+, which shows
that G(K)+ acts, and acts trivially on C Π Ήp. Thus 7ίp(K) Π

) and HP(K) Π f / ( ^ ) commute if w,w1 £ 5, zx; ^ n;'.
By [12], this implies U*(KW) and U(KW) commute, whence C is
centralised by G(K)+.

4. The case when Mo is abelian. In this case we have emb ed-
dings oΐH = RL/KSU(2,1) or of H = SL2 in G where RL/K(SU(2,1))
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of SL2 has S-rank at least 2 ([12]). Therefore (£/+ Π H)(KV)
and (U~ Π H)(KW) commute if v φ w,v,w £ S. By Lemma
(2.1) of [12], this means that [U+(KV), U~(KW)] = 1 in Q for
all v,w G 5, v φ w, i.e. C is central.

CONCLUSION. We have shown that

1 -> C -> 0 -> G(A(5)) -> 1

is a central extension in all cases, whence C is finite by [11], i.e.
F(a) is a subgroup of finite index in G(a). Now F(a) normalises
E(a). Hence, again by [12], E(a) has finite index in G(a). This
completes the proof of the theorem of the introduction.
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