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Understanding Protein Structure from a Percolation Perspective
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ABSTRACT Underlying the unique structures and diverse functions of proteins are a vast range of amino-acid sequences and
a highly limited number of folds taken up by the polypeptide backbone. By investigating the role of noncovalent connections at the
backbone level and at the detailed side-chain level, we show that these unique structures emerge from interplay between random
and selected features. Primarily, the protein structure network formed by these connections shows simple (bond) and higher
order (clique) percolation behavior distinctly reminiscent of random network models. However, the clique percolation specific
to the side-chain interaction network bears signatures unique to proteins characterized by a larger degree of connectivity than
in random networks. These studies reflect some salient features of the manner in which amino acid sequences select the unique
structure of proteins from the pool of a limited number of available folds.
INTRODUCTION

Anfinsen’s landmark discovery (1) that the three-dimen-

sional structure of protein is encoded in the amino acid

sequence was made more than three decades ago. Although

enormous progress has taken place in decoding the principles

of protein folding, a definite scenario, as in the case of the

identification of triplet genetic code for amino acid sequence

in proteins (2–4) has not yet emerged. This is due to the fact

that several factors such as the random and the selective

behavior of the poly-peptide chain, optimization of geometry

and energy play a role in the folding of proteins to their

unique native state (5,6). Additionally, evolution has played

a major role in selecting proteins, whose structures are

optimized for functioning in their environment. Hence, the

optimization of any specific parameter could have taken

place to the extent of necessary and sufficient level and not

necessarily to the maximum extent. Many important investi-

gations have been carried out for several decades addressing

different aspects. The selection of secondary structures due

to geometric constraints (7), the geometry optimization

model (5) and the energy landscape model (6) are a few

examples. Furthermore, the availability of a large number

of protein structures has aided in formulating and testing

the proposed hypotheses. In this study, we have investigated

the network of connections made by noncovalent interac-

tions within the proteins, with a focus of identifying random

as well as selective regimes in the network.

It is well known that proteins respect severe constraints

imposed by folding entropy (7) and their backbone is

arranged in regular arrays of secondary structures such as

helices and sheets (8). The backbone endows the protein a

robust skeletal structure composed of optimally packed,

immutable folds (8–11) that are resilient to local variations

and mutations (12,13). Furthermore, extensive sequence-
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structure correlation studies have shown a diversity of

sequences for a given backbone structure. However, the

underlying global structure of amino acid linkages formed

via noncovalent side-chain interactions, which are also

known to be crucial for the stability and uniqueness of pro-

tein structure, has received much less attention (14). The

element of randomness at the noncovalent interaction level

has been investigated at a preliminary level by considering

the protein structures as networks (15) (K. V. Brinda,

S. Vishveshwara, and S. Vishveshwara, unpublished data).

In this study, we have constructed structure networks

(graphs) of several proteins based on the noncovalent inter-

actions, both at the backbone level as well as including all

the atoms of the side chains. The network parameters

obtained from such graphs are compared with different

random models, ranging from the most basic, unconstrained

random model (Erd}os-Rényi (ER)) to the ones constrained to

mimic the protein topology. We specifically compare the

percolation behavior of the protein with those of the random

graphs by investigating the percolation of basic connections

(bond percolation) (16) as well as higher order connections

(clique percolation) (17). We find a striking resemblance

between the bond percolation of the protein and all the

random models. Additionally, we also find that the clique-

percolation profile of the protein backbone connection graph

resembles those of the random graphs. Interestingly, the

protein side-chain connectivity graph exhibits clique perco-

lation, which does not take place in any of the random

models. Furthermore, we also observe such a percolating

clique in decoy structures, which are poor in secondary struc-

tures and represent the molten globule state (18,19). By our

study, we have been able to distinguish the side-chain

connectivity in well packed secondary structures as the selec-

tive feature unique to folded proteins in their native state.

Thus, the protein adopts the unique fold/structure in which

the sequence is capable of making a percolating clique. In

other words, the side chains interact in a highly connected
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fashion, stitching different secondary, super-secondary

structures and stabilizing the protein structure at the global

level. Our results are consistent with the fact that diverse

sequences carrying out a variety of functions can adopt the

same fold. We have considered the ubiquitous fold of TIM

barrel (a/b fold), which is taken up by a large number of

dissimilar sequences carrying out diverse functions, the

Helix bundles (all-a) and the Lectins (all-b). We show that

the commonality between them is a percolating clique of

side-chain connectivity, which link different secondary and

super-secondary structures.

METHODS

Data set

The data set used for this analysis on the general features consists of a set of

50 single-chain proteins (10 proteins for each size of 200, 400, 600, 800, and

1000 amino acids) with known structures obtained from the Protein Data

Bank (20) (Table S4 in the Supporting Material). To investigate the fold

specific features we have considered a data set of 15 proteins (five proteins

for each of the folds: a/b, all-a and all-b) obtained from the Protein Data

Bank (Table S5). The decoy structures were taken from Decoys ‘R’ Us data-

base (18).

Networks and percolation theory

Much of the analysis of the protein network is based on key concepts

borrowed from complex network theory and percolation studies. Broadly,

a network (graph) consists of a collection of points (nodes) connected to

one another by bonds (links). The nature of the network and the degree to

which it is connected largely depends on the guiding principles governing

the formation of links; for a class of random networks the formation of a

link depends on a given probability of connection. The links, for instance,

depend on the noncovalent connections in the case of protein structures

and on the interacting proteins in protein-protein interaction network. A

signature feature identifying properties of a network is the degree distribu-

tion, the degree being the number of links connected to a node. For example,

a large class of random networks is known to exhibit degree distributions

that peak around a specific value. On the other hand, some of the real-world

networks such as the protein-protein interaction network or the spread of

diseases (21,22), exhibit scale free networks or small-world network

behavior in which certain nodes are highly connected.

The hallmark of a broad class of random networks is the presence of a tran-

sition point at which a giant connected cluster percolates the system whereas

below this threshold (critical point), only smaller clusters are present. At the

simplest level, the giant cluster may consist of connected bonds and the tran-

sition point can be identified by the size of the largest cluster as a function of

the probability of connections. Instead of a simple bond percolation, we can

envisage the percolation of more densely connected object-clique percola-

tion. A clique, in a network, is a cluster where each node is connected to

every other node. If the number of nodes in a clique is k, a community is

defined as the collection of adjacent k-cliques where each clique shares

k-1 nodes with the adjacent clique (17). Hence the largest community, which

spans over the entire network, is a percolated clique and we use the termi-

nology of ‘‘largest community’’ for clique percolation.

Representation of protein structures as networks

Protein side-chain network (PScN) is constructed on the basis of the details

of the side-chain interactions, which is quantified in terms of the extent of

interaction (23). Protein backbone network (PBN) is constructed by consid-

ering the Ca atom of each residue in the protein as a node and any two Ca
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atoms (excluding the sequence neighbors) situated at a distance less than a

cut-off distance are connected by an edge (24). A brief description of this

method is provided in the Supporting Material. The principle behind

construction of PScN and PBN is pictorially depicted in Fig. 1. In this study,

we identify the number of connections in PBN as a function of Ca-Ca

distance ranging from 4.5 Å to 10 Å and Imin ranging from 1% to 9% in

PScN.

Random network models

Three types of random graphs are used for comparison with the protein

graphs. One of the models (RM1) is a simple unconstrained model similar

to that of ER. The second one (RM2) is constrained to the topology of the

protein, which obeys the rule of excluded volume. The third one (RM3) is

the same as RM2, except that the node (amino acid) position is also con-

strained to that of the protein.

ER random network model (RM1) and mapping
of connection to probability

The ER model is arguably the best studied model for random networks. It

has the simple feature that any node can be linked to any other with some

probability p. Several features of this model are known analytically. In

particular, its degree distribution for a number of links k follows a Poisson

curve n(k) ¼ N (pN)k e�pN /k!, where N is the total number of nodes, and

the critical probability for the bond percolation transition is at p ¼1/N.

For the k-clique percolation transition, critical probability is at p(k) ¼
1/[(k � 1)N]1/(k�1) . Based on compelling trends that we observed in protein

structure, we have used the ER model and variants thereof to compare with

the network properties of proteins.

FIGURE 1 Representation of noncovalent connections for the protein

backbone (PBN) and the side-chain (PScN) graphs. Two amino acids

(ARG255 and ASP56) are shown in ball and stick model in the protein

dihydropteroate synthase from Escherichia coli (Protein Data Bank (PDB)

ID ¼ 1AJ0). Ca atoms are separated by 8 Å (dashed line) and the two resi-

dues are considered as connected in PBN when Ca distance cutoff is <8 Å.

Five pairs of atom-atom contacts among the side chains are well under 4.5 Å

(3.38 Å, 3.5 Å, 2.78 Å, 3.74 Å, and 3.77 Å shown as dashed lines) and it

corresponds to an interaction value (Iij) of 6% according to the following

equation: Iij ¼ (nij/O (Ni � Nj)) � 100, where, nij is the number of distinct

atom pairs between the side chains of amino acid residues i and j, which

are within a distance of 4.5 Å, and Ni and Nj are the normalization factors

obtained from a nonredundant data set for residue types i and j. Any two resi-

dues, having interaction greater than a specified value (interaction cutoff,

Icutoff or Imin), are connected by an edge in the graph. Thus an edge in

PScN is made if Imin is <6%.
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We selected random graphs of the node sizes 200, 400, 600, 800, and

1000 to represent proteins of different sizes. Several realizations of ER

random graphs were generated for the given node size with varying proba-

bility of edges. The number of edges (the average of 10 proteins of chosen

size and obtained under a given condition) in the protein graph is matched to

the corresponding probability of connection in the ER graph. Thus, the

number of edges is matched to the probability of connection.

Constrained random network models

Finite size random node-constrained random edge model
(RM2)

Proteins are of finite size and the RM1 model, which is not constrained

in space, is not the best random model to compare the protein structure

networks. Hence we have constructed random models, which are con-

strained to finite size, idealized to spherical shape to mimic the shape

approximately taken up by globular proteins. In this model, the nodes are

generated randomly within a sphere, the radius of which is chosen as approx-

imately the average radius of gyration (R) from the data set of globular

proteins of selected size. Hence each of the node coordinate (x,y,z) is within

the spherical limit of R. The random model thus constructed, exhibits a

compactness similar to real proteins, as the radius of gyration is a measure

of compactness of protein (25). The specified numbers of edges (correspond-

ing to the number found in protein of the selected size in both the PBN and

PScN) are distributed randomly among a pair of nodes, which are within

a distance of 6.5 Å or 7.5 Å, or 8.5 Å in three-dimensional space. A distance

of 6.5 Å corresponds to the first peak in the radial distribution of residues in

the interior of proteins (26,27). However, 7.5 Å, or 8.5 Å distances are also

used not to ignore any atom-atom contact (see Fig. S3). Second, stearic

contact is avoided by not connecting the nodes, which are within 4.5 Å of

each other. Such a model is protein-like in its size, has realistic connections

in space, and respects the excluded volume criterion. This model is averaged

over 20 random realizations.

Protein nodes constrained random edge model (RM3)

The RM2 model mentioned above captures many features of proteins and

is a generalized model applicable to a large number of globular proteins.

However, it deviates from the exact size and does not follow the chain

connectivity. These features can be incorporated in a protein specific model,

by keeping the nodes of the random graph identical to that of the selected

protein and randomly rewiring only the edges. To make realistic edges,

the specified number of connections (corresponding to the number found

in protein of the selected size in both the PBN and PScN) are randomly

distributed within a physical distance (4.5 Å < distance < 6.5 Å or 7.5 Å

or 8.5 Å) of each amino acid in the protein structure. Because the number

of edges within a sphere of 6.5 Å is much greater than the maximum number

found in the PScN for a given node size (see Table S2), it is possible to

randomly distribute the edges of smaller number. In the case of PBN, the

number of edges corresponding to a lower cutoff (4–9 Å) is selected

randomly from the repertoire of edges obtained from a cutoff of 10 Å. In

this way, 10 realizations for each protein in the data set are created and

finally evaluated parameters are averaged over each of the 10 proteins in

the data set. We denote this model as RM3 model. If proteins are optimally

packed with secondary and super-secondary structures, irrespective of the

side chain (5), this model provides a reference point to test the exclusive

role played by side-chain interaction because the topology of the model is

strictly constrained to that of the protein.

Community identification

For community identification, we have used the program CFinder (v.1.21)

(28). An example of k-clique (k ¼ 3) community in the PScN (protein

dihydropteroate synthase from Escherichia coli at Imin ¼ 3%) is shown in

Fig. 2.
RESULTS

Protein structure and the random networks

Two types of protein structure graphs have been investigated

in this study. The PBN represents the polypeptide chain

packing and the PScN focuses on the details of side-chain

interactions in the proteins. From the network point of

view, the number of connections for a given node size differs

depending on the criteria used for connections. For example,

proteins of the size of ~400 amino acids make 396–3679

number of Ca-Ca connections, when the residues with in a

range of 4.5–10 Å are considered to be connected in PBN.

Similarly, the number of connections for a 400 residue

protein varies from 798 to 133 in PScN, depending on the

side-chain connection strengths ranging from Imin of 1–9%

(see Table S2). An important difference to notice between

PBN and PScN is that the PBNs accommodate more number

of edges than the PScNs. There is very little overlap between

the number of connections of backbone and the side-chain

regimes. The number of edges plays a significant role in

the corresponding random graphs because the likelihood of

percolation increases with an increase in the probability of

connections and one can comfortably separate the random

graphs as PBN or PScN like. For the sake of brevity, we

have presented the results pertaining to the node size of

400, although qualitatively the same results are obtained

for other sizes. (Some important results for other sizes are

presented in the Supporting Material.) We characterize the

PBN and PScN in terms of their degree distribution and

compare them with the three random models. Next, we

examine the percolation behavior at the simple bond-

connection level and then at the clique-connection level.

Degree distribution

It is noteworthy that the degree distribution of PBN and

PScN follow approximately the same behavior as that of

the RM1 model at different levels of connections (see

FIGURE 2 Largest k-clique (k ¼ 3) community in the dihydropteroate

synthase from Escherichia coli (PDB ID ¼ 1AJ0) at Imin ¼ 3%.

Biophysical Journal 97(6) 1787–1794
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Fig. S1). The degree distribution plots of PScN fit best to the

Poisson distribution (see Fig. S2) and this rules out scale-free

behavior in protein structure networks. They do differ

slightly from RM1 model. For example, the Poisson fitting

parameters are different for RM1 and PScN (see Table

S1). Additionally, the number of orphan nodes, which are

not connected to any other node in the network, is higher

in protein structure network than RM1 (see Fig. S1). The

RM2 and RM3 models as expected exhibit the degree distri-

bution behavior closer to the protein case, with increased

number of orphan nodes compared to RM1. Thus, there is

an element of randomness in the noncovalent interactions

within proteins. However, a larger number of orphan nodes

in the protein case imply more connections in the connected

regions, as the total number of nodes and edges are compa-

rable for the protein and the random graphs. Although this

effect does not cause any drastic change at the degree distri-

bution level, the effect of this can be seen in clique percola-

tion, as discussed in a later section.

Bond percolation

In this study, we characterize the percolation properties of

proteins based on our reference random networks. We

compare the sizes of the largest clusters in protein structure

networks to those of the reference networks as a function

of probability of edge formation.

As mentioned earlier, the key factor is the number of edges

that a protein can make, depending on the definition of

contact. There is an inherent limitation to connections in

proteins, due to factors like excluded volume, the nodes

being connected as a polymer chain, and the geometry adop-

ted by proteins. We adhere to the number of connections in

protein graphs while constructing the random graphs.

(However, the number of connections is expressed as the

probability of connection as given for 400 node graphs in

Table S2.) The only freedom we exercise is to distribute

the nodes and the edges randomly or in a constrained manner

as described in the Methods section.

Bond percolation behavior is examined by plotting the

size of the largest cluster as a function of the probability of

connection. In the PBN, the size of the largest cluster reaches
Biophysical Journal 97(6) 1787–1794
a maximum (size of the number of nodes) at a probability of

connection being 0.006 (corresponding to Ca distance cutoff

of 5 Å) as shown in Fig. 3 b. Even at the minimum possible

probability of connection (Ca distance cutoff of 4.5 Å), the

size of the largest cluster is very close to that of the

maximum. This implies that the percolation at the backbone

level is almost complete at the minimum realistic probability

of connection. Strikingly, the size of the largest cluster is

obtained at around the same probability of connection in

RM2 and RM3, indicating that the backbone connections in

a random model obeying the constraints of protein topology

and excluded volume exhibits the features of the protein

graph. The size of the largest cluster in RM1, however, rea-

ches the maximum at an increased probability of connection

of 0.02 and the percolation transition also starts at a higher

probability of connection than that of the protein and in the

random models RM2 and RM3. The side-chain graph

(PScN) on the other hand can take up much less number of

connection, Here the maximum size of the largest cluster

is slightly smaller than that of the node size, due to the exis-

tence of orphan nodes at all levels of probability (Imin)

(Fig. 3 a). This is achieved around a probability of 0.01

(Imin ¼ 1%) and the bond percolation transition takes place

around the probability of 0.005 (Imin ~ 4%). As expected,

the behavior of the constrained random models RM2 and

RM3 is very close to that of the protein. The onset of perco-

lation transition and the attainment of the largest cluster on

the other hand are shifted to higher probabilities connections

in RM1. Thus, the proteins behave random-like in their bond

percolation feature, which is quite evident by almost iden-

tical behavior of random models constrained to protein

geometry.

Clique percolation

In recent years, clique percolation transition is being used to

uniquely identify local structural units of the real-world

networks where more densely connected regions are consid-

ered to be essential in making predictions about yet unknown

functions of proteins (28). Here too, such a percolation study

serves to pinpoint the denser connectivity of the largest

cluster of the protein structure network. We observe the
FIGURE 3 Largest cluster profile (averaged over 10

realizations for size 400 nodes) of (a) PScN and corre-

sponding random models: RM1, RM2, and RM3, (b)

PBN and corresponding random models: RM1, RM2,

and RM3. In the side-chain profile, both PScN and RM1

show transition where sharp increase in the size of the

largest cluster gives the curve its sigmoidal nature.

However, RM1 has bond percolation at a higher proba-

bility of connection than PScN. In the backbone profile,

at a high probability of connection, PBN has already

reached the saturation for size of the largest cluster. But,

RM1 shows partial transition on set of saturation. RM2

and RM3 show values in between protein and RM1 in

side-chain profile whereas both the constrained models

merge with protein in the backbone profile.
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behavior of the largest community of k-clique as a function

of probability where k ¼ 3 (Although we obtain cliques of

larger sizes, a large percolating community is obtained

only for k ¼ 3 in proteins. Therefore, all the clique percola-

tion studies are carried out at k ¼ 3 and the largest commu-

nity is defined only for this case). In the backbone profile

(Fig. 4 b), the probability range captures complete clique

percolation transition of PBN and partial transition for

RM1. Obviously, an uncorrelated random network requires

more number of edges to attain a saturated community,

which falls out of the backbone probability range. The RM2

and RM3 models with the protein geometry and topology

constraints move closer to the PBN than the RM1 model

as anticipated. The side-chain profile (Fig. 4 a), however,

quite strikingly distinguishes PScN from all other reference

networks. At a probability of 0.01 (Imin ~ 1%), the largest

community for PScN shows beginning of percolation transi-

tion with a steep increase in the community size. (It is to be

noted that the community size in PScN will not reach the

maximum of node size as in the case of PBN, even at the

maximum possible probability of side-chain connections in

proteins.) In contrast, the RM1 and even the constrained

models RM2 and RM3 do not start percolating at all even

at the maximum possible connection (atom-atom connec-

tion) level. An increase in the constraint by significantly

decreasing outer topological boundary of nodes (from 8.5 Å

to 6.5 Å, which effectively reduces the random selection of

edges) also does not result in the onset of clique percolation.

The result discussed here for the 400 node size is a general

phenomenon common to proteins of all sizes. Relevant

results for 200 and 600 node sizes are presented in Fig. S5.

The decoy structures simulated from the native structures

have been generally associated with the molten globule state

(18,19). We have examined the side-chain percolating

communities in a set of 10 decoys for each of the 10 proteins

(see Table S6). We observe that they have features common

to those of native structures and they differ mainly by their

reduction in the secondary structural content. The relevance

of this result is discussed in the Discussion.
Clique percolation in proteins of different folds

The fact that amino acid sequence dictates the structure of

proteins is well accepted in molecular and structural biology.

The structures of >50,000 proteins have been resolved (20)

and it has been possible to model the structures of new

sequences using the available structures as templates

(29,30). The success rate of modeling is high when there is

high sequence similarity (>30%) with proteins of known

structure. There are many structures (folds), however, that

are taken up by a large number of sequences with a similarity

as low as one can get by chance. The conventional methods of

modeling fail in such a situation because there is no unifying

principle. From this study, we believe that the possibility of

a percolating clique can be a common phenomenon to stabi-

lize a given fold adopted by diverse sequences. Hence, in

this section, we have elucidated the details of the percolating

cliques, which stabilize all-a, all-b, and one of the widely

adopted a/b folds (TIM barrel is adopted by a large number

of protein sequences with low similarity). This observation

also provides a rationale for the fact that a vast range of amino

acid sequences take up a highly limited number of folds.

The a/b barrel fold, or known more commonly as TIM

barrel fold, first discovered in the structure of the protein

triose phosphate isomerase, is one of the most ubiquitous

folds in nature and has been extensively studied for the

understanding it provides of protein structure, function and

folding (31–35). We observe two or more large percolating

cliques (at Imin ¼ 3%) for the proteins of the TIM fold

(Fig. 5 and Fig. S4). These communities become further con-

nected when the probability of connection increases at the

maximum possible side-chain connection (Imin ¼ 1%) (see

Table S5). The resulting giant community spans over the

whole protein connecting several secondary structural

elements. We notice the diversity of residues taking part in

the clique formation in different proteins of the same TIM

barrel fold. Consequently, the overall size of the community

is similar in each of the TIM barrel proteins though it differs

significantly in its residue arrangements. Furthermore, the
FIGURE 4 Clique percolation profile (averaged over 10

realizations for size 400 nodes) of (a) PScN, corresponding

RM1 and constrained random networks, and (b) PBN, cor-

responding RM1 and constrained random networks.

Number of nodes in the largest community is plotted as

a function of probability of connection. In the community,

each clique of size k nodes shares k-1 nodes with its adja-

cent clique. In this figure, cliques with value k ¼ 3 are

considered. The side-chain profile captures early stage of

transition for PScN. However, RM1 has not entered the

transition region in this probability range. On the other

hand, the backbone profile, having a higher probability

range, captures complete transition for PBN where size

of the largest community shows a sharp increase giving

the curve a sigmoidal nature. But, even this probability

range is not enough to capture complete transition for RM1. The Rm2 and RM3 model in backbone profile behave almost similarly as protein network

with the percolation transition at a little higher probability. But, at side-chain profile both the constrained models behave more similar to the random network.
Biophysical Journal 97(6) 1787–1794
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FIGURE 5 Clique percolation in TIM barrel protein

dihydropteroate synthase (PDB ID ¼ 1AJ0) (left), helix

bundle protein cobalamin adenosyltransferase (PDB ID ¼
1NOG) (center), and lectin protein manganese concanav-

alin A (PDB ID ¼ 1DQ6) (right) at Imin ¼ 3%. The helices,

sheets, and loops are shown in cartoon representation. The

residues involved in the formation of percolating clique

are shown as spheres and the connections among them

are shown as dashed lines. Only three residue cliques are

shown here. The noncovalent connections among side

chains of residues are shown as dotted lines. This figure

shows that certain communities of varying sizes connect

various secondary structures for all the three proteins at

Imin ¼ 3%.
location of the percolating cliques in different proteins is

different with respect to the overall geometry. Thus, the

only feature common in all the TIM barrel folds is the occur-

rence of percolating side-chain cliques that stitch different

secondary and super-secondary structures.

The helix bundle fold consists of several parallel or anti-

parallel a helices. In our study, we notice, unlike TIM barrel

fold, five or six small percolating cliques (at Imin¼ 3%) in all

the proteins of helix bundle fold. With the increase in the

probability of connection (at Imin ¼ 1%), these small

communities get connected to each other resulting in a giant

community (Fig. 5 and Table S5). In accordance with the

results for TIM barrel fold, the giant community in helix

bundle proteins spans over the whole structure linking the

secondary structural elements.

The third fold we have studied is lectin, a well-known

example of all-b fold. The communities observed in lectins

(at Imin ¼ 3%) have varying sizes. We observe two or three

large communities and several small communities (Fig. 5).

As in the case of other two folds mentioned above, these

communities connect each other to give rise to a giant

community at the maximum possible side-chain connection

(Imin ¼ 1%), which in turn, spans over the whole protein

stitching the secondary structural elements.

In all the three folds, we observe diversity in residue type

and arrangement involved in the formation of percolating

cliques (see Table S5). The diversity in sequences is reflected

in the composition and the architecture of these percolating

cliques, thus accounting for the same fold adopted by dissim-

ilar sequences and providing a rationale for limited confor-

mational space.

DISCUSSION

The natural tendency of the polypeptide chain for the forma-

tion of secondary structures and their optimal packing limits

the number of protein folds (5). On the other hand, the amino

acid sequence in a protein uniquely determines the structure

and hence the side chains and the order of their appearance in

the chain ought to play a crucial role in selecting the unique

structure. In other words, the folded structure of proteins is

a result of the combination of certain statistically probable
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events and some selective events. In this study, we have

addressed this issue by comparing the protein structure

networks (made by the noncovalent connection both at the

backbone level (PBN) and at the level including the details

of the side chain (PScN)) with random models with and

without realistic constraints such as protein topology and

excluded volume. A simple bond percolation and an intricate

connection of clique percolation are studied. The bond

percolation at all levels of protein structure network resem-

bles that of random networks. The clique percolation at the

backbone level also resembles those of random models. On

the other hand, only the protein side-chain network at the

high level of connections (low Imin) is capable of clique

percolation and none of the random models (including the

one very similar to that of proteins) exhibited clique percola-

tion. In general, clique percolation can take place in any

system, given a large number of connections (17). The

special feature of proteins is the existence of a percolating

clique with a limited number of realistically possible connec-

tions, specifically atom-atom contact of noncovalently inter-

acting side chains.

Optimal packing of secondary structures is also required

for the uniqueness of proteins and it has been argued (36)

that the polypeptide backbone inherently posses this feature.

The percolating cliques of side chains, in addition to the

packed secondary structures due to the backbone, confer

uniqueness to the protein structure. An important issue

with this regard is the manner in which molten globule struc-

tures differ from those of the native structures (37–42). The

loss of secondary structures and a slight increase in the radius

of gyration are considered to be the properties of molten

globules. Computationally, decoy structures generated

from the native structures have been considered to be equiv-

alent of molten globule state. In this study, we have consid-

ered 10 decoy structures (18) of each of 10 different proteins

(see Table S6) and compared the size of the largest commu-

nity with those of the native structures. In most cases there is

not much significant difference in terms of the size and there

are substantial overlaps between the residues in the largest

community of the decoys and their native states. (This may

be due to the fact that the decoy structures are still in the

conformational space close to that of the native.) However,
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the percentage of secondary structures in the decoys has

reduced significantly. Thus, it is clear that the uniqueness

of the native states is due to both the optimal packing of

secondary structures and their intactness preserved by a

percolating community made up of the interactions of side

chains.

Correlating the structure of proteins to their functions is

an important goal of structural biologists. Experimentally,

this aspect is probed by obtaining different complex struc-

tures of a given protein from x-ray crystallography and the

dynamical structures are captured by NMR spectroscopy.

Computationally, molecular dynamics simulations provide

information by spanning the equilibrium conformational

space. Because it is computationally expensive to carry out

long time simulations, normal mode analysis (43–48) and

elastic network models (ENM) (49–51) have been developed

to extract meaningful dynamical modes from the static x-ray

structures. ENM uses simplified potentials in which the Ca

atom represents the residue, making the investigations of

large system computationally accessible. ENM, which con-

siders both the sequential and the special neighbors of a

chosen residue in the polypeptide chain in their formalism,

has done exceedingly well in characterizing complicated

systems (52–57) due to the simplicity of the potential it

uses. From this study, it seems that there is an important

role played by the collective interaction of side-chain atoms.

Further analyses would need to investigate whether the

incorporation of an additional term in the ENM potential

to represent the collective interactions of side chains in a

simplified manner would further push ENM toward

enhancing the accuracy of the model. Similarly, the concept

of side-chain clique percolation can be incorporated in

protein structure prediction methods to see if it improves

the accuracy and/or the efficiency of the prediction.

In summary, it seems that the uniqueness of the protein

structure is brought out by extremely specific side-chain

interactions, along with well packed secondary structures.

Our results are consistent with the sequence based statistical

coupling analysis on evolutionary data on proteins (58,59).

The nonbonded connections between side-chain atoms

pervade the protein structure and stitch the secondary and

super-secondary structures, stabilizing the fold taken up by

the packing of the polypeptide chain. We have shown this

feature in proteins belonging to three different folds. Thus,

the key to the unique structure is indeed in the amino acid

sequence, whereas the polypeptide backbone has given

myriad structures to choose from. Although the protein

sequence has the information to the protein fold in the

form of percolating cliques of side-chain interactions,

many sequences can hold the key to the same fold as shown

in the case of diverse sequences belonging to the ubiquitous

TIM barrel fold. Specifically, different combinations of the

amino acid type and its position in the sequence, which

can interact at the atomic level in a correlated fashion, are

likely to stabilize the unique structure. This also provides
a rationale for the fact that a vast range of amino acid

sequences take up a highly limited number of folds.

SUPPORTING MATERIAL

Methods, five figures, and six tables are available at http://www.biophysj.

org/biophysj/supplemental/S0006-3495(09)01238-7.
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17. Derényi, I., G. Palla, and T. Vicsek. 2005. Clique percolation in random
networks. Phys. Rev. Lett. 94:1–4.

18. Samudrala, R., and M. Levitt. 2000. Decoys ‘R’ Us: a database of incor-
rect protein conformations to improve protein structure prediction.
Protein Sci. 9:1399–1401.

19. Yang, J. S., W. W. Chen, J. Skolnick, and E. I. Shakhnovich. 2007.
All-atom ab initio folding of a diverse set of proteins. Structure.
15:53–63.

20. Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, et al.
2000. The Protein Data Bank. Nucleic Acids Res. 28:235–242.
Biophysical Journal 97(6) 1787–1794

http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)01238-7
http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)01238-7


1794 Deb et al.
21. Albert, R., and A.-L. Barabasi. 2002. Statistical mechanics of complex
networks. Rev. Mod. Phys. 74:47–97.

22. Amaral, L. A., A. Scala, M. Barthelemy, and H. E. Stanley. 2000.
Classes of small-world networks. Proc. Natl. Acad. Sci. USA.
97:11149–11152.

23. Kannan, N., and S. Vishveshwara. 1999. Identification of side-chain
clusters in protein structures by a graph spectral method. J. Mol. Biol.
292:441–464.

24. Patra, S. M., and S. Vishveshwara. 2000. Backbone cluster identifica-
tion in proteins by a graph theoretical method. Biophys. Chem.
84:13–25.

25. Sistla, R. K., K. V. Brinda, and S. Vishveshwara. 2005. Identification of
domains and domain interface residues in multidomain proteins from
graph spectral method. Proteins. 59:616–626.

26. Miyazawa, S., and R. L. Jernigan. 1985. Estimation of effective interre-
sidue contact energies from protein crystal structures: quasi-chemical
approximation. Macromolecules. 18:534–552.

27. Miyazawa, S., and R. L. Jernigan. 1996. Residue-residue potentials with
a favorable contact pair term and an unfavorable high packing density
term, for simulation and threading. J. Mol. Biol. 256:623–644.

28. Adamcsek, B., G. Palla, I. Frakas, I. Derényi, and T. Vicsek. 2006.
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