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Abstract. An interior spherically symmetric solution of Einstein’s field equations correspond-
ing to perfect fluid plus a flowing radiation-field is presented. The physical 3-space t = constant of
our solution is spheroidal. Vaidya’s pure radiation field is taken as the exterior solution. The
inward motion of the collapsing boundary surface follows from the equations of fit. An
approximation procedure is used to get a generalization of the standard Oppenheimer—Snyder
model of collapse with outflow of radiation. One such explicit solution has been given correct to
second power of eccentricity of the spheroidal 3-space.
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1. Introduction

Gravitational collapse is one of the important problems in which general relativity can
play a significant role. The problem has many interesting astrophysical applications. It
is well known that the formation of compact stars is usually preceded by an epoch of
radiative collapse. In the collapse problems, the surface of the star divides the entire
space-time into two different regions: the region inside the surface of the star, called the
interior region, filled with matter and flowing radiation, and the region outside that
surface called the exterior region which will usually be filled with pure radiation. These
two regions must be matched smoothly across the surface of the star.

Historically Oppenheimer and Snyder [1] were the first to discuss the gravitational
collapse of dust ball with static Schwarzschild exterior. Since then the study of relativistic
models describing collapsing bodies has received considerable attention. Vaidya [2,3] and
Lindquist et al [4] studied outgoing radiation from collapsing bodies. Many attempts have
been made to formulate and solve the relativistic equations for collapse [5]. Misner [6]
obtained the basic equations of spherical collapse allowing for a simplified heat transfer
process in which internal energy is converted into an outward flux of neutrinos. Santos and
his collaborators [7-10] have carried out a detailed analysis of non-adiabatic collapse of
spherical radiating bodies and have used this analysis to propose models for radiating
collapsing spherical bodies with heat flow [11]. Vaidya and Patel [12] have presented
a radiating collapse solution based on Schwarzchild interior solution.

In the present paper we discuss a new spherically symmetric collapse solution with
radiation whose physical 3-space t= constant is spheroidal. The space-times with
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spheroidal physical 3-space have been discussed in detail by Vaidya and Tikekar [13]
(see also Tikekar [147).

2. The interior space-time

Vaidya and Tikekar [13] have shown that the metric
1—kr?/R?
1—r?*/R?

can represent the interior of a superdense star with total mass of about 3-5 M o- If the

mass exceeds that limit equilibrium is not possible and gravitational collapse must
follow. It is our aim to study this collapse.

Put r = RsinJ and rewrite the metric as ‘
ds® = e"ds? — R*[{cos? A + (1 —k)sin® A} dA2 + sin2 1(d6? + sin20 d$p?)]
with k =1 — b%*/R? where the 3-space dt =0 is

ds? =" dt? — ( > dr? — r2(d6? + sin20 d¢?)

2 +y* 422w

=1

For a contracting situation we assume R and b to be functions of ¢ such that
b?/R*=1—k is a constant. So if e is the eccentricity of the spheroidal 3-space, our

assumption implies that during gravitational contraction this eccentricity of the
spheroidal 3-space remains constant.

We introduce a new co-ordinate r by setting sin A = r and choose e’ = 1. We therefore
consider the spherically symmetric space-time given by the line-element

(1—kr?)
=)
where R is an arbitrary function of time ¢t and k is a constant. The metric (1) is an
obvious generalization of the Oppenheimer—Snyder metric. We name the coordinates

asx' =r,x?=0,x% = ¢, x* = . It is a routine matter to compute the Einstein tensor G}
for metric (1). The surviving components of G, are listed below for ready reference

ds? = dt? — R2(1) l: dr?* +r%(d#? + sin?6 d¢2):| (1)

1—k R R?
Y o b
S eramey TRt R
1—k R R?
—G2=-——- 3:—-—-——.—...._ — J—
T
2(1—k) 1—k R?
J— 4: —
CRI-e TR TR @

Here and in what follows, an overhead dot indicates differentiation with respect to time ¢.
Einstein’s field equations are

R~ (1/2)R = G = —8xT}, 3

where T} are the components of energy momentum tensor.

342 Pramana - J. Phys., Vol. 46, No. 5, May 1996




)

oy c,ﬁm

Gravitational collapse- field with radiation

We assume that the material contents of the space-time is a mixture of perfect fluid
and outflowing radiation. The expression for T, for such a distribution is given by

T}, =(p + p)v'v, — pdi + ow'w, : 4)
with .

v'o,=1, ww' =0, v'w,=1, (5)

1 14

where p, p, o are respectively the fluid pressure, the matter density and the density of
flowing radiation. We take v* and w' in the form v' = (1%, 0,0, v*) and w' = (w*, 0, 0, w*).
Then the condition (5) imply

- )P +0*) =1, —e W) +w*)?=0,
—e*vtw! +otwt=1, =R*(1—kr?)/(1—1%). (6)

Equation (6) can be used to find e?v*,v*, e**w! and w* in terms of a single parameter
n. Thus we get

e*?pt = —sinhn, v*=coshn,

#2 = w* = coshn — sinhn, (7

wle
where n is a function of co-ordinates to be determined from the field equations, Using
(2) and (7) we have seen that the field equation (3) give a system of four non-trivial
equations. These four equations are sufficient to determine four physical parameters p,
p,o and n. They are given by
(1 —k)(3—2kr?) _R?

RI—?7 R ®)

gmp= —(1=H _,R_K 9

8mp =

k(1 —k) (1—k)(2—kr2)_2_1§+21_éj
R2(1 —kr?)*\_ R*(1 —kr?)? R °R?
870 = e (10)
—2-h KR
R*1—kr?*) "R ' "R?
k(1 —k)r?
R (1 — kr?)?
= ~ —. 11
tanhn (1—k)(2—~kr2)_2_1_3_+2§i (11)
R2(1 — kr2)? R “R?

It can be seen that
Ti — T%= —((p + p)sinh®n + g(coshn — sinh n)*)

which is negative. But using the expressions (2) one can see that

— k(1 — k)
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TT — T2 being negative implies that k(1 — k) is positive. Therefore we must have

O<k<l. ’ (12)

When k=0, we get 0 =0, n=0 and the above solution reduces to Oppenheimer—

Snyder solution. When k = 1, then ¢ =0, n= 0. In this case we get Einstein—de Sitter
universe. : :

3. Equations of fit

- Wetake the contracting boundary of sphere to be r = a(t). For » > a(t) we have Vaidya’s
radiating star metric [3]. ‘

ds® =[1—2m/S +28/i]u* dt> — [1 — 2m/S + 2S/u]u'? dr?
— S?(d6* +sin%0 d¢?), (13)

where m is an undetermined function of u and S is an undetermined function of t and r,
and

w1l —2m/S+Spi]=—5. ‘ (14)

An overhead dash denotes differentiation with respect to 7.
We shall use the standard system of equations of fit viz. at r = a(t)

@ p=0, (i)v'/v*=4, (iii)g,, continuous. (15)

Forr < a(t) our interior metric is (1). Let us put S = rR(t) so that the external metric is
2m 2R | |

ds?= {1 - % + -—E—}:} 2dr? —u'2dr?) — R?*r*(d6? + sin20d¢?). (16)

From (1) and (16) it is clear that g,, and all its derivatives are continuous over r = a(t).

We use the notation [ X7] to denote the value of X on the boundary r = a(f). We now
consider the continuity of g,, and g,,. That leads to

i 2m  2Rr) ] R3(1 — ka?)
’2 1 - - =[] e N 7
f‘{ R 7 } == {17
and
i 2m  2RF) ]
D Ll O P
E { = }_ 1 | (18)
We rewrite (18) as
2m .
Pl 1—=— 2 =1
[2 ][ ARr]~F Ra[d] =1 (19)
For the external metric(13) we have g*'u'* + g**42 = 0. Using the continuity of g** and
g** we have [u'?] = — [¢*?4]. Taking the boundary values of the relation (14) and
using [u] = — [e¥241] we get
2 . 7
’[ﬁzj[l _En_:} +2Ralu] =R[e™%2y]. : (20)
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From (19) and (20) we get

1

(4] = 2R T R[] (21)

and
_ =[]
" aR+R—[e %]

[w] (22)

" The result (15(ii)) gives

4= —[e*?tanhn]. | (23)

Also vanishing of pressure p at r = a(t) gives

—_— L 2 —  — =), .
RZ(l ___ka2)2 + + 0 (24)
The function u satisfies (14). Taking the boundary values on both sides and substituting
[4] = [u]e™** we get

[W] [1 — %f} —[$]e**= —R. (25)

Using (22) in this equation we get

[S]2=R2¢‘“m [1—%”}.

Finally we have

y —(=ka* [2m
[S]Z—W'F[S ] | | (26)

S is the radius of the sphere as seen by an external observer and §2 = 2m/S - (function
of time t). Thus equations (14), (21), (22) and (26) among themselves give us the
boundary values of §’, S, ' and 4. The functions S = rR(t) and u are continuous across
the boundary. Therefore we have, on the boundary, the values of u and § and their first
derivatives. This will enable us to write the march of functions u and § in the external
solution. The function m is arbitrary.

Equation (8) shows that p is always positive. Differentiating (9) we find that 8zp’ is
always negative. Clearly at the centre 87p is positive. As 8np’ is negative p continuously
decreases from the origin to the boundary r =a.

It can be verified that

(GZ—GI)(GZ—G})
262_GI -G

8no = —

Since p is positive throughout, G2 is positive. We have verified that G5 — G is negative
and G2 — G4 is positive. The denominator is 87(p + p) and hence is positive. This shows
that the radiation density ¢ remains positive throughout the distribution.
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4. An approximate solution for small k

We have seen that if e is the eccentricity of the spheroidal 3-space, then our parameter
k is e*. In what follows we shall try to integrate eqs (23) and (24) and get solutions
correct up to e?.

We have already obtained in (8), (9), (10) and (11) expressions for p, p, o and n. We
now regard k to be a small parameter and so rewrite these expressions correct to the
first power of k. They are

2R R 1 k(1-2r2)
WETRTRTRTT R &

R* 3 k(3—4?)

871:,0:3'1’{-5 —I-—.-RE___RZ (28) »
8no = kr? /R? (29)
kr?/R?
tenhn = — (30)
"R RTTER?

Vanishing of the pressure p at boundary r = a(t) will now give

2R R* 1 k(1-2a%)
_KE+F+R—2—_—~R2 =0 (31)

which is (24) when k* and higher powers are neglected. Here a = a(t) is given by (23).
Neglecting k* and higher powers of k (23) becomes
je (— ka®/R3)(1 — a?)112
2R . 2R? NE
R ' R?* " R?

(32)

When k=0, we have Oppenheimer-Snyder solution, ¢ vanishes and a becomes
a constant. To the first power of k we take

a(t) =c+ kF(1) ‘ (33)
where c is the constant value of @ when k = 0. Then (31) becomes

2R R 1 k(1-2¢?)
BiRTETT R - 49

which admits a first integral
R?=—1+4B/R+k(l —2c%), | (35)

where B is a constant of integration. Therefore we can rewrite p, p, o and n, using (33)
and (35). They are given by :

8np =2k(c* —r?)/R%, 8mp=3B/R®—2k(3¢*— 2r?)/R?,
87 =kr2/R?, tanhn=kRr?/3B, (36)
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From (32) and (33) we find that
alty=c+ kF(t)

—te* J1—c? / |
:C—i—k{—_—c_‘ﬁ-—._c__{_ 01} . ) (37)

where ¢, is another constant of integration. We must now find R as a function of
t correct to first power of k. We have already obtained the first integral (35). Let
R = R,(¢) be the solution of (31) when k =0. Then (31) can be integrated up to first
power of k. The solution is

R=R0(t)+k{(1—2c2)RO—-§(1——202)tR0+DR0} (38)
~ where D is a constant of integration. From (20) and (21) it is easy to see that

a®>R? = R*[e™*]— 1 +2[m]/Ra (39)
Using (33) and (35) one can verify that ,

2[m] = Bc® — kR¢® + 3kBc*F(t) (40)
with F(t) given in (37).

One can now show that ¢ is continuous across the boundary. On the interior side

8n[o], = kc*/R3. _ (41)
On the exterior side 87n[a], is given by (Vaidya [3]).

8nlo], = ———Af%, m, = dm/du. (42)

We can find [m, ] from (40) and we have already found [#*]. So we can find [¢],. Up to
the first power of k, 8n[c], is given by

8n[o],=kc*/R3. (43)

The result (41) and (43) establish the continuity of the radiation density ¢ across the
boundary r = a(t). Though we have proved this continuity using approximation — neg-
lecting k2 and higher power of k, we have verified that this continuity does hold good in
the general solution discussed earlier.

Lastly since we are working in co-ordinates which are co-moving in the limit k =0,
we can find the finite co-ordinate time in which the radius Ra of the distribution would
tend to zero. We have

R?=—1+B/R+k(1-2c).
Therefore we have
R=—(B—Ru)'*/R'?,
p=1—k(1—2c%),
Yn=1+k(1-2¢%. (44)
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R vanishes when R = B/u. The time required for R to diminish from the value which
makes R zero to the value R =0 is given by

© _R'dR
t= ——
L/u (B— Ry

= Br/2{1 + 3k(1 — 2¢?)/2}. (45)

5. Conclusion

In the above analysis a model describing a radiating collapsing sphere is studied. Vaidya’s
radiating star solution is taken as the exterior solution. The equations of fit are explicitly
derived. An approximate solution corresponding to small values of the parameter k is
presented. This approximate solution represents a radiating generalization of the well-
known Oppenheimer—Snyder solution. This solution has an interesting property that the
radiation density is continuous across the moving boundary of the sphere.

References

[1] T R Oppenheimer and H Snyder, Phys. Rev. 56, 455 (1939)
[2] P C Vaidya, Proc. Indian Acad. Sci. A33, 264 (1951)
[3] P C Vaidya, Astrophys. J. 144, 943 (1966)
[4] R W Lindquist, R A Schwartz and C W Misner, Phys. Rev. B137, 1364 (1965)
[5] C W Misner and D H Sharp, Phys. Rev. B136, 571 (1964)
[6] CW Misner, Phys. Rev. B137, 1360 (1965)
[7] N O Santos, Mon. Not. R. Astron. Soc. 216, 403 (1985)
[8] AK G de Oliveira, N O Santos and C Kolassis, Mon. Not. R. Astron. Soc. 216, 1001 (1985)
[9] A K G de Oliveira, J A de Pacheco and N O Santos, Mon. Not. R. Astron. Soc. 220, 405
(1986) ' :
[10] A K G de Oliveira and N O Santos, Astrophys. J. 312, 640 (1987)
[11] D Kramer, J. Math. Phys. 33, 1458 (1992)
[12] P C Vaidya and L K Patel, J. Indian Math. Soc. 61, 87 (1995)
[13] P C Vaidya and R Tikekar, J. Astrophys. Astron. 3, 325 (1982)
[14] R Tikekar, J. Math. Phys. 31, 2454 (1990)

348 Pramana - J. Phys., Vol. 46, No. 5, May 1996




