ALGEBRAIC ELEMENTS IN GROUP RINGS

I. B. S. PASSI AND D. S. PASSMAN

(Communicated by Maurice Auslander)

ABSTRACT. In this brief note, we study algebraic elements in the complex group algebra $\mathbb{C}[G]$. Specifically, suppose $\xi \in \mathbb{C}[G]$ satisfies $f(\xi) = 0$ for some nonzero polynomial $f(x) \in \mathbb{C}[x]$. Then we show that a certain fairly natural function of the coefficients of ξ is bounded in terms of the complex roots of f(x). For G finite, this is a recent observation of [HLP]. Thus the main thrust here concerns infinite groups, where the inequality generalizes results of [K] and [W] on traces of idempotents.

Introduction

Let $\alpha = \sum_{g \in \kappa} a_g g$ belong to the group algebra F[G]. If κ is a conjugacy class of G, then the κ -trace of α is defined by $\alpha_{\kappa} = \sum_{g \in \kappa} a_g$. It is clear that the map $_{\kappa} \colon F[G] \to F$ is F-linear. Furthermore, if $g, h \in G$, then $hg = g^{-1}(gh)g$ so $(gh - hg)_{\kappa} = 0$. Thus, by linearity, $(\alpha\beta)_{\kappa} = (\beta\alpha)_{\kappa}$ for all $\alpha, \beta \in F[G]$ and $_{\kappa}$ is indeed a trace map. In this paper we study algebraic elements in the complex group algebra $\mathbb{C}[G]$ and our goal is to prove

Theorem 1. Let ξ be an element of $\mathbf{C}[G]$ and suppose that $f(\xi) = 0$ for some nonzero polynomial $f(x) \in \mathbf{C}[x]$. If λ denotes the maximum of the absolute values of the complex roots of f, then

$$\sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| \le \lambda^{2}$$

where $|\kappa|$ is the size of the class and $\bar{}$ denotes complex conjugation.

For G finite, this is a result of [HLP] which was proved using character theory. So the real content here concerns infinite groups. In this case, if κ is a conjugacy class of infinite size, then the summand $\xi_{\kappa}\overline{\xi}_{\kappa}/|\kappa|$ is obviously zero and hence has no effect on the above formula. Thus we need only restrict our attention to the conjugacy classes of G of finite size.

Two special cases of the theorem are worth mentioning. First, if ξ is nilpotent, then $\lambda=0$ and hence we have $\xi_{\kappa}=0$ for all finite classes κ . Second,

Received by the editors May 4, 1989 and, in revised form, June 27, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 16A27.

The first author is a visiting professor, University of California, Los Angeles, California 90024. Research of the second author was supported in part by NSF Grant No. DMS 8521704.

if $\xi=e$ is an idempotent, then $\lambda=1$ and the formula $e_{\kappa}\overline{e}_{\kappa} \leq |\kappa|$ is in fact a result of [W]. As we will see, the proof of the above theorem is in some sense a combination of these two cases. Furthermore, in the course of the proof, we will show that the upper bound λ^2 can be replaced by a suitable weighted average of the squares of the absolute values of all roots of f(x). We will also precisely describe when equality occurs.

THE SEMISIMPLE CASE

We first consider semisimple elements using an analytic proof. Recall that if $\alpha = \sum_{g \in G} a_g g$ and $\beta = \sum_{g \in G} b_g g$ are in $\mathbf{C}[G]$ then, by definition, $(\alpha, \beta) = \sum_{g \in G} a_g \overline{b}_g$ and $\alpha^* = \sum_{g \in G} \overline{a}_g g^{-1}$. Clearly $(\ ,\)$ is a Hermitian inner product and we have $(\alpha\beta, \gamma) = (\alpha, \gamma\beta^*) = (\beta, \alpha^*\gamma)$. In addition, we note that $(\alpha, \beta) = \operatorname{tr} \alpha\beta^*$ where $\operatorname{tr} \alpha = \alpha_1 = a_1$.

Following [M], we complete C[G] to a Hilbert space H. Then, via left multiplication, each $g \in G$ is a unitary operator on H and thus C[G] embeds in B(H), the C^* -algebra of bounded operators on H. Furthermore, we see from the above formulas that * on C[G] extends to the adjoint map * on B(H). We now let $\mathscr A$ denote the uniform closure of C[G] in B(H). Then $\mathscr A$ is also a C^* -algebra and, as in [M], if e is any idempotent of $\mathscr A$ there exists a projection p with $e\mathscr A=p\mathscr A$. Thus p is a self-adjoint idempotent with ep=p and pe=e.

Note that if G is finite, then $\mathscr{A} = \mathbb{C}[G]$.

Lemma 2. Let e_1, e_2, \ldots, e_n be orthogonal idempotents of $\mathscr A$. Then there exist orthogonal projections p_1, p_2, \ldots, p_n such that $T(e_i) = T(p_i)$ for any trace map $T: \mathscr A \to \mathbb C$. Furthermore, if either e_i or p_i is central, then $e_i = p_i$.

Proof. We show inductively that we can replace e_1, e_2, \ldots, e_n in turn by orthogonal projections without changing their traces. Thus suppose that $e_1, e_2, \ldots, e_{k-1}$ are already projections and that $k \leq n$. The goal here is to replace e_1, e_2, \ldots, e_n by orthogonal idempotents f_1, f_2, \ldots, f_n satisfying $T(e_i) = T(f_i)$ for all i and such that f_1, f_2, \ldots, f_k are projections. To this end, recall that there exists a projection p_k with $p_k e_k = e_k$ and $e_k p_k = p_k$. Set $f_i = (1 - p_k)e_i$ for $i \neq k$ and $f_k = p_k$.

Now $e_i e_k = 0$ for $i \neq k$ and hence $e_i p_k = e_i (e_k p_k) = 0$. Thus for $i, j \neq k$ we have

$$f_i f_j = (1 - p_k) e_i \cdot (1 - p_k) e_j = (1 - p_k) e_i e_j$$
.

It follows that $f_i^2=f_i$ and that $f_if_j=0$ for $i\neq j$. Furthermore, $f_k^2=f_k$ and, since $f_k=p_k$, we have $f_kf_i=f_if_k=0$ for $i\neq k$. Thus f_1,f_2,\ldots,f_n are also orthogonal idempotents. Note that $f_k=p_k$ is a projection and for i< k we have $0=(e_ip_k)^*=p_ke_i$ since $e_i^*=e_i$. Thus $f_i=e_i$ here and f_1,f_2,\ldots,f_k are projections.

Finally notice that for $i \neq k$ we have $f_i e_i = f_i$ and $e_i f_i = e_i (1 - p_k) e_i = e_i$. On the other hand, for i = k we have the reverse formulas $f_k e_k = e_k$ and

 $e_k f_k = f_k$. It follows that if T is any trace map, then

$$T(e_i) = T(e_i f_i) = T(f_i e_i) = T(f_i)$$

for $i \neq k$ and similarly $T(e_k) = T(f_k)$. Furthermore, if either e_i or f_i is central, then clearly $e_i = f_i$. With these observations, the result follows by induction on k.

Note that as a consequence we have the well-known fact that any central idempotent is a projection.

Now by [M, Lemma 1], tr extends to a trace map $\operatorname{tr}: \mathscr{A} \to \mathbb{C}$ satisfying $\operatorname{tr}(\alpha\alpha^*) > 0$ for all nonzero $\alpha \in \mathscr{A}$. We can therefore extend the Hermitian inner product $(\ ,\)$ to \mathscr{A} by defining $(\alpha,\beta) = \operatorname{tr} \alpha\beta^*$ for all $\alpha,\beta \in \mathscr{A}$.

Recall that if $e \neq 0$, 1 is an idempotent of C[G] then Kaplansky's Theorem (see [K, page 122 or M, Lemma 2]) asserts that 0 < tr e < 1.

Lemma 3. Let $\xi = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n \in \mathbb{C}[G]$ with e_1, e_2, \dots, e_n orthogonal idempotents and $\lambda_i \in \mathbb{C}$. Then

$$\sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| \le |\lambda_{1}|^{2} \operatorname{tr} e_{1} + |\lambda_{2}|^{2} \operatorname{tr} e_{2} + \dots + |\lambda_{n}|^{2} \operatorname{tr} e_{n}$$

with equality if and only if ξ is central. Furthermore, if $\lambda = \max_i |\lambda_i|$, then

$$\sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| \leq \lambda^{2}$$

with equality if and only if ξ is central, $|\lambda_i| = \lambda$ for all i with $e_i \neq 0$, and $e_1 + e_2 + \cdots + e_n = 1$.

Proof. We can clearly delete the terms with $\lambda_i = 0$ and we can merge those terms with the same λ_i 's. Thus we can assume that the λ_i 's are distinct and nonzero. This is needed only when we consider the possibility of equality in the formulas.

Now for each finite conjugacy class κ , let $\hat{\kappa}$ denote the central element of $\mathbb{C}[G]$ given by $\hat{\kappa} = \sum_{g \in \kappa} g$. Then for any element $\alpha \in \mathbb{C}[G]$ we have $\alpha_{\kappa} = \operatorname{tr} \alpha \hat{\kappa}^* = (\alpha, \hat{\kappa})$. Define the central element η of $\mathbb{C}[G]$ by

$$\eta = \sum_{\kappa} \xi_{\kappa} \hat{\kappa} / |\kappa|$$

where the sum is over the finitely many finite classes κ with $\xi_{\kappa} \neq 0$. It follows easily from $\alpha_{\kappa} = (\alpha, \hat{\kappa})$ that

$$(\xi\,,\eta) = \sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| = (\eta\,,\eta)\,.$$

Now let p_1, p_2, \ldots, p_n be the projections given by Lemma 2 and set $\xi' = \lambda_1 p_1 + \lambda_2 p_2 + \cdots + \lambda_n p_n \in \mathscr{A}$. Since η is central in $\mathbb{C}[G]$, it is clear that both η and η^* are central in the uniform closure \mathscr{A} . Thus the map $T: \mathscr{A} \to \mathbb{C}$

defined by $T(\alpha) = \operatorname{tr} \alpha \eta^* = (\alpha, \eta)$ is a trace and we conclude from Lemma 2 that

$$(\xi',\eta)=(\xi,\eta)=(\eta,\eta)\geq 0.$$

By the Cauchy-Schwarz inequality we then have

$$(\eta, \eta)^2 = (\xi', \eta)^2 \le (\xi', \xi')(\eta, \eta)$$

and hence

$$\sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| = (\eta, \eta) \le (\xi', \xi').$$

Since the p_i 's are orthogonal, we have $(p_i, p_j) = (p_i p_j^*, 1) = (p_i p_j, 1) = 0$ for $i \neq j$. Furthermore, $(p_i, p_i) = (p_i, 1) = \operatorname{tr} p_i$ and, since tr is a trace, $\operatorname{tr} p_i = \operatorname{tr} e_i$ by Lemma 2 again. We conclude that

$$(\xi', \xi') = \sum_{i=1}^{n} |\lambda_i|^2 (p_i, p_i) = \sum_{i=1}^{n} |\lambda_i|^2 \operatorname{tr} e_i$$

and the first inequality is proved. We now describe when equality occurs.

Suppose first that ξ is central so that clearly $\xi=\eta$. Since all λ_i are distinct and nonzero, it follows from $\xi^k=\lambda_1^ke_1+\lambda_2^ke_2+\cdots+\lambda_n^ke_n$ that each e_i is also central. Hence $e_i=p_i$ by Lemma 2 and $\xi'=\xi=\eta$. Thus $(\eta,\eta)=(\xi',\xi')$ and equality occurs. Conversely, suppose equality occurs. If $\eta\neq 0$, then ξ' must be a scalar multiple of η and hence ξ' is central. As above, this implies that each p_i is central, so $p_i=e_i$ and $\xi=\xi'$ is central. On the other hand if $\eta=0$, then $\operatorname{tr} e_i=0$ for all i, so $e_i=0$ and again ξ is central.

Finally observe that $e = e_1 + e_2 + \cdots + e_n$ is an idempotent so

$$\operatorname{tr} e_1 + \operatorname{tr} e_2 + \dots + \operatorname{tr} e_n = \operatorname{tr} e \le 1$$

by Kaplansky's Theorem. Thus the second inequality follows immediately from the first. Moreover, equality clearly occurs here if and only if $|\lambda_i| = \lambda$ for all i with $\operatorname{tr} e_i \neq 0$, $\operatorname{tr} e = 1$, and equality holds in the first formula. Since $\operatorname{tr} e_i = 0$ if and only if $e_i = 0$ and $\operatorname{tr} e = 1$ if and only if e = 1, the result follows.

Several remarks are now in order. First, if G is a finite group and e is an idempotent in C[G], then

$$\operatorname{tr} e = \frac{\dim_{\mathbb{C}} e\mathbb{C}[G]}{|G|} = \frac{\dim_{\mathbb{C}} e\mathbb{C}[G]}{\dim_{\mathbb{C}} \mathbb{C}[G]} \,.$$

Thus the trace of e is a measure of its rank and this is also true in some vague sense for G infinite. It follows that the sum

$$\left|\lambda_{1}\right|^{2}\operatorname{tr} e_{1}+\left|\lambda_{2}\right|^{2}\operatorname{tr} e_{2}+\cdots+\left|\lambda_{n}\right|^{2}\operatorname{tr} e_{n}$$

is a weighted average of the various $|\lambda_i|^2$ with $\operatorname{tr} e_i$ being a measure of the multiplicity of λ_i as an eigenvalue of ξ .

Second, if ξ itself is an idempotent, say $\xi=e$, then the inequality of Lemma 3 becomes $\sum_{\kappa} e_{\kappa} \overline{e}_{\kappa}/|\kappa| \leq \operatorname{tr} e$. This clearly extends [W, Theorem 2] where it was shown that $e_{\kappa} \overline{e}_{\kappa} \leq |\kappa| \operatorname{tr} e$ for each finite class κ .

Finally, it is quite possible that the above result can be proved entirely within C[G] using the ideas of [P, §2.1].

THE NILPOTENT CASE

Nilpotent elements can be handled by a fairly standard technique. Let κ be a conjugacy class of G, let n be an integer and define $\kappa^n = \{g^n | g \in \kappa\}$. From $(g^n)^x = (g^x)^n$ for all $g, x \in G$, we see immediately that κ^n is also a conjugacy class of G.

Lemma 4. Let κ be a finite conjugacy class and let $g \in G$. If $g^p \in \kappa^p$ for infinitely many distinct primes, then $g \in \kappa$.

Proof. Since κ is finite and $g^p \in \kappa^p$ for infinitely many primes, there exist $x \in \kappa$ and distinct primes p, q with $g^p = x^p$ and $g^q = x^q$. Since (p, q) = 1we then have 1 = pa + qb and hence

$$g = (g^p)^a (g^q)^b = (x^p)^a (x^q)^b = x.$$

Thus $g = x \in \kappa$.

With this, we can prove

Lemma 5. Let $\xi \in \mathbb{C}[G]$ be nilpotent. If κ is a finite conjugacy class of G, then $\xi_{\kappa} = 0$.

Proof. Assume by way of contradiction that $\xi_{\kappa} \neq 0$ and say $\xi^{n} = 0$. By the Extension Theorem for Places (see [P, Theorem 2.2.4]) there exist infinitely many primes p such that

- 1. $\xi \in R_n[G]$ where R_n is a valuation subring of \mathbb{C} ,
- 2. $\xi_{\kappa} \neq M_p$ where M_p is the maximal ideal of R_p , 3. $R_p/M_p = F_p$, a field of characteristic p.

Furthermore since $\xi = \sum_{g \in G} a_g g$ has finite support, it follows from the previous lemma that there exists a prime p as above with

- 4. p > n,
- 5. if $g \in \text{Supp } \xi$, then $g^p \in \kappa^p$ if and only if $g \in \kappa$.

Now let p satisfy (1)-(5) and let $\overline{}: R_p[G] \to F_p[G]$ be the natural epimorphism. Since p > n, it follows from [P, Lemma 2.3.1] that

$$0 = \overline{\xi}^p = \sum_{g} (\overline{a}_g)^p g^p + \overline{\eta}$$

where $\bar{\eta}$ is a sum of Lie commutators. In particular, computing the trace with respect to the class κ^p yields $\overline{\eta}_{\kappa^p} = 0$. With this, (5) yields

$$0 = (\overline{\xi}^p)_{\kappa^p} = \sum_{g \in \kappa} (\overline{a}_g)^p = \left(\sum_{g \in \kappa} \overline{a}_g\right)^p = (\overline{\xi}_\kappa)^p$$

and we have a contradiction since $\overline{\xi}_{\kappa} = \overline{\xi_{\kappa}} \neq 0$ by (2). Thus $\xi_{\kappa} = 0$ and the lemma is proved.

Conclusion

It is now a simple matter to put all the ingredients together. The following is a more precise version of Theorem 1.

Proposition 6. Let ξ be an element of $\mathbb{C}[G]$ and suppose that $f(\xi) = 0$ for some nonzero polynomial $f(x) \in \mathbb{C}[x]$. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the complex roots of f, then

$$\xi = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n + \xi'$$

where $1 = e_1 + e_2 + \cdots + e_n$ is a decomposition of 1 into orthogonal idempotents and where ξ' is nilpotent. Furthermore we have

$$\sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| \leq |\lambda_{1}|^{2} \operatorname{tr} e_{1} + |\lambda_{2}|^{2} \operatorname{tr} e_{2} + \dots + |\lambda_{n}|^{2} \operatorname{tr} e_{n}$$

with equality if and only if $\xi - \xi'$, the semisimple part of ξ , is central. Finally, if $\lambda = \max_i |\lambda_i|$, then

$$\sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| \le \lambda^2$$

with equality if and only if $\xi - \xi'$ is central and $|\lambda_i| = \lambda$ for all i with $e_i \neq 0$.

Proof. Since $f(\xi) = 0$, $C[\xi]$ is a finite-dimensional commutative C-algebra. Thus, since C is algebraically closed, it follows as in [P, Theorem 2.3.8] that

$$\xi = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n + \xi'$$

where $1=e_1+e_2+\cdots+e_n$ is a decomposition of 1 into orthogonal idempotents and where ξ' is nilpotent. Let $\eta=\lambda_1e_1+\lambda_2e_2+\cdots+\lambda_ne_n$ be the semisimple part of ξ . If κ is a finite conjugacy class of G, then $\xi'_{\kappa}=0$ by Lemma 5 so $\xi_{\kappa}=\eta_{\kappa}$. Hence $\sum_{\kappa}\xi_{\kappa}\overline{\xi}_{\kappa}/|\kappa|=\sum_{\kappa}\eta_{\kappa}\overline{\eta}_{\kappa}/|\kappa|$ and Lemma 3 yields the result.

Notice that if $\xi - \xi'$ is central in the above, then ξ is the sum of a central element and a nilpotent element. Conversely, suppose $\xi = \zeta + \nu$ with ζ central and ν nilpotent. Then ξ , ζ and ν commute so $\mathbf{C}[\xi,\zeta,\nu] = \mathbf{C}[\xi,\nu]$ is again a finite-dimensional commutative C-algebra. Write $\zeta = \eta + \zeta'$ where $\eta \in \mathbf{C}[\zeta]$ is semisimple and ζ' is nilpotent. Then $\xi = \eta + (\zeta' + \nu)$ so it follows that η is also the semisimple part of ξ . Thus $\xi - \xi'$ is central if and only if ξ is the sum of a central element and a nilpotent element.

We close with two corollaries.

Corollary 7. Let $\xi \in \mathbb{C}[G]$ be algebraic over \mathbb{C} and suppose that its minimal polynomial f(x) has distinct roots, say $\lambda_1, \lambda_2, \ldots, \lambda_n$. If λ is the maximum of absolute values of the λ_i , then $\sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| \leq \lambda^2$ with equality if and only if ξ is central and $|\lambda_i| = \lambda$ for all i.

Proof. Since f(x) has distinct roots, it follows that ξ is semisimple. Furthermore, since f(x) is the minimal polynomial satisfied by ξ , it follows, in the notation of the preceding proposition, that all e_i are nonzero. Proposition 6 now yields the result.

Corollary 8. Let ξ be a unit of finite order in the group algebra $\mathbb{C}[G]$. Then $\sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| \leq 1$ with equality if and only if ξ is central. Furthermore, if ξ is in the integral group ring $\mathbb{Z}[G]$, then equality occurs if and only if $\pm \xi$ is a central torsion element of G.

Proof. Since ξ satisfies x^m-1 for some m, its minimal polynomial has distinct roots all of absolute value 1. With this, the first part follows from the preceding corollary. Now suppose equality occurs and $\xi \in \mathbf{Z}[G]$. Since ξ is central, it follows that for each finite class κ either $\xi_{\kappa}=0$ or $\xi_{\kappa}\overline{\xi}_{\kappa} \geq |\kappa|^2$. We conclude therefore, from $\sum_{\kappa} \xi_{\kappa} \overline{\xi}_{\kappa} / |\kappa| = 1$, that ξ_{κ} is zero for all but one class. Furthermore, the remaining class κ has size 1 and $\xi_{\kappa}=\pm 1$. Thus $\xi=\pm g$ with g a central element of G.

Finally we remark that if $\xi \in \mathbb{C}[G]$ is algebraic over the rationals \mathbf{Q} , then ξ_{κ} is also algebraic over \mathbf{Q} for each finite conjugacy class κ . This is an immediate consequence of Lemma 5 and the result [B, Theorem 8.1] on idempotents. It also follows directly from Theorem 1 by noting that ξ_{κ} and its algebraic conjugates have bounded absolute values. An analogous result of interest is [HLP, Corollary 2.8].

REFERENCES

- [B] H. Bass, Euler characteristics and characters of discrete groups, Inventiones Math. 35 (1976), 155-196.
- [HLP] A. W. Hales, I. S. Luthar and I. B. S. Passi, Partial augmentations and Jordan decomposition in group rings (to appear).
- [K] I. Kaplansky, Fields and Rings, Chicago Lectures in Mathematics, University of Chicago Press, Chicago.
- [M] M. S. Montgomery, Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), 539-540.
- [P] D. S. Passman, The algebraic structure of group rings, Wiley-Interscience, New York, 1977.
- [W] A. Weiss, Idempotents in group rings, J. Pure and Appl. Algebra 16 (1980), 207-213.

Department of Mathematics, Panjab University, Chandigarh, India 160014

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706