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A generalized Kerr-Schild metric

P C VAIDYA and P V BHATT .
Department of Mathematics, Gujarat University, Ahmcdabad 380009

Abstract. A metric £ = Mr + HE& g, + 27E0pr, 1S investigated. When J.-—= 0
this reduces to the well-known Kerr metric. Conditions on the.vector Pi are obtau.led
under which a geodetic, shear-free null congruence £, in the Mmko.wsklan §pace-t1_rr.e
(with metric 7)) will continue to remain geodetic and sh.ear-free in the R_:emanr‘nan
space-time of gix- A general solution of Einstein’s equation Ry, = o&;€; is obtained
when p:;£f =0 and §&; is twist-free.
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1. Introduction

A metric of the form

g = N + HéS, (1.1)

is known in the literature as the Kerr-Schild metric. Here 7,; is the metric of
Minkowskian space in coordinates which are cartesian but not necessarily
rectangular, i.e., 9, are constants and £; is null. Many exact solutions of Einstein’s
equations or Einstein-Maxwell equations can be expressed in terms of this metric.
In 1924 Eddington expressed Schwarzchild’s exterior metric in the form

ds? = du® + 2dwdr — r2 (d0? + sin? 0d¢$?) — (2m | r) du?, m = constant

(1.2)

which essentially is a metric of the form (1.1). Vaidya (1951, 1953) rederived

(1.2) with mz = m (u) as the metric for a radiating star. Again Whitchead (1922)

based his new theory of gravitation with Minkowskian space-time in the back-

ground and in his theory the gravitational field of a particle was described by a
metric of the form (1.1).

Kerr and Schild (1965) systematically studied this metric and derived a very
general class of vacuum solutions of Einstein’s equations. In addition to
Schwarzschild solution and Kerr-solution (Kerr 1963) several other solutions of
Einstein’s equations can be couched in terms of this metric. Debney et al/ (1969),
Kinnersley (1969), Bonnor and Vaidya (1970, 1972), Vaidya (1972, 1973, 1974),
Vaidy.a and Patel (1973) have worked out non-vacuum solutions of Einstein’s
equations with this metric.

A special feature of the Kerr-Schild metric (1.1) is that if the congruence &, is

(i) null, (ii) geodetic, and (iii} shear-free in the Minkowskian space-time with

metric %, it continues to satisfy the same three properties in the Riemannian
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space-time with the metric (1.1). This is the reason why this metric is extensively
used in working out Einstein fields or Einstein-Maxwell fields permitting the
existence of geodetic, shear-free, null congruences.

But studies of vacuum solutions of Einstein’s equations by Robinson and
Trautman (1962), Robinson and Robinson (1969) and others also show that there
are other interesting metrics for which the above three properties continue to hold
good when one passed from a Minkowskian space-time to a related Riemannian
space-time. It is our aim to systematically study one such metric by generalizing
the Kerr-Schild metric (1.1).

We shall study the metric

8 = Ny T HEE, + 2Jf(il)k) (1.3)

with p, an arbitrary vector field which may be taken as space-like without any loss
of generality. Throughout the paper the round brackets and the square brackets
including the indices will denote symmetrization and anti-symmetrization
respectively.

2. The metric

Take a Minkowskian space-time M with signature (—, —, —, -+). Assume that
it is pervaded by a null, geodetic and shear-free congruence ¢; so that

§f =0, &=0, (8,+ & E, —(E)=0 (2.1)
7y, being the metric for M, and a comuma denoting ordinary derivative.

We use the geometrical framework developed earlier (Vaidya 1974) to obtain a
real tetrad system in M appropriate to the congruence &, Let (4, B;, C;, A)
be the four mutually orthogonal Galilean uniform vector fields which can always
be found to pervade a Minkowskian space-time. A, is a time-like unit vector while
A;, B,, C, are space-like unit vectors. The four uniform vectors give rise to a
rectangular cartesian frame with coordinates (x, y, z, t) for a field point P such
that

Xy = Aia Yo = Bi, Z}i - Ci: t’i: Ai'
Let us denote by 9 the flat 3-space at right angles to A; at the point P. Then if /;

is the projection of &; on § at P, we shall take £, = A, — [;. In 3-flat 9 let /, have
the spherical angles a and B with respect to the triad A;, B,, C,, We can now define

an orthogonal triad /,, /,,m, as follows:

l; = cos a C; + sin am,

m; = — sin BA,; + cos BB,
where
m; = cos fA; + sin 8B,

Consider now a Riemannian space ® with the metric
gﬂc = T]f,‘l.: + Hgigk _{— 2J§ (ipl.:) (2 2)

H and J being scalar functions of the coordinates. 7, & and p; are defined in
M, & and 7, having been already defined above and p, can be taken as a unit
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space-like vector lying in the 3-flat 9, without impairing in any way the generality
of the metric (2.2). ,
ppi=—1, pA=0.
Tt can be verified that the determinant g of the metric (2.2) is — (I + Jp)® where
p = p.& =y, p, and that the inverse metrix g™ is given by
g = i — (L -+ %) (1 + Jp) £ & — 2 (L + Jp)y 6 P 2.3)

At this stage we shall specify the convention about raising and lowering suffixes.

We shall take & and p® of M, by definition as contravariant vectors in QR and
denote by & and p, the vectors 7,,&* and 7, p* even in R. As a matter of fact
throughout the paper we shall use the convention that raising and lowering of
suffixes is done by 7% and 7, whether we work in M or Q and that while working
in @ the dependence on g;, or g** will be explicitly written down.

It can now be verified that if covariant differentiation in Q is denoted by a
semicolon,
BB B () B 8 = B £ 4 (L D) (D)aE
and
fi;i =&, + U+ JIpt (Jp),k gk
so that if we take (Jp), & =0,
ie.,
&% (2] oxty [Jpyg] = 0. (2.4)
We shall find that if € is geodetic in UM, it is also geodetic in R and that expansion

0 of ¢%is the same whether we calculate it in M or in Q. We shall, in the remainder
of this paper, assume (2.4) to hold good. It can now be verified that when (2.4)

holds good,

(4 + s £ 8") £ — (€07 = (€ + 7y %779 84— (812
so that when we assume (2.4) to hold good, a geodetic, shear-free, null congruence
in M will continue to have the same properties in Q.

For the metric (2.2), it is not easy to write down Christoffel symbols directly
and the simplification introduced by (2.4) is not of much help in the matter. But,
the following results can be easily established, in view of (2.4)

G e =0, {(Hé&=0{Hé&é=0.
It is also possible to obtain explicit expressions for {5} ¢ and {,’} & at this stage.

These expressions are recorded in Appendix 1. These explicit expressions are
enough to show that

Ry & & = 3Jp (2 + Jp) @2 2.5

}x'hex'e Q= (&, — &0 €, 7™, so that Q measures the twist of the congruence
in M. We see from (2.5) that R, £'¢® will vanish if anyone or more of the follow-
ing hold good. .

(i) 2 =0, (i) J =0, (i) p = 0, @) Jp = — 2.
We shall not consider the case J = 0 because in that case our metric reduces to

the Kerr-Schild metric. The two cases (iii) and (iv) are not essentially different
because both of them lead to the value — 1 of the determinant of the metric, in
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one case (— g)* being + 1 and in the other (— g)! being — 1. We are thus left
with the cases (i) and (iii). We shall distinguish the two cases by () p =0
(b) p# 0. Of course when p %= 0 we must take 2 =

3. A particular case

Itis comparatively easier to work with the metric (2.2) where p == p,é* = 0. For,
in that case the determinant g becomes — 1 and so raising or lowering ‘cf indices
of ¢ by ny, or g;, produces the same result. Again as p, is a unit vector in the 3-flat
J, and /; is a unit vector in § along the projection of & on §, the relation &p, = 0
implies /’p; = 0. One can therefore get an idea of the gravitational situation

described by the metric (2.2) by choosing either p, = 7; or p, = m, We shall

choose p; —= m;. (A more general choice would be p, == cosfl; - sin i, with
= (x, p, z, £). This will be treated in a subsequent paper).
In order to work out Ry, for this metric knowledge about relations between

derivatives of &, 1, [;, iy, o, B, 0, £ will be necessary. We shall not reproduce
all these known results which have been derived in detail ealrier (Vaidya 1972,
1973, 1974). However, for the sake of ready reference the results which are useful
for the present investigation arc recorded in Appendix 3.

It can now be verified that R, &/% = 0 would lead to two alternatives; either

J & =0 or 2 = 0 and if we further want R, £ /", to vanish, the only alternative
available is Q@ = 0 along with an cquation for J. Thus with p, = /m,, the neces-
sary and sufficient condition for ¢, to be an eigenvector of R, is 2 = 0. The
equation for J can be solved to give J = M0* 4 N0, M, £ =0, N, —=0.
With £ = 0, we further impose a symmetry restriction. We shall be considering
the field 1o be symmetric round the axis a = 0, so that various functions are inde-
pendent of the azimuthal coordinate f. In that case @ = 0 would imply that
the gecometrical parameter W of Appendix 2 will vanish. We can now solve the
field equation g*R;, = 7" R, = 0 to get

H= — IM20* 4 K0? 4 2L0 — N*0-% K, ¢ =0, L,#=0  (3.1)

It can now be verified that with these H and J, R;, &* = — 1K0'¢; so that if we wish
to satisly the field equation R, = &, then we must have R, ¥ == 0, ie., K=0

and R, J* =0, Rym* =0. The case K3 0 corresponds to the clectromagnetic
field which we shall discuss in section 5. So up to this stage we have

G = M+ HES, -+ 2Ty, (3.2)
with

H= — }M?0* - 2Lt — N?§~* (3.3)

J = M0% + NO-1 (3.4)
and

R, & =0, g%R,. = 0.

In the restricted case £2 = 0, with the symmetry assumption that all functions
are independent of the azimuthal angle , the retarded time « and the geometricaj
parameters ¥ and W of Appendix 2 are related as follows:

W =0, V cosec a = f(x), xX=u— Vcota
f being an undetermined function of argument. Now a function M (x, y, z, 1)
.sausfylng M, € =0, can bc regarded as a function of # and o only, so that in
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(3.3) and (3.4) we may take M =M (u,«) and N=N(@, o), L =L (u,a) as
undetermined functions of u and a.

The form of R, [* is given in Appendix 4. On setting Ry, Ik = 0, we get
three equations

M=0 (3.5)
VN,+ NV, + Ncota— N, =0 (3.6)
VL, + 3LV, — L, =0 (3.7)

‘N,, = 3Nou, etc. It can now be verified that with equations (3.5), (3-6) and
(3.7), R,m¥ identically vanishes.
Equations (3.6) and (3.7) can be solved to get
N=n(x)sina(f cose+ 1) (3:8)
L=mx){(f cosa+ 1)-° (3.9)

n and m are undetermined functions of x and f’ denotes dffdx. Finally, we get
R AN = — (2L, so that Ry =océf, o= — 0L,

4, Explicit Iine element

In order to write down the metric in an explicit form we use (x, e, 5, r) as coordinates.
x is already defined above as x = u — V cota, a and B are spherical angles of /,
and r is defined as

r=—x+t=—u+ Vcote 4+ 1.

The metric (2.2) with H and J defined by (3.3), (3.4), (3.8) and (3.9) can now
be written in the full form

ds* = — r*(de® + sin? adB?) + 2 (f'cos @ + 1) dxdr
+ L —=f*+4mx)r (f' cos at+1)t— 1r? sinan® (x)] dx?
— 2rf"sin a dxda + 2 sina 1 (x) dxdB “.1)

Special cases: (i) when f' =0, ¥, = 0 and we get V = k sin « where k is the con-

stant of integration which by a Lorentz transformation can be made to vanish.
So V' =0 and the metric (4.1) reduces to

ds? = — r?(do? + sin%a dB?) + 2dudr +
+ [L 4+ 4m (u) rt — Lr¥sin%a n® (u)] du® — r?sin? a n (u) dudp.

This metric is the transform of the solution obtained by Vaidya and Pandya (1966)
and also of the well-known Robinson-Trautman metric (Robinson and Trautman
1962). Further, when n = 0 it reduces to the radiating star metric (Vaidya 1953).

(ii) If f* = constant, it can be verified that the metric (4.1) is the transform of
the metric of Vaidya and Pandya (1966) when the origin is given a uniform velocity
f' along z-axis.

The general solution f's constant derived here represents the gravitational
field when the source of the Robinson-Trautman field is given an arbitrary accele-
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5. The electromagnetic case

It can now be verified that the metric (4.1) also fepresénts the null solution of
Einstein-Maxwell equations.

R, = — 8nE,

where Ey is the electromagnetic energy tensor co1respondmg to the four potential
$i=q(x)(f'cosa+ 1)1 €, g(x) being an undetermined function of x, This
of course follows from Robinson’s theorem (1961) because in this case

= (f'cosa+1)x, so that all the conditions of that theorem are satisfied.
The corresponding electromagnetic field is null.

The case of a non-null electromagnetic field can also be incorporated in the present
scheme by taking K defined in section 3 above as not equal to zero. When X #0

it is possible to determine the metric form (1.3) so as to satisfy the ﬁeld equa-
tions,

Ry=— S?Eik + Ug{fk , ‘ . -

E,. being the electromagnetic energy tensor. Details of this case will be dis-
cussed elsewhere. '

Appendix 1

{zfz} & =14 Jp)? [pru 1 + pJ, (kfz) + JE (P[a,z] fz +P[a,z] fk)
(J,af ) g(kpl) + (H,.£9 gk 1] |
W e =0+ I B{H: &+ T )+ Ippf'p’ + 5 (1.0° 1 s
+ Iy € 4 3 (L) pe + 30T — 00" €l &8 +3 (T €D
+ pIq Ep g+ I P €0 € — Spm™ T L€,

Appendix 2

The retarded time u and the geometrical parameters V and W are given by
U= —xsinacosBf — ysinasin f —zcosa -+t
V=xcosacosf + ycosasinf —zsina

W:xsinﬁ——ycosﬁ

Appendix 3

The following results of null geometry of M in terms of the tetrad (A7, l:, )
given by Vaidya (1974) are reproduced here for ready. reference. - An l.ocgasmnal

change of sign in some results is due to the fact that in Vaidya (1974) £ 1s ‘talfen

as A, + [, whereas in the present investigation we are takmg the outward;n_l_;ovlng "
radiation” & =X — 1, .

l‘)k=l‘a,k+lﬂisina81k= — &ix T
My, =B,

l-i,k = - lﬂ',[; -+ my cos a ﬁ,k

iy, = — mPy

P-3
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B.E+3(02—0)=0, Q.8+ 90=0,
(62 4+ Q) &+ (02 + 2% 6 =0,
a; =30 (4 — V&) — G2) (i + W,E)
sin af; = (3Q) (, — V.6) + (6) (B, + W,£)
8. — Q= Q(QV, — bW,
6:,.m*’ + Q0 =—QOV,+ W)
*ay + 102+ QHcote=0, % (sinaBy), =0
™ER+ 1+ 0)F=0

F 2

Appendix 4
Ryl = —3[0°(H + T + {6 (H + J9),&1(, — 4 V.¢)
—EO X L OHE V. 3 2 (H + TV,
— L0 HM + 370V, (T8 + 3 J6) — 3 JOY*] £,
= [Z¥0+ Z% 8~ L 3 I — T8 0,
+ 1@ 70+ T8 v m,

where
X* =1H,]° 4+ Jy*
Y*=~}@E Jocota — J,9
Z*= 1} (4 J9cota + J, 9.
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