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HYPERBOLIC UNIT GROUPS

S. O. JURIAANS, I. B. S. PASSI, AND DIPENDRA PRASAD

(Communicated by Jonathan I. Hall)

Abstract. In this paper we study the groups G whose integral group rings
have hyperbolic unit groups U(ZG). We classify completely the torsion sub-
groups of U(ZG) and the polycyclic-by-finite subgroups of the group G. Finally,
we classify the groups for which the boundary of U(ZG) has dimension zero.

1. Introduction

The study of hyperbolic groups has been an active topic of research in recent
years. It started with the work of M. Gromov [4] and has developed very rapidly
since then.

Let G be a group and Γ := U1(ZG) the group of normalized units of the integral
group ring ZG. It is well known that if G is finite, then Γ is finitely presented (see,
for instance, [8]). Since almost every finitely presented group is hyperbolic [10], it
is natural to investigate when Γ is hyperbolic. Motivated by these considerations,
we are led to pose the following:

Problem 1. Classify the groups G for which Γ is hyperbolic.

This paper is a contribution to the above problem. After giving in section 2
the basic facts about hyperbolic groups needed in this work, we characterize, in
section 3, the torsion subgroups of Γ and the polycyclic-by-finite subgroups of G,
thus answering the problem, in particular, for torsion groups. Contrary to the
theorem that almost all finitely presented groups are hyperbolic, we find that the
unit group of a finite group is hyperbolic only in a very small number of cases,
which we enumerate explicitly. It turns out that if G is finite and Γ is hyperbolic,
then G has a normal free complement (i.e., there exists a normal free subgroup F in
Γ such that Γ = FG, F ∩ G = 1), and furthermore every torsion-free complement
of G is free.

Finally, we completely characterize the groups G such that Γ is hyperbolic with
its hyperbolic boundary having dimension zero, or equivalently that Γ is virtually
free.

Jespers ([6], [7]) has classified those finite groups G that have a normal free
complement in Γ . This property implies that Γ is quasi-isometric to a free group
of finite rank and hence is hyperbolic. In view of this work, our Theorems 2 and
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3 can be considered to be basically due to Jespers; however, our proofs are quite
different.

2. Preliminaries

Let (X, d) be a metric space. For x, y, z ∈ X , the Gromov product of y, z with
respect to x is defined to be

(y.z)x =
1
2
{d(y, x) + d(z, x)− d(y, z)}.

The metric space is said to be δ-hyperbolic (δ ≥ 0) if

(x.y)w ≥ min{(x.z)w, (y.z)w} − δ
for all w, x, y, z ∈ X . Let G be a finitely generated group and S a finite set of
generators for G. The Cayley graph G(G, S) of G with respect to S is the metric
graph whose vertices are in one-to-one correspondence with the elements of G and
which has an edge (labeled s) of length 1 joining g to gs for each g ∈ G and s ∈ S.
The group G is said to be hyperbolic (in the sense of Gromov) if its Cayley graph
G(G, S) is a δ-hyperbolic metric space for some δ ≥ 0. This definition does not
depend on the choice of the generating set S.

For the reader’s convenience, we collect some of the facts about hyperbolic groups
that we need. Let Z2 denote the free Abelian group of rank two.

Theorem 1. Let Γ be a hyperbolic group. Then
(a) Z2 does not embed as a subgroup of Γ .
(b) If g ∈ Γ has infinite order, then [CΓ (g) : 〈g〉 ] is finite, where CΓ (g) is the

centralizer of g in Γ .
(c) Torsion subgroups of Γ are finite of bounded order.
(d) Γ is virtually free if and only if its boundary has dimension zero.
(e) If Γ is quasi-isometric to a free group, then Γ is virtually free. If, moreover,

Γ is torsion-free, then it is free.

For the theory of hyperbolic groups, the reader may refer to [1], [3] or [4] and,
for standard results and notation in group rings, to [11, 12, 13, 14].

3. Groups with U1(ZG) hyperbolic

Let G be an arbitrary group, and let G ⊆ Γ := U1(ZG) be a subgroup of nor-
malized units. In this section, unless otherwise stated, we shall always assume that
Γ is a hyperbolic group.

We first make some easy observations:
10. In case G is finite, then it constitutes a Z-linearly independent subset of ZG
and consequently Z[G], the subring of ZG generated by G, is isomorphic to the
group ring ZG. This fact shall be used freely. It is a simple consequence of a
well-known theorem of Berman: If u is an element of finite order in the unit group
U1(ZG), then the coefficient in u of the identity element of G is zero unless u equals 1.

20. Let g ∈ Γ be a torsion element and n = o(g) its order. Since the torsion-
free rank of U1(Z〈g〉) is

∑
d|n,d>2(φ(d)

2 − 1) (see [13], Theorem 3.1, p. 54) where
φ is the Euler phi-function, it follows, from Theorem 1(a), that n divides 5, 8, or 12.
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30. Let G be a finite subgroup of Γ . Since Z2 does not embed in Γ , QG has at
most one Wedderburn component that is not a division ring, and that component
must be M2(Q). (This follows by looking at the upper triangular matrices in a
Wedderburn component Mn(D), which gives rise to units of the form GLn(O) for
an order O in D.) Hence if G is non-Abelian and none of its non-Abelian quotient
embeds into a division ring, then ∆(G,G′), the kernel of the natural projection
QG −→ Q(G/G′), where G′ is the derived group of G, is isomorphic to M2(Q), and
so its dimension over Q is 4.

40. In view of 20 and 30, it is easy to see that the groups C5×C3, C5×C4, C5×C5,
D5, C5 o C4, C5 o C8, C8 × C2, K8 × C3, (C2 × C2)o C4 and Q16 cannot appear
as subgroups of Γ , where Q16 is the generalized quaternion group of order 16, K8

denotes the quaternion group of order 8, Dn the dihedral group of order 2n and Cn
the cyclic group of order n.

50. We will have occasion to use the general result that if Γ := U1(ZG) is finitely
generated, so is G; in particular if Γ is hyperbolic, G is finitely generated. We supply
a proof of this assertion. Suppose that Γ is generated by a finite set, say u1, · · · , un.
Let G0 be the subgroup of G generated by the supp(ui), supp(u−1

i ), i = 1, · · · , n.
This is a finitely generated group. All the ui’s belong to the unit group of ZG0,
and hence Γ is contained in the unit group of ZG0. But G is a subset of Γ , and so
G is contained in ZG0. This implies that G = G0, and hence G is finitely generated,
as G0 is.

Recall that a non-Abelian group G is called Hamiltonian if all its subgroups
are normal. We will abuse terminology to denote a non-Abelian, non-Hamiltonian
group simply as a non-Hamiltonian group; thus in our usage, a non-Hamiltonian
group is always non-Abelian. If G is a finite Hamiltonian group, then G ' K8 ×
A × E, where K8 is the quaternion group of order 8, A an Abelian group of odd
order and E an elementary Abelian 2-group (see [5], Theorem 7.12, p. 308). As in
[6], we begin with the following result.

Lemma 1. Let H ⊆ G ⊆ Γ be groups with G finite and non-Abelian. Then one of
the following holds:

(a) H is Abelian.
(b) H is a (non-Abelian) Hamiltonian 2-group.
(c) QH contains a unique matrix Wedderburn component that is isomorphic to

M2(Q) and H = G.

Proof. Note first that if Mn(D) is a Wedderburn component of QH , then we must
have n ≤ 2.

Suppose H is non-Abelian. In case QH is a direct sum of division rings, then
H ' K8 × E ×A, with E an elementary Abelian 2-group and A an Abelian group
of odd order ([13], Theorem 1.17, p. 172). In case A 6= 1, then, because of the
restriction on the orders of the elements of finite order, A is an elementary Abelian
3-group. Hence H0 ' K8×C3 is a subgroup of G, which is not possible by 40, and
so H is a Hamiltonian 2-group.

Next suppose that QH is not a direct sum of division rings. Then, by 30, QH
has a unique matrix Wedderburn component A and A ' M2(Q). Let e ∈ QH be
the primitive central idempotent such that QHe = A. Let {fi | 1 ≤ 1 ≤ n} be the
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set of primitive central idempotents of QG, and so e =
∑
efi 6=0

efi. Since A is simple,

efi 6= 0 implies that QGfi contains a copy of A and hence, since the only matrix
Wedderburn component in QG is M2(Q), QGfi ' M2(Q). Also, there is exactly
one index i, such that efi is non-zero; for, otherwise, there will be more than one
Wedderburn component in QG which is M2(Q), which is not allowed by 30. So
e = efi and QHe = QGe for a central primitive idempotent e in H . We conclude
from this that H = G. For this, let g ∈ G; thus ge ∈ QHe. Since the trace of a
primitive central idempotent in a group ring, i.e., the coefficient of 1, is non-zero, g
belongs to the support of ge, which is contained in H . Thus G is contained in H ,
and hence G = H . �
Corollary 1. Let G be a finite non-Hamiltonian subgroup of Γ . Then every
Wedderburn component of QG is either Q, or an imaginary quadratic extension of
Q, or M2(Q) or a totally definite quaternion algebra over Q . Furthermore, G has
a subgroup of index 2.

Proof. By the previous lemma there exists a unique Wedderburn component of the
form M2(Q). Let A be any other Wedderburn component. Then A is a division
ring. Let K be a maximal subfield of A. Then the unit group of the ring of integers
of K must be finite, and hence K is at most a quadratic extension of Q. So if A is
non-commutative, then its centre must equal Q, and hence dimQ(A) = 4, and thus
A is a totally definite quaternion algebra over Q.

Considering the complex group algebra CG and using what we proved above
about the Wedderburn components of QG, we see that CG is the direct sums of
copies of C and two-by-two matrices over C. Hence, by Corollary 12.9 of [2], G
contains a subgroup of index 2. �

We note that if G is a finite non-Hamiltonian subgroup of Γ (and therefore
has a Wedderburn component that is not a division algebra), then ZG does not
contain a central unit of infinite order; for, if α is such an element, then for a θ in
QG, a non-zero nilpotent element with θ2 = 0, 〈α, 1 + θ〉 ∼= Z2, a contradiction to
Theorem 1(a). Hence central units of ZG are trivial. The following result extends
this observation to arbitrary subgroups of Γ .

Lemma 2. Let G be any subgroup of Γ such that U1(Z[G]) contains a central unit
of infinite order. If G is finite, then it is Abelian; if G is infinite and contained in
G, then G = U1(ZG) and G is centre-by-finite.

Proof. IfG is finite, then by Lemma 1 and the above observationGmust be Abelian.
Suppose thatG is an infinite subgroup of G and α is a central unit in ZG of infinite

order. Then, since Γ is hyperbolic, by Theorem 1(b) we have that [U1(ZG) : 〈α〉] <
∞. It follows that G is an elementary hyperbolic group with a central element go,
say, of infinite order. If 0 6= θ is a nilpotent element in ZG, then 〈1 + θ, g0〉 ' Z2,
since the Kaplansky trace of a nilpotent element is zero. Hence ZG has no non-zero
nilpotent elements. For an element x of G of order d, and an arbitrary element g
of G, the element (1− x)g(1 +x+ · · ·+xd−1) is nilpotent, hence is zero. From this
we see that the element g normalizes the cyclic subgroup generated by x for every
torsion element x in G. Thus the torsion elements T (G) of G form a subgroup of G,
which is finite by Theorem 1(c). Furthermore, since all elements of U1(ZT (G)) will
have to be of finite order, U1(ZT (G)) = T (G). Since G/T (G) is ordered it follows
from ([14], Proposition 45.5, p. 277) that U1(ZG) = (U1(ZT (G)))G = G. �
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Lemma 3. Let G be any group, and let x, y ∈ G be such that 〈x〉 ∩ 〈y〉 = 1,
o(x) <∞, o(y) ≥ 5 and xy 6∈ 〈x〉. Then Z2 embeds into U1(ZG).

Proof. Define x̂ := 1 + x+ · · ·+ xn−1, n = o(x), and θk = (1− x)ykx̂, 1 ≤ k ≤ o(y).
Now observe that, under the given hypothesis, it is possible to choose k such that
〈1 + θ1, 1 + θk〉 is a subgroup of U1(ZG) and isomorphic to Z2. �

Lemma 4. If Γ has an element of order 5, then G ' C5.

Proof. By general properties of elements of prime order in a group ring (see [14],
Theorem 45.11, p. 278), if Γ has an element of order 5, so does G. Let x ∈ G be
such an element.

Suppose first that G is non-Abelian. If x were central, then Γ would have a
central element α of infinite order, with support in 〈x〉, and hence, by Lemma 2,
G would have an element g0 of infinite order. Since 〈α, go〉 ' Z2, we have a
contradiction. On the other hand, if 〈x〉 were normal but not central, then there
would exist an element g0 ∈ G with o(g0) ∈ {2, 4, 8, ∞} such that 〈x〉 o 〈go〉 is a
subgroup of G. In view of 40, o(g0) =∞ and with α as above, we have 〈α, g4

0〉 ' Z2,
again a contradiction. Hence there must exist another element y ∈ G of order 5
that does not commute with x; but then x and y satisfy the conditions of Lemma 3,
which is a contradiction.

Next suppose that G is Abelian. Then, as seen above, G must be torsion and
hence finite. From rank considerations of Γ , it is clear that G ' C5. �

Lemma 5. If G is a non-torsion group, then T (G) is a finite Hamiltonian group
and U1(ZT (G)) = T (G). Moreover, the primitive central idempotents of QT (G) are
central in QG.

Proof. Let x, y ∈ G, with o(x) <∞ = o(y). Then, by Lemma 3, we must have that
xy ∈ 〈x〉. Since the orders of the torsion elements of G divide 8 or 12, it follows
that y4 must centralize T (G), the set of torsion elements of G. Let y0 = y4, and let
z ∈ G be any other torsion element. If z does not normalize 〈x〉, then (1−x)zx̂ and
y0(1 − x)zx̂ are Q-linearly independent commuting nilpotent elements, and so Z2

embeds into Γ , a contradiction. It follows that T (G) is a subgroup, is locally finite,
and hence, since Γ is hyperbolic, it is finite. If U1(ZT (G)) is not trivial, then, since
y0 ∈ G has infinite order, we can embed Z2 into Γ . Finally, let e ∈ QT (G) be a
central primitive idempotent that is not fixed by g ∈ G. Then o(g) = ∞ and so
〈1 + eg, 1 + y0eg〉 ' Z2, a contradiction. �

Lemma 6. Let G be a finite non-Abelian subgroup of Γ . Then exp(G) divides
12 and G = 〈H, x 〉, where H is a subgroup of index 2 and x is a 2-element.
Furthermore, (i) if 3 divides |G|, then G is isomorphic either to S3 or to Q12; (ii)
if G is a 2-group having a non-central element of order 2, then G ' D4.

Proof. In view of Corollary 1, observe that G has a subgroup H of index 2 that is
either Abelian or a Hamiltonian 2-group and its order is not divisible by 5. So we
may choose a 2-element x ∈ G such that x2 ∈ H and G = 〈H,x〉.

Suppose that 3 divides |G|; then H must be Abelian. If Syl3(G), the Sylow
3-subgroup of G, were central, then, by Lemma 1, G = Syl3(G) × Syl2(G) with
Syl2(G) a Hamiltonian 2-group, and so G ' C3×K8, a contradiction to 40. Hence
there exists a ∈ H of order 3 such that ax 6= a. Then, since clearly (a−1ax)x =
(a−1ax)−1, we have that G ' C3 o 〈x〉. We only need to rule out the case when
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o(x) = 8. In this case Q(G/G′) ' QC8, and so U1(ZG) has a central element of
infinite order. Therefore, by Lemma 2, G cannot be a subgroup of Γ .

Suppose next that G is a 2-group and y ∈ G is a non-central element of order
2. Suppose first that y ∈ H . Then, by Lemma 1, G = 〈x, y〉. Since x2 ∈ H , it
follows that [y, x2] = 1 and so G′ = 〈yyx〉. Since such a group does not possess a
non-Abelian quotient that embeds in a non-commutative division ring, it follows by
30 that dimQ(∆(G,G′)) = 4 and so |G| = 8; it thus follows that G ' D4. Suppose
that y 6∈ H . Then G = 〈H, y〉. Choose a ∈ H such that [a, y] 6= 1. Then G = 〈a, y〉.
Note that z := a−1ay is inverted by y. If it is not fixed, then G = 〈z, y〉 = 〈z〉o〈y〉.
On the other hand, if z is fixed, then G′ = 〈z〉 and the same argument as given
above shows that |G| = 8. Thus in any case it follows, by 30, that G ' D4.

It remains to show that G has no element of order 8. Suppose y ∈ G is an
element of order 8. Then, in view of the previous paragraph, elements of order two
are central. Let z be such an element. If z 6∈ 〈y〉, then C8 × C2 would embed in
G, which is not the case. Hence z ∈ 〈y〉, and thus z = y4. Hence G has a unique
element of order 2. Since G is not Abelian, it follows that G is isomorphic to Q16,
which is ruled out by 40. �

We are now ready to present our main results.

Theorem 2. Let G be a finite non-Hamiltonian group. Then the following are
equivalent:

(1) Exactly one Wedderburn component of QG is M2(Q), and any other com-
ponent is either Q, or an imaginary quadratic extension of Q or a totally
definite quaternion algebra over Q.

(2) G has a normal free complement in U1(ZG).
(3) U1(ZG) is virtually free.
(4) U1(ZG) is hyperbolic.

Moreover, if one of the above conditions holds, then every finitely generated
torsion-free subgroup of U1(ZG) is free. In particular, any normal torsion-free
complement of G in U1(ZG) is free.

Proof. (1)⇒ (2) : From (1) it easily follows that c.d.(G), the set of complex char-
acter degrees of G, is {1, 2}; hence, by Corollary 12.9 of [2], G is metabelian.
Furthermore, (1) also implies that Q(G/G′) is a direct sum of copies of Q and
imaginary quadratic fields. Hence the exponent of G/G′ divides 4 or 6, and so
U1(Z(G/G′)) is trivial. Therefore F := U1(ZG)∩ (1 + ∆(G)∆(G′)), which is known
to be torsion-free (see [14]; for a more general result see [9]), is a complement of
G in U1(ZG). Since SL(2,Z) contains a free group of rank 2 as a subgroup of
finite index, it easily follows that F is quasi-isometric to a free group and so, by
Theorem 1(e), F is a free group.

(2)⇒ (3) : This implication is trivial, since G is finite.
(3)⇒ (4) : This is a consequence of the fact that a free group is hyperbolic and

hyperbolicity is stable under quasi-isometry.
(4)⇒ (1) : This follows from Corollary 1.
Finally, if H is a finitely generated torsion-free subgroup of U1(ZG) and F is

a free subgroup of finite index in U1(ZG), then H ∩ F is a finitely generated free
subgroup of finite index in H . Hence, once again by Theorem 1(e), we have that
H is free. �
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The following result characterizes the torsion groups that can occur as subgroups
of hyperbolic unit groups.

Theorem 3. If a torsion group G embeds into a hyperbolic unit group, then G
must be finite and isomorphic to one of the following groups:

(1) C5, C8, C12, an Abelian group of exponent dividing 4 or 6;
(2) a Hamiltonian 2-group;
(3) S3, D4, Q12, C4 o C4.

Conversely, all of the groups listed above have hyperbolic unit groups.

Proof. Since a torsion subgroup of a hyperbolic group is finite, G must be so.
Suppose first that G is Abelian. Write

QG =
⊕

adQ(ξd),

where ad = nd
φ(d) , nd = the number of elements of order d, and φ is the Euler phi-

function. Then U1(ZG) is hyperbolic if and only if its torsion-free rank is at most
one, i.e., ∑

d

ad(
φ(d)

2
− 1) ≤ 1.

Hence either U1(ZG) is finite, and so G has exponent dividing 4 or 6, or there
exists a unique integer d such that φ(d) = 4 and ad = 1. It then follows that
G ∈ {C5, C8, C12}.

Clearly, if G is one of these groups, then the unit group of U1(ZG) is either trivial
or has torsion-free rank equal to one and so is hyperbolic.

Suppose G is non-Hamiltonian. In view of Lemma 6, we can suppose that G is
a 2-group of order at least 16 in which all elements of order 2 are central.

Since G is non-Hamiltonian, we may choose a, x ∈ G such that ax 6∈ 〈a〉 and so,
by Lemma 1, G = 〈a, x〉 and [a, x] 6= a2. If xa ∈ 〈x〉, then G ' C4 o C4. So we
also suppose that xa 6∈ 〈x〉. Let G = G/〈a2〉; then the Wedderburn components of
QG are among those of QG. Hence, by Theorem 2, G embeds into a hyperbolic
unit group. Since the image of a in G is not central, it follows, by Lemma 6, that
G ' D4. So G has order 16 and we may choose a non-central element y ∈ G whose
image has order 4 in G. We still have that G = 〈y, x〉 and either [y, x] = y2 or
[y, x] = y2x2. In particular, [y, x] = [x, y]. If [y, x] = y2, then G ' C4oC4. On the
other hand, if [y, x] = y2x2, then xy would be a non-central element of order 2 and
so, by Lemma 6, G would have order 8, which is not the case.

If G is Hamiltonian, then, by Lemma 6, G is a 2-group.
For the converse, since the unit group of a Hamiltonian 2-group is trivial, it only

remains to show that the groups in (3) have hyperbolic unit groups. To do so, we
prove that for all these groups Theorem 2 (1) is satisfied. Indeed, for all of them we
have that G/G′ has exponent dividing 4, and so Q(G/G′) is a direct sum of copies of
Q and Q(

√
−1). Also, for all of them, dimQ(∆(G,G′) ≤ 8. Each of the groups Q12

and C4 o C4 embeds into a division ring (see [15], Theorem 2.1.5, p. 47). Because
of the limitation on the dimension, these division rings are four dimensional over
Q and hence are totally definite quaternion algebras, and the proof is complete by
Theorem 2. �

We next characterize the infinite polycyclic-by-finite groups G that embed in a
group G whose unit group is hyperbolic.
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Theorem 4. An infinite polycyclic-by-finite group G embeds into a group G whose
unit group U1(ZG) is hyperbolic if and only if

(1) T (G), the set of elements of finite order in G, is a subgroup of G;
(2) G ' T (G)o Z;
(3) U1(ZT (G)) = T (G).

Proof. Let G be infinite and polycyclic-by-finite; then G has an element of infinite
order and so, by Lemma 5, T (G) is a finite subgroup and U1(Z(T (G))) = T (G).
Since G is polycyclic-by-finite, it contains a normal free Abelian subgroup A, say.
Since U1(ZG) is hyperbolic, it follows that A = 〈x〉 is cyclic. Applying Theo-
rem 1 (b), it is easy to see that [G : 〈x〉 ] < ∞ and so G has Hirsch length one
and thus, G ' T (G) o Z. Since the hypothesis of ([14], Proposition 45.5, p. 277)
is satisfied, we conclude that U1(ZG) = (U1(Z(T (G)))G = (T (G))G = G. The
converse being trivial, the proof is complete. �

Finally, we give a complete characterization of the groups G whose unit group Γ
is finitely generated virtually free, or equivalently the boundary ∂(Γ ) has dimension
zero [4]. For convenience we adopt the following:

Definition 1. A group G is called a ∗-group if one of the following conditions holds.

(1) G is a finite Abelian group of exponent dividing 4 or 6.
(2) G is a finite Hamiltonian 2-group.
(3) G ∈ {C5, C8, C12, S3, D4, Q12, C4 o C4}.
(4) G = HoF , where H is of type (1) or (2) above and F is a finitely generated

free group.

Theorem 5. The unit group Γ = U1(ZG) of a group G is finitely generated virtually
free if and only if G is a ∗-group. Furthermore, in case G is infinite, Γ = G.

Proof. Suppose that Γ is finitely generated virtually free, i.e., there exist a finitely
generated free group F contained in Γ of finite index. Then F is finitely generated
and Γ is hyperbolic. Hence if G is a finite group, then by Theorem 3, G is of type
(1), (2) or (3). So suppose that G is infinite. By 50, it follows that G ∩ F is a
finitely generated free subgroup of G of finite index in G, and thus G is virtually
free and so is hyperbolic. Since G must necessarily be non-torsion, therefore, by
Lemma 5, we have that T (G) is finite and U1(ZT (G)) = T (G). The quotient
group H := G/(T (G)) is quasi-isometric to the free group G ∩ F , both being
quasi-isometric to G; therefore, by Theorem 1 (e), H is virtually free. Since H is
torsion-free, it follows that H is free. Hence G ' T (G) o H . Since H is ordered
and U1(ZT (G)) = T (G), it follows from Proposition 45.5 of [14] that Γ = G. So in
any case G is a ∗-group.

The converse follows by the previous results and ([14], Prop. 45.5). �
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Paulo (Brazil) for its warm hospitality during his visit in September-October, 2002.



HYPERBOLIC UNIT GROUPS 423

References

[1] Coornaert, M., Delzant, T., Papadopoulos, A. : Géométrie et théorie des groupes, LNM
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