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The variational technique of data assimilation using adjoint equations
in a shallow water model
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Abstract. The variational technigue of data assimilation using adjoint equations has been
illustrated using a nonlinear oceanographic shallow water model, The technique consists of
minimizing a cost function representing the misfil between the model and the data subject
to the model equations acting as constraints. The problem has been transformed into an
unconstrained one by the use of Lagrange multipliers. Particular emphasis has been laid on

“finite difference formulation of the algorithm, Several numerical experiments have been
conducted using simulated data obtained from a control run of the model. Implications of
this 1echnique for assimilating asynoplic satcllite altimeter data into ocean models have been
discussed,

Keywords, Data assimilation; variational technique; adjoint equations; nonlinear
minimization,

1. Introduction

Although data assnm:latlon has long been recognized as an integral component of
numerical weather prediction, it has become a subject of interest to the ocean modellers
only in recent years. One principal difference between atmospheric and oceanic
prediction is that there is no oceanic counterpart to the extensive global synoptic
meteorological observing network (Thacker and Long 1988). With the availability,
however, of good quality data from ocean-observing satellites such as the recently
launched ERS-1 of European Space Agency and Topex,/Poseidon, a joint venture of
USA and France, the situation promises to be good. However, observations like
those of sea surface wind (by satellite scatterometer) and sea surface height (by satellite
altimeter) are asynoptic and confined to the surface of the ocean. Ocean models and
sophisticated data assimilation techniques will thus have to play a crucial role in

successfully extrapolating these surface observations to the ocean interior (Holland

and Malanotte-Rizzoli 1989) and even in obtaining estimates of unobserved variables
from the observations of other variables, What we mean by extrapolation is that the
model equations e.g., those for a multi-level ocean model, will ensure that the impact
of the surface observations after their assimilation is felt by lower levels, Further, as
we hope to show in this paper, the variational data assimilation technique essentially
consists of providing the best possible estimate of the model initial conditions from
observations of certain variables like sea surface height, Thus, although some variables
like currents may never be observed or may be observed at only a few locations, the
data assimilation technique seeks to provide an estimate of these unobserved varlablcs
also, so as to improve the predictive capability of the model
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With the launching of various space missions such as IRS series and INSAT
satellites, the Indian Space Research Organisation (ISRQ) is actively planning future
environmental satellites which may have ocean-observing sensors, & fundamentally
important one being an altimeter which is basically an active microwave instrument
used for ocean research. It measures the height of the sea surface relative to the
marine geoid and also the ocean surface wind speed and significant wave height (Basu
and Pandey 1991). It is thus imporiant to study how to assimilate the vast amount
of asynoptic satellite data into various numerical ocean models. The present paper
can be reckoned as a modest beginning in this direction.

Briefly speaking, a data assimilation technique is one which seeks to optimally
combine the measurements of one ot mote dynamical variables with the corresponding
model predicted values to obtain a better estimate of the current state of the model
and hence to improve its forecast capability, Climatology can alsc provide a good
first guess for the initial conditions. Several such techniques are currently available
(Ghil and Malanotte-Rizzoli 1991), a recent and powerful one being a variational
technique using adjoint equations (Lewis 1985; Le Dimet and Talagrand 1986;
Talagrand and Courtier 1987, Thacker and Long 1988). The present work attempts
to study the impact of this technique on the predictive capability of a simple ocean
model based on one-dimensional nonlincar shallow water equations without any
forcing. Adjoint data assimilation can be formulated using the concepts of functional
analysis such as Hilbert Space, linear operators ctc. This has been the route taken
by most investigators (Lewis 1985; Le Dimet and Talagrand 1986; Talagrand and
Courtier 1987: Schréter 1989). However, as pointed out by Thacker and Long (1988),
these formulations tend to get bogged down in unnecessary details of functional
analysis, Also, the adjoint equations are derived in the form of partial differential
equations whose discretization along with the application of proper boundary
conditions remain somewhat ambiguous and arbitrary. However, discretization of
these equations has to be in conformity with that of original model equations. To
bring out this fact we take the alternative and straightforward approach of simple
partial differentiation with the use of Lagrange multipliers. The advantage here is
that the discretized adjoint equations will be directly derived leaving no scope for
any ambiguities. In actual practice, one has t6 ultimately solve the discretized
equations, Thus there does not seem to be any point in describing the technique

“using the functional-analytic approach. '

2. Model formulation

The model is based on the following nonlinear shallow water equations in a none-
dimensional cyclic domain

(D/01) + 0(Br/dx) — Ay (82 v/0x?) + (9/0x) =0, {1)
(09/0t) + 8(vd)/0x = 0. - (2)
Here v is the velocity, Ay the viscosity and ¢ the potential (¢ = gh, h being the water .
depth). Equation (1) is the usual momentum equation in the absence of external
l‘o;cing_ and equation (2} is the continuity equation, To start with, we non-dimensionalize
equations (1) and (2} ' :
| (V08) + ' (Bv'0x') — AL (62 0//0x') + (0¢'/0x) =0, (3)
(0¢'/0r') +.2(v' ¢')/0x' =0, | @
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where the primed quantities are non-dimensional variables, The space variable has
been scaled by length L, of the cyclic domain, time has been scaled by (L,/v,) and
v and ¢ have been scaled by v, and ¢, respectively, these being the average initial
values, Further, A}, (= 4, /L v,) denotes the non-dimensionalized viscosity. We have

also taken vg equal to \/r,To for simplicity. Since after non-dimensionalization, L,
does not appear in the model equations, its numerical value is not of any importance.
However, typically L, is of the order of few thousand kms, and v, is of the order of
a few cms/sec. Primes denoting nondimensional variables are dropped hereafter for
convenience. _

3, Variational data assimilation using adjoint equations

The approach consists of reconstructing the present model state by fitting the forecast
madel to all data gathered in the recent past. The phase space trajectory of the model
is fitted to the available data in an optimal manner. Usually the optimatl fitting is
done in a least squares sense with the model equations acting as constraints.
Optimization is achieved by minimizing a cost function representing the misfit between
the model and the data, Minimization is done with respect to a set of control variables.
In our case, the control variables are nothing but the model initial conditions, The
problem is thus one of optimal control, or constrained optlmlzatlon (constraints
being the model equations). Since the number of initial conditions is generally quite
large, a large-scale minimization technique such as the conjugate gradlent method
(Navon and Legler 1987) has to be usually employed. The method is iterative and
requires the computation of the components of the gradient of the function to be
minimized (cost function) at each iteration, Because of the large number of components
involved ordinary finite difference methods are prohibitive from the computational
point of view. The elegance of the adjoint approach lies in that instead of finite
difference computation of the gradient, one computes the gradient by solving a set
of equations, adjoint to the linearized version of the model equations and forced by
the model data misfit. Of course, the original model equations have to be integrated
first. The technique also requires a backward integration of the adjoint equations,
The values of the adjoint variables at the model initial time contain the gradient
information to be used by the minimization routine. In what follows, we will illustrate
the ideas sketched above in the concrete case of the one-dimensional ocean model
represented by equations (3) and (4). :

4. Finite difference formulation

The model equations are discretized using a staggered grid and leap-frog time
differencing scheme in the following manner.

v?=v:'"2—A[(v"*: iyt 2 o]
+B(u,+1 R e BN o (bl iy | ()
= 7" 2 C/2)[D;+1(¢?If+¢" DT AR (e X ) ! (6}

In equations (5) and (6) i and n denote spatial and temporal indices. While i ranges
from 1 to I (=41 in our case), n varies from 2 to N (the total number of time steps
of integration). We have used N =200 in the present study. Further, the constants
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A, B, Care related to the time step 7, grid interval d and viscosity A,, in the following
manner '

A=(t/4d), B=(214 m/d?), C=21/4, :

We have used 7=3-125 x 10~3 and Ay =001, The value of 4 is 0025 since the
spatial extent is normalized to unity. It can be seen that a backward-differcncing has
been employed for the diffusion term as is the Ccommon practice. The particular spatial
differencing of the advection term in equation (5) ensures numerical stability, To
apply equations (5) and (6) at the boundaries i =1 and j =J we use cyclic boundary
conditions, In other words, the two boundaries are identified and consequently { = — |
is identified as i=J — | and =1+ 1is the same ag i =2, Equations (5) and (6) can
thus be applied at internal points as well as at the boundaries,

To start the integration, i.e. to compute the values after the first time step, we use
forward differencing,

oy =0p— (AL, + Opey 207)(w0y, ~ v7-4)]
—(C2)(e} —¢2_)) - (7
b= 87 = CILOR, (82, + 0)— 000, +¢1)] (8)
where {1°} and {6%} are the initial conditions. |

¢ Now come to the derivation of adjoint equations. As wasg mentioned earlier,
the main idea is to minimize the cost function J representing the misfit between the

model and the data subject to the mode] equations (5)-(8) acting as constraints. For

the time being, we do not specify the functional form of the cost function, Thus the
approach to be outlined will be valid for arbitrary cost function. Only at the end of
our discussion we will use the actual form of the cost functiop, .

To begin with, in each of equations (5)-(8) we transfer aj] quantities to the left
hand side and symbolically represent these equations by E7 = (), F=0n=23..,N)
and E/ =0, F}=0. These are the constraints to be satisfied while minimizing J.

We thus form the customary Lagrangiin by appending the constraints (multiplied
by corresponding Lagrange multipliers) to the cost function J

N
L=J+ ;2 };(A?E;' + W F) + );(J;E} +u} F1). O

It is well k'nowr‘l that the stationary point of the Lagrangian - coincides with the
minimum of the cost function. Thus one has simply to find the partial derivatives of

AN = — (@J/au¥) - (10)
m=—@iegy | (tn
‘lf = ’1:‘” + 2A[”f+1 ('1?:11 — 4ty 4+ ":‘~ CAREs '1ff11

O~ A1+ B2 4 N2 i 208+

T DU+ B )~ i )] - (aajoky a1y
A COL — ) (I, i - o) |

U — )] - a0y (13
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In equations (12) and (13) k ranges from 1 to N — 1. In applying these equations for
k=N —1, it has, however, to be kept in mind that AT =pN* =0 for all i, These
are just dummy variables, introduced in order to keep the form of these equations
same for all k, including k=N —1, - ,

Finally, differentiating the Lagrangian with respect to the model initial conditions,
we obtain

‘_"Itl'“’lf —A[v?+1(‘1fl+l ;j'rl)+v?—1(‘tll _';'tl—l)
+”?(’1t1+1 "'A;l-q)] = B(’112+1+ Atz—q —247)

—(C/AL + ¢ W) — ] )T +(89/800) =0 (14)
~# — u} = (€0, — AL — (TP, 1(#%1 — )0 —pl 3]
+(0df0¢°) =0 (15)

The left sides of (14) and (15) represent the components of the gradient of the cost
function with respect to the model initial conditions. Had we introduced dummy
variables A and u, the left sides would have been equal to these variables with their
signs changed. This proves our earlier statement that the adjoint variables at the
model initial time contain the required gradient informations. Equations (10)—-(13) -
are generally referred to as the adjoint equations, They are so named because the
corresponding partial differential equations can be shown to be adjoint to the
linearized version of the model equations. Hence the equations themselves are linear
in the adjoint variables A and 4 as can be readily verified. Tt can also be easily
observed that integrations of the adjoint equations are carried out backward in time
and that the equations are forced by model-data misfit represented by the partial
derivatives of the cost function with respect to the model variables. If this misfit
vanishes then the corresponding adjoint variables remain zero throughout the entire
integration, It is then seen from equations (14) and (15) that their left hand sides
vanish too and we are at the minimum of the cost function, as we should be,

In general, however, the model-data misfit terms do not vanish and the adjoint
variables at the end of integration are non-zero. A minimization routine has thus to
be used. The minimization routine employed by us was the ZXCGR routine of
International Mathematical and Statistical Library (IMSL). This routine uses
conjugate gradient algorithm (Navon and Legler 1987) for searching for the minimum,
The algorithm starts from a guess value for the minimum. In our case, these are the
guess values of initial conditions for starting the forward run of the basic model.
With these guess values, the shallow water model is integrated forward in time usin g
equations (5)-(8). The adjoint equations (10)—(13) are then integrated backward in
time. At the end of adjeint integration we use (14) and (15} to obtain values of the
components of gradient of the cost function. The gradient information is utilized by
the routine to search for new initial conditions for starting a new iteration. Each
iteration thus consists of a forward run of the original model, a backward run of the
adjoint model followed by a search for a new set of initial conditions, Iterations are
stopped when a specific convergence criterion is met. In figure 1 we present a flow
chart of the variational data assimilation technique described above.

In our presentation so far, we have refrained from specifying the form of the cost
function. Any concrete application of the adjoint technique requires, however, besides
the basic model in which data are to be assimilated, a specific cost function representing
misfit between the model results and the data. Following standard practicé,xwé*%ﬂe
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COST FUNCTION (J)
AND ITS GRADIENT(VJ)

NO

PRESCRIBED
VALUE ?

STOP

Figure 1. Flow chart of the variational daia'assimilation technique.

chosen a quadratic cost function given by

) | __
J=(1/2) ;0};[(17; — oY Cl+ (4] — g D2, | (L6)

where vd! and ¢d are current and potential data at grid point i and at time 5. Since

there may not be observations at al] grid points and at ail times, we have introduced

- two reliability matrices C? and Df. The corresponding matrix elements will take on

cither of the two valyes 1 or 0, depending on availability or lack of observation at
the Corresponding space-time point. o
_. Iq prmcrplt_:, one may assign to C{ and Dj, other values lying between 0 and 1 to
signify the reliability of the data. In the present study, however, the data are generated.

from a control rup of the-model (identical twin experiment). Hence we have used
only 0 or 1 for the values of the matrix elements, o

5, Re_sults
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being obvious)

2
o) =1+ ) asin(k,x+e,)
=

2
do(x)=1+ ;; a,sin(k,x +a, )

where the wave amplitudes and wave numbers are given by a4, =015, a, = 012,
ky = 6m, k, = 4n. The phase angles are o, | = n/2, ¢, 5 =n/d, 00 | = Tr/6, Gg,2 = 137/12.

These initial conditions are represented in figures 2 and 3 by dots and are referred
to as “true” initial conditions. In both these figures, the solid line indicates the initial
conditions, retrieved by applying the adjoint technique. As a first guess initial
condition, we took vy(x) = ¢(x) = 1 identically for all x. We have tried other sets of

140 |
12 b
1.24 |
116
108
100
092}

POTENTIAL

OB4¢

076
0-68[-

0‘60: 1 1 i | l‘. ll\' l i L1 | ] 1 ' | 1 1 i
0.00 0:20 0-40 0-60 0-80 1:00

Figure 2. “True” initial conditions (dots) and retrieved solution for initial conditions (solid -
line) for the potential as & result of assimilating perfect polential data at the initial and final
times,

1440

0.50:‘|||In.|Il--l|..|I|.-
0-00 0-20 040 060 080 100

Figure 3, Same as in figure 2 except for velocity. No velocity data was assimilated.
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guess values with means, not too different from unity. They also lead to the same ;
retrieved set. Data assimilated in the model were taken from the result of the previous 3
control run, However, only potential data at the initial and final time were assimilated,
No current data was used. This was done to mimic the assimilation of altimeter data
into ocean models. This is because one can calculate the instantaneous ocean depth
(¢/g) from altimeter measurements, once the mean ocean depth is known, Thus the
assimilation of altimeter sea level data i equivalent to assimilation of potential data
in our model, although the similarity is quite crude, since our model is not a good
representative of a realistic ocean model. Coming back to the assimilation we see
that the number of observations is equal to the number of initial conditions to be
Jetrieved. Thus, in principle, we should be able to retrieve the initial conditions
unambiguously, unless there is redundancy in the data. It is seen from figure 2 that
retrieval for potential is excellent (which is not surprising) while that for current is
not so good, ‘

In figures 4-7 we show the states of the model after 100 and 200 time steps starting
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e nre e
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084}
0-76
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'0.50:1.‘1I'|..Ir..l;..llll
0-0 020 040 060 0:80 100
_ X
Figure 4. State of the model (in terms of potential) after 100 time steps of Integration
beginning with initial conditions of figures 2 and 3,
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Figure 5, Same as in figure 4, excépt for velocity,
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Figure-6, Same gs in figure 4,.but after 200 time steps.
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Figure 7. Same as in figure 5, but a!'tcr\ 200 time steps,

from “true” initial conditions (the dots) as well as from the retrieved solution (the
solid lines). It is seen that with the passage of time the agreement between the “true”
current and retrieved current becomes better and better, This may be -due to the
d1531pat1on present in the model. Inclusion of potential data at other times only
improves the retrieval.

To get a feeling of the performance of the nonlinear optimization routine ZXCGR
of the IMSL, in figure 8 we show the evolution of the cost function and the absolute
value of the gradient as a function of the number of iterations. The functions have
been scaled by. their values at the zeroth iteration and have been expressed in
logarithmic units, After about 20 iterations, .the retrieval is quite satisfactory since
the gradient has fallen below 10~ # times its original value and the cost function has
been reduced by more than a factor of 1073, The eonvergence is fairly rapid within
the first few iterations, The rate of reduction becomes slower afterwards.

We have so far studied the assimilation of perfect, ie., noise-free data. _ThlS is
seldom the case in practice, Observational data are inevitably noisy. To study this
case, we simulate noisy data by adding white Gaussian noise to the “true” data.
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Figure 8, Cost reduction factor and gradient reduction factor versus number of iterations
completed for the case studied. The solid line represents cost reduction factor and the dashed
line represents reduction factor for the absolute value of the gradient,
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Figurg_z 9, Same as in figure 2, except for assimilation of noisy potential data available at
all space-time points. Noisy data are represented by encircled dots,

100

Noise variance is taken to be one-fourth of the variance of the initia] fields, The noise
is generated using IMSL Gaussian pseudorandom number generation routine,

In figures 9 and 10 we show the retrievals of initial potentials and velocities, Only
noisy potential data were made available at all space time points, Velocity data were
withheld, Measurement error for potential and residual error after assimilation (in
the rms sense) were both found to be about 0:07. Thus the model fits the data to
within measurement error, In figures 11-and 12 we show the state of the model at
the final time, It i interesting to note that residual error after assimilation for the
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Figure 10, Same as in {igure 9, except for velocily. It is to be stressed again that velocity

~ data were withheld.
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Figure 11, Same as in figure 6, but with initial conditions of figures 9 and 10,
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Figure 12, ‘Same as in figure 11, except for velocity.
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The residual error after assimilation is still of the order of measurement error. We
are thus led to the conclusion that only potential measurements {in a sufficiently
large number) are enough for retrieving the model state with accuracy, limited only
by the accuracy of the data, By the coupling of the adjoint variables A and H, the
adjoint equations force the model! trajectory to remain close to the “true” trajectory,
in the entire space-time domain.

To see the effect of the data reduction on the results of our data assimilation
procedure we have conducted a number of experiments using a variety of data
distribution. For the economy of space, we present only two examples. The first
example is a repeat of the previous example, except for the fact that potential data
are supplied not at all the grid points, but are confined to a part of the model domain
from x =025 to x=05. In figure 13 we sec that the initial retrieved field for the
potential fits the measurement reasonably well in the measurement region, The same

1140
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Figure I3, Same as in figure 9, but for the fact that noisy potential data are given only
between x = 0-25 and x = 0:5 and for all time steps. Data are not shown. They are the same

as those used in the previous experiment,
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Figure 14, Same as in figure 13, except lor velocity,
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is true for the velocity (figure 14) although the fit is not as good. Outside the
observation region, retrieved fields are quite arbitrary. However, even with these
retrieved initial conditions, at the end of integration time, the fit for the potential is
quite good in the region of measurements (figure 15). The solution for velocity is,
however, very poor (figure 16). Thus the model trajectory, although close to the
potential observations at all times, is not everywhere close to the “true” values. Thus
the potential data in part of the domain turn out to be insufficient for a good
reconstruction of the state of the model. We infer that some current observations are
essential,

Our next example again involves continuous data in part domain. This time,
however, current observations are made available at all time steps in the region from
0:25 to 05, while potential data are given at all grid points but for time steps ¢ = 190
to t =200 only. Figures 17 and 18 show the results of retrieving initial fields. Now
the fit is seen to be good. We also show the potential and velocity fields at the end
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Figure 15. Same as in figure 11, bui with initial conditions of figures 13 and 14,
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Figure 16, Same as in figure 15, except for velocity.




ST et e e

i
]
i
|
-

e inrmr s L L i s e L ST

534

POTENTIA
o
=

. o78

Sujit Basu, V Subramanian and P C Pandey

1:40

132
124 F

POTENTIAL
<
©
[

0.84F .

0-76 [~

068 L

0.6 3 N TR S R R DUU R N S T
8-00 : 0120 040 060 080 100

Figure 17, Same as infigure 13, but for assimilation of noisy velocity data batween x = (25 ‘
and x =05 at all time steps alongwith noisy potential data at all grid points, but for time !
steps from 190 to 200 only. Data set is again the same as used in the earlier experiments.
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Figure 18, Same as in figure 17, except for velocity.
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Figure 20, Same as in figure 19, except lor velocity.

of integration (figures 19 and 20) to give an idea of how the solution matches the
“true” trajectory.

6. Conclusions

We have described a data assimilation procedure using adjoint technique for
assimilating observations into a dynamic forecast model for the purpose of improving
predictive capability of the model with particular emphasis on finite difference
formulation of the procedure, The method is a powerful tool particularly for
assimilating asynoptic observations such as may be obtainable from sensors onboard
the ocean observing satellites.

It was shown that the method is effectively equivalent to least squares fitting of
the model computed variables to the data with model equations acting as hard

‘constraints. A Lagrange multiplier approach transforms the problem of constrained.

optimization to an unconstrained one, The resulting large system of equations was
solved by the adjoint approach coupled with a nonlinear optimization routine using
conjugate gradient algorithm, _

The method was illustrated in the example of a model based on one-dimensional
shallow water equations in a cyclic domain, Hypothetical data consisting of potential
(which can be obtained from satellite altimeter measurements provided undisturbed
ocean depth is known) and, sometimes of current, were assimilated into the model.

Our results demonstrate that the state of the model can be retrieved with reasonable
success (leading to improved predictive capability) by assimilating perfect potential
data at the initial and final times, The same is true when noisy potential data are
available at all space time points (in the sense that the model fits the data to within
data errot). However, potential data at a few locations are insufficient for a correct
retrieval of the model state. An optimal measurement strategy seems to be that of
combining continuous measurements of a variable (the current) at the same points
alongwith quasisynoptic measurements of another variable (potential) at regular time

intervals.
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It is however to be borne in mind that the results are only illustrative as the I.nodel E
was a very simple one. An actual application will require the use of a more sophisticated )

occan model. We have already begun the work of develop'ing a three-dimension?l
equatorial ocean model to test our data assimilation techmqu.e and the results will
be reported in the future. Nevertheless, the results of the experiments presented .h{?rc ]
seem to be quite encouraging and can surely make one confident that‘ the adjoint
technique is going to be an immensely powerful technique for extracting valuable
information from a limited amount of, maybe asynoptic, oceanographic data. )
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