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Kerr metric in the deSitter background

P C VAIDYA
Department of Mathematics, Gujarat University, Ahmedabad 380009, India

Abstract. In addition to the Kerr metric with cosmological constant A several other metrics
are presented giving a Kerr-like solution of Einstein’s equations in the background of deSitter
universe. A new metric of what may be termed as rotating deSitter space-time—a space-time
devoid of matter but containing null fluid with twisting null rays, has been presented. This
metric reduces to the standard deSitter metric when the twist in the rays vanishes. Kerr metric
in this background is the immediate generalization of Schwarzschild’s exterior metric with
cosmological constant.
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1. Introduction

In an earlier paper (Vaidya 1977, referred to hereafter as I) we have considered Kerr
metric in cosmological background, the background metric being the Robertson-
Walker metric. In the present paper we single out the background universe as empty
deSitter space-time for several reasons. One reason is that though deSitter metric can be
expressed as a particular case of the general Robertson-Walker metric, the deSitter
space-time has features which are geometrically distinct from Robertson-Walker
models. Again the simple deSitter space-time representing an expanding, curved and yet
empty open universe is the inmediate generalization of Minkowski flat space-time and
has very similar properties as a background for physical phenomena.

Schwarzschild’s exterior metric in deSitter background is the well-known
Schwarzschild’s solution with cosmological constant A

m’ 2 2 2\—-1
ds2=(1—7’"—%>dz2—(1—-?—-;7) dr? —r2 dQ? (1)
dQ? = d6* +sin?0dp?* and A= %

On parallel lines we may expect that Kerr metric in deSitter background will be the
Kerr solution with cosmological constant which has been derived by several authors
earlier (Carter 1968; Demianski 1973; Frolov 1974). However we shall see that one can
have other (non-equivalent) forms for Kerr metric in deSitter background.

In the next section we shall derive the known form of Kerr-metric with cosmological
constant. In the third section we shall write down a simple form of metric for anti
deSitter space-time (A negative) and get a Kerr-like solution in this background.

In the last section we first derive the metric for what can be termed as rotating
deSitter space-time—a space-time devoid of matter but containing null fluid with
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twisting null rays. This metric reduces to the standard deSitter metric when the twist in
the rays vanishes. The Kerr metric in this background is the immediate generalization
of Schwarschild’s exterior metric (1) with cosmological constant.

2. Kerr metric with A

We begin with the standard deSitter metric

p2 p2 -1
ds? = (1 *F) dr? —(1 —F) dpz ‘“[52 sz '

A = 3/R? dQ? = d6?* +sin® 0 dp?,
and carry out the transformation
p? =r*[1+(/R)].
It then transforms to '

2 rA\t 2 rA\7? 12 92 12 D)
ds? = 1+§7 de? — 1+F dr? —r24d02? | (2)

(2) shows that the deSitter metric can be put in a form conformal to Einstein-

Universe—metric with negative curvature (— 1/R?). We rewrite (2) in terms of the usual
Cartesian coordinates (¢, x, y, z) as

ds? = R’

2
2 42 a2 42, (edx+ydy+2zd2)
[dt dx* —dy*—dz* + RE+ 2+ 29 |
B
and then follow the steps initiated in I to carry out the transformations to spheroidal
- polar coordinates (t, r, a, f) by the substitutions ¢t = ¢

. ro . r . .
x=Rsmh§ smacosﬁ—acoshismasmﬂ,
LT . ro.
y=R smh—Esmasmﬁ-{-acosh-R—sma cos f,

. r
z = R sinh — cos a.
R

The deSitter metric then takes the form

2 2 T a ., o | 4
ds? = | cosh R 1+Fs1n a dsy2, )
ds§ = 2 (dt —dr +asina df) dt — (dt — dr + a sina dp)?

2 -1
— M? [(1 -i-—}%sin2 a) do* +sin? ad Bz] (d4a)

M?* = (R? + a?) sinhz—lrz + a* cos? a.

)
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Following the scheme of I, one can write down the Kerr-metric in the deSitter
background as

2 2 T a@ ., o
ds? = | cosh R 1+-§i—s1n o dst, (6)
ds? = dsZ — 2myu(dt —dr +asin® o dp)?, (6a)

r r
= R sinh —cosh® —, m = constant.
H R R |

If we transform our spheroidal polar coordinates to the conventional Boyer-Lindquist
type coordinates, (6) is transformed to Kerr metric with cosmological constant as given
by Demianski (1973). The explicit transformation equations are given in appendix (A).
Alternatively using a result recently obtained by Taub (1981) and the form of Kerr metric
in the background of Einstein’s universe as given in I one can verify that (6) is Kerr
metric in the background of deSitter universe. The verification is given in appendix (B).

3. Anti-deSitter background

When the cosmological constant A is negative so that one can write A = —3/R? the
space-time represented by deSitter metric is known in literature as anti-deSitter space-
time. A surprising result is that the following axially symmetric metric, conformal to
the usual deSitter metric, represents anti-deSitter space-time

2 2 2\—1
dS2 = ?—05;)_52—&- [(1 "";—z)dtz - (1 "%) dr2 — rzdaz

—r? sin? adﬂ’]. (7

It satisfies R, = A gy with A = —3/R?, b* being an undetermined constant. Now it is
known (Hawking and Ellis 1973) that in a certain definite space-time region anti-
deSitter space-time metric is conformal to Einstein universe metric. Thus one can
transform (7) to the form | '

(8)

2
ds? = R—Z |:dt2 —dx?—dy?—dz®—

(xdx + ydy + zdz)? ]
z

b2 . (xz +y2 +22)
One can now use the method of transforming to spheroidal polar coordinates initiated
in I and used in §2 above to get the Kerr metric in the background (7). However we
shall not write down the resulting metric here. Instead, we note a simple particular case
of (7) or (8) obtained by choosing the undetermined constant b — co. The background
anti-deSitter metric (7) or (8) then simplifies to the following plane symmetric metric

ds? = %2— [df? —dx? —dy* —dz*]. ' &)
The Kerr metric in this background is given by
5 R? - 2mr?
ds* = m‘}(dt —dr+asin? adf)dr— (1 +m)

x (dt —dr+asin® a dB)? — (r* + a® cos? a) (do® +sin® dﬁz)] (10)
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It can again be verified that for the metric (10) R;, = Agy, A = — 3/R%, m = constant
(10) gives a very simple metric for the Kerr-like gravitational field satisfying R, = Agy
with A a non-zero negative constant. That A has to be non-zero is a condition for the
existence of the background metric of anti-deSitter space-time given by (7) or (9).
One can show that (10) satisfies R, = Agj, by the method given in appendix (B).

4. deSitter space-time with twisting null rays

In it was shown that the Minkowski metric
ds? = dt® — dx? — dy? —dz2
can be transformed in ellipsoidal coordinates to the form

ds? = 2(du + asin? «df)dt — (du + a sin? a d)? — (r + a2 cos? #)dQ? (11)
dQ? =do?+sin®adf®, r=t—u,

and that (11) forms the background metric for the Kerr field. Our a:im is to get an
immediate generalization of (11) which will take us from the Minkowski ba.ckgroun‘d to
deSitter background. Let us therefore begin with the Schwarzschild’s exterior metric in

deSitter background i.e. the metric (1) above and introduce the retarded time u in place
of the coordinate t. The equation defining u is

2m  r*\ou ou
1__*__ _ —_— =
( ; R2)5r+at 0

Using u as a time co-ordinate in place of t one transforms (1) to

2

ds? = 2dudr+(l ~%;"1—%) du? —r? dQ2, (12)

But in our scheme as used in § 2 onwards we do not use 4 in place of ¢, but we use u in

place of r. And one can do this because 4 is a null coordinate. We return to a time-like -

coordinate T by the substitution u =T —r and use (T, u, a, B) as coordinates i.e.

replace r by T— u. Metric (12) then takes the form

2
ds? = 2duT— (1 +3r"~’+§7) du? —r? dQ2.

This is the Schwarzschild’
The form (11)
solution)

(13)

s exterior metric in deSitter background.

of the Minkowski metric (which is the background metric of Kerr
suggests an immediate generalization of (13) to the following

N 2 2 2
d52=2(du+gsmadﬁ)d:-(1+rzr;2+r 1'2*'2)’ )(du+gsinadﬁ)?
—H(? +y?) dQ?, (14)
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3 .
g=g()y=y@H=H(@)A =% and dO? = da? +sin? a dp

It may be noted that if A = 0, withg = a sine, y = —acosoand H =1 (14) gives us
the Kerr metric. To determine these functions when A # 0 we further note that the
metric (14) is in the form which we have termed a Kerr-NUT metric (Vaidya et al
1976) viz

ds? = 2(du+gsina df) dx —2L(du+g sina dp)? —M?*dQ? (15)

and so we can use the tetrad formalism developed in that paper to work out the physics
of metric (14). Using the tetrad

9! = du+gsinadp, 6> = Mda, 6° = M sina dg, 8* = dx— L6*

(so that (15) takes the form ds* = 2019* — (6%) — (6°)?) the tetrad components Ra of
the Ricci tensor are also recorded there.
It can be verified that if one chooses

gdo = dy, H = f](—y), with 2f = (3g/w) +g cota, 16
one finds that for the metric (14)

Rus = Rus = Rosy = Resy = Raay = Riaay =0,

Rusy=ARay=—A+[2 +4Ay2—yG] (r*+y) 7' = Ras,

2 i 3

Ry = —2AL@ N+ 2]+ HA =g
In the above G is defined by

1 a[taf of

2/G = g° —+—(—-—>]+2———2.

j6=4 [yz a\fay) )" "oy
It is clear that if we choose

)
n0 = AL(GYN +2] (F+3")7" and
4 ,
Gy—-2———3-Ay2=O, (17)

Ww¢E Shall have Rik = Agik - Sﬂgéi éki
where ¢ is a null vector defined by
¢ dx' = du+gsinadp.

Equations (16) and (17) are the three equations which determine the three unknown
functions of a in the metric (14).
If A = 3/R? =0, (16) and (17) are satisfied by f=—y=+acosa,g=a sina, a
being constant. The metric (14) then becomes the Kerr metric.
The other simple case is A # 0, m = 0. Then
02

ds? = 2(du+gsinocdﬁ)dt—(1+r

2 .
I_;y ) (du + ¢ sin adp)?

—(f/ -y (* +y*) dQ* (18)

s



156 P C Vaidya

d
with dy = gda, 2f==a%+gcotcx and f=f(y)
satisfying Gy—2— (4y?/R?) = (. 19

One can interpret this simple solution as a rotating deSitter space-time because §1) it
represents a universe devoid of matter (ii) its metric (18) reduces to the usual deSgtgr
metric when the rotation parameter g = 0. It has an additional feature that 1.t is
pervaded by a unidirectional flow of null radiation which arises solely due to rotation.
As a matter of fact if one solves (19) correctly upto the first power of 1/R? (i.e. upto first

power of A), one can show that
_ 2a’(3cos?a—1)

87:0' = )
R2(r* + a? cos? 0)

so that

n/2 [2n
J j. M?ssinadadf =0, M2 = f/=nE*+yH)
0o Jo

i.e. the net outflow of null radiation across the 2-space with metric M 2(do? + sin? o dp %
is zero. Thus there is no net loss of energy due to this flowing radiation. The expanding
nature of 3-space and the rotation introduced in it together, so to say, lead to a
churning of gravitational energy in deSitter space-time which flows out from a cone of
semiangle cos™! (1/\/ 3) and with the axis coinciding with the axis of rotation and
returns through the rest of the surface.

With this interpretation (18) becomes the metric of deSitter space-time with rotating
null rays and metric (14)

+y2 RZ
= (/=) (* + y*) (do® +sin’  d %)

withdy = gdaand f = f(y) given by (19) becomes Kerr metric in the background qf this
rotating deSitter universe. And this last metric is easily seen to be a simple
generalization of Schwarzschild’s exterior metric in deSitter background.

2 242 .
d32=2(du+gsinadﬁ)dt—(1+r2mr +T +y ) (du +g sina dB)?

Appendix A

Let (7, 6, ¢, T) be the Boyer-Lind

quist type coordinates, then the required transform-
ation equations are

- r 2mp
=Rt h—,T:t —_
F an R +J A dr

cos f = cos oc(l +

a’sin?g\"1/2
RZ

2
(a2+R2)q, = Rzﬁ—a:—a}’g——?ﬁdn
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where 2my is defined by (6a) and

r
A = (R?+ a?% sinh? ';"*}- a* —2mR sin % cosh® &

Appendix B

Taub (1981) has shown that if a space-time ¥ has metric given by
Gy =G +2H L1, (B.1)

where g,,, is the metric for an arbitrary space ¥, Hisa scalar field over ¥ and [, is a nul},
geodetic and shear-free vector field in V, then I, is also null geodetic and shear-free with
respect to §,,. He has further shown that if the space-time ¥ with the metric tensor g, is
conformal to space-time # with metric tensor g, that is, if

G = eXp (20) G (B.2)

and if I, is null, geodetic and shear-free in 7, it is also one in V.
Using (B.1) and (B.2) one can write

g,y = xp (20) (g,y +2H LL)
= exp (20)g, + 2Hol 1 . (B.3)

with Hy = Hexp (20). Taub has also worked out expressions for the Ricci tensor R for
V in terms of R}, of ¥ and the scalars H, o and their derivatives.
One can see that our metric (6) has the metric tensor of the form given by (B.3) with

2 -1
exp (20) = [cosh2 % (1 + %—3 sin? a):‘ ,

g, is the metric tensor obtained from

dsg = g,,, dx* dx” of (4q) xt=rx*=o0x>= ﬂ,dic‘* =1,

Hy,= —mp= —mR sinh—l-r(—cosh3—1-:— and

2
l,= (1 +%—2—sin2a) £, Epdxt =dt —dr+asin® xdp.

1t may be noted that £, is a geodetic, shear-free null congruence and since , & = 0, L
is also a similar congruence in V.
With these substitutions and following Taub’s calculations one can verify that

R, =Ag
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