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Gravitational fields with space-times of Bianchi type IX

P C VAIDYA and L K PATEL
Department of Mathematics, Gujarat University, Ahmedabad 380009, India

Abstract. Spatially homogeneous space-times of Bianchi type IX are considered. A general
scheme for the derivation of exact solutions of Einstein’s equations corresponding to perfect
fluid plus pure radiation fields is outlined. Some simple rotating Bianchi type IX cosmological
models are presented. The details of these solutions are also discussed.
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1. Introeduction

Metric of space-times which satisfy Weyl postulate can be expressed in the form
ds? = dt? —g,,dx*dx?, (1)

«, f running over 1,2, 3 corresponding to three space-like coordinates x*, x?, x>. Bianchi
(1897) was the first to give classification of such space-times, with homogeneous 3-
spaces t = constant, into nine distinct types. The homogeneous and isotropic
Robertson-Walker space-times which are used to describe standard cosmological
models are particular cases of Bianchi type I, V or IX according as the constant
curvature of the physical 3-space t = constant is zero, negative or positive.

However an impression is gaining ground among cosmologists that perhaps the
standard cosmological models are too restrictive because of their insistance on the
isotropy of the physical 3-space and several attempts have been made to study what
have come to be known as non-standard cosmological models (see e.g. MacCallum
1979; Narlikar and Kembhavi 1980; Narlikar 1983).

It would therefore be fruitful to carry out detailed studies of gravitational fields
which can be described by space-times of various Bianchi types. Now the classical
Einstein universe and the deSitter universe have physical 3-space with positive
curvature. Therefore they are particular cases of Bianchi type IX. To express the metric
of such a Bianchi type IX space-time, one can choose convenient angular co-ordinates
x! =, x* = 6, x> = ¢ in the homogeneous 3-space x* = t = constant and write this
metric in the form "

ds? = dr® — (A + cos 0 dg)? —m™(siny df —cos s sin Odg)?
—n2(cos Y dO + siny sin 0 d¢)® 2

| = I(t), m = m(t), n = n(t) (Michalin aand Melvin 1980).

The authors felicitate Prof. D S Kothari on his eightieth birthday and dedicate this paper to him on this
occasion.
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We shall first draw out the relation between this metric and the Robertson-Walker
metric, describing space-time with topology R' x §% (ie. having space sections ¢
= constant with positive constant curvature) viz

ds? = de® — §?(f)do?,
where da? is the metric on the unit 3-sphere $2. Thus

(xdx+ ydy+zdz)?
1—(x2+y*+2Y)

do? = dx® +dy* +dz* +

Using a set of transformations first used by Schrédinger (1956),
x =sinacosf, y=sinasinf, z=coswacosy,
we rewrite do? as
do? = da? + sin®a d? + cos®ady?.
One can now go over to angular co-ordinates , 6, ¢ of (2) by the substitutions
B=30~¥) y=30@+¥), a=0/2.
The Robertson-Walker metric then takes the form
S2(1)
4
which is of Bianchi type IX with

ds? = dt? — [(dy + cos 8 dg)* +dB?* + sin® 0 dp?], 3)

2 =m? = n? =15

Several physically interesting gravitational situations have been studied earlier using
the metric form (3) above e.g. (i) Einstein-Godel universe (Vaidya 1978) (ii) de Sitter and
Taub—NUT space times (Vaidya 1985)and (iii) A rotating homogeneous universe with
an electromagnetic field (Vaidya and Patel 1984). It is our aim here to study the
gravitational situations described by the general Bianchi type IX metric (2).

In the next section we shall use the formalism of differential forms to describe the
geometri¢ properties of the space-time described by the metric (2). In the following -
section we use Finstein’s field equations to relate these geometrical properties with the
physical properties of the gravitational fields. In the last two sections we present some

“details of a few simple particular cases of homogeneous rotating world models.

2. Ricci tensor
For the metric (2) we choose real tetrads £@ as follows:

EV = [(dy +cos 0dg), EP = m(sinyy dB —cosy sin 6 d¢)
E3) = n(cosy df +siny sin0d¢), &P =dt @

so that the metric (2) becomes

ds? = (€4 - (€0 - (P ~ )
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and that
£ e )
dt = &9, dyp =>—+coth (mcosnlf —2—sin IP)
l m n

2 3) g2 3
df = Z—siny +>—cosy, sinfd¢ = —=—cosy +=—siny.
m n om n

From Cartan’s first equation of structure
dﬁ(“) — —wﬁAé“”

We find the connection 1-forms w,, as

2 22
O e Ll S _hga
2lmn 1°°
2,2 12
Wy = mAn =l ) Wy = — g2
2lmn m>
2 2 2
Wa, = f‘__'*'_l.:f__ém Wag = LY
t .
2lmn n

The subscript ¢ indicates differentiation with respect to t. From Cartan’s second
equation of structure

Qf = dwj+wiAwy

one can find the components of the curvature 2-forms Qf which in their turn lead to the
tetrad components RZ, of the curvature tensor through the relations

0f = SR3EONEY.

And from these tetrad components of the curvature tensor it is easy to work out the
tetrad components of the Ricci tensor. All this is straightforward calculation and is not
described here in detail. The final expressions of the tetrad components R, of the Ricci
tensor turn out to be

L L(m n\ (+m?—n})(*+n*—m’)
Ron==7"7"%%)" 21°m*n? ’
m, m(n, L\ (mP+n:=1%)(m>*+P—n?
Ron= =3 = \a™1)” 2Wmn ’
n, onfl, om\ 4P —m)@+m =1
Ran= =3 =3 \1%m)” W ’
l
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3. The field equations

The Einstein’s field equations are
Ry —3guR = —8nTy — Agy, (6)

where A is the cosmological constant. We assume that the source of the gravitational
field consists of a perfect fluid distribution and a pure radiation field. Hence

Ty = (p+ P)v;0; — PG + OWi Wy, @

where ow,w, is the tensor arising from the flowing null radiation and the velocities
satisfy the relations

vt =1, wwi=0, vw =1 ‘ (8)

The last relation in (8) is the normalizing condition. It is easy to see that the field
equations (6) with (7) can be expressed in the form

Ry = —8u[(p+ p)owy —3(0 — D)y + oww, ] + Agy 9)

The geometry of the metric (2) shows that the 3-space t = constant is homogeneous but
not isotropic. As a matter of fact, with distinct functions [, m, n of t, no particular
direction can be singled out. However, for considering the fluid distribution which can
be described by this geometry, we shall limit ourselves to the cases of the fluids havinga
unidirectional flow. For such fluid distributions, at every point we can take the fluid
flow to be directed along one of the three tetrad directions ¢V, E® or &%) say along ¢™),
We therefore choose the flow vector to have tetrad components

U = (sinh 4, 0, 0, cosh 4), ‘ (10

A being a function of ¢ to be determined by the field equations. With this form of v, the

first of the three relations (8) is obviously satisfied. The second and the third relations of
(8) will be satisfied if we take "

w(a) = (_e—li 0: O’ e_l) or W(ﬂ) = (el’ 0’ 0’ e)').

It will be clear from the field equation corrésponding_to R(14) = 0 that the choice of w,,

between the two possible forms given above essentially depends on the sign of A. For
definiteness we take A4 > 0 so that

Wi = (_e—i’ Oa 03 e-l)- | (1 1)

Using (10) and (11) in (9) we obtain the following relations

R22) = Ri33y, (12)
8np = A+ %(R(l 1)~ Ry (13)
8np = "‘A’{'%(R(u) —Ru4)) = 2R 32, (14)

ey,
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24 _ Ri11)+ Ruaay

et = .
2R(22)+ Ry — Ry

The last relation (16) can also be written as

(Ru 1) — R(zz))2 #
(R11)+ Riaa) (Riaay =Ry + 2Rz

sinh? A =

Having found R, from the geometry of the metric (2) in the previous sectioOT}»
see that given the metric coefficients of (2), (13) to (16) determine the
parameters p, p, d, ¢* for the source of the gravitational field, while (12) rern 2
equation to be satisfied by the three metric potentials /, m, n. It may be recalled
is a consequence of the assumption of what we have termed unidirecti< I”W‘fg X_
Equation (12) is one equation to determine [, m, n. Two other equations ﬂ‘xwﬁ
specify the three metric functions I(t), m(1), n() are supplied by (i)an equation <? £ ours
the fluid and (ii) by an equation further to specify the fluid motions. In order ¥ d
idea of this further specification of fluid motion, we work out the rotation-v &< Ters =00
stream-lines.
Using (10) and the relations

jram 20
£ houn

b= e, ¢@=edx,
~ we can easily obtain the tensor components v; as

v; = (Isinh 4, O, I sinh A cos 0, cosh A). 2 o B
The angular velocity of this flow vector is given by

Q= (Eij“/\/_g)wjkb

where 7 is the usual Levi-Civita symbol and

1
Wi = 31 [vj(vk,l —vy) + v (v, ;v i)+ vV — Uy, ,)]

A lengthy but straightforward calculation gives

1 I . ‘
Q= (——— sinh A cosh 4, 0, 0, — sinh? 4 }. v 19
mn mn
The vector ' is, of course, space-like and the magnitude w of this vectOr 18 g@ynawe 4w
2 5
- ik — 12

Thus the source of this gravitational field is a rotating fluid distribution, the rrius g e .
of the twist being (//mn)sinh A. A specification of this twist may give us t¥ye
equation to determine [, m and n.

The following important conclusion, can be drawn at this stage.

The necessary and sufficient condition that the source of the gravitatioruw: .. 8
represented by the metric (2) be a perfect fluid (and not a mixture of perfect #4,,.4 S
null fluid) is that the twist of the stream-lines is zero and that the streaymn -3 %m
orthogonal to the surfaces p = constant. '

@i
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This result is clear from (15). If the source is a perfect fluid we must take o = 0.
Equation (15) then implies sinh A = 0 which in its turn leads to the twist @ = 0. Again
sinh A = 0 implies that the co-ordinates used in metric (2) are co-moving and so the
streamlines are normal to the surfaces t = constant which are the same as the surfaces
p = constant.

Though several perfect fluid distributions can be worked out which give rise to
gravitational fields described by a Bianchi type IX metric (2), in what follows we would
be interested in fluid distributions with rotating stream-lines and so with ¢ # 0.

Let usend this section with a short discussion of the first of these three field equations
viz (12). Using the forms of R 3, and R 33, for the metric (2) as given by (5) we find that
R 32, = R 33, implies

(m? —n*)(m? +n? -1

Imn =0.

[/(nm, — mnr)]z +

It is clear that this relation is identically satisfied if m = n. In the next section we work
out this case in some detail. In the following section we work out a couple of simple
examples when m + n, the detailed discussion of this case being left to a later paper.

4. Solutions with m = n

In this case we shall work with the equations of state of the type p = yp where y is a
constant. Substitution of the values of p and p from (13) and (14) in p = yp yields the
differential equation

l 2
20y+ 1)["’“ TR ]+2[2y%—(y-1)ﬂ

1 . .
+ ey {8m%y — 12(5y — 1} =0. (20)

Case (i): I* = 2km?, p = yp, k = constant, A = 0.
The relation I? = 2km? reduces (20) to the form

2

m m 1
T T2BY D s {dy —k(Sy -1} =0,

The first integral of the above equation can be easily found to be

k(Sy—1)—4y

m2 = Am-(3y+1)+
' 2(3y+1)

(21)

where 4 is a constant of integration. From the relations (14), (15)and (16) we obtain the
physical parameters p, ¢ and e2* as

22k —1)

8np = 34Am™30+D —
P 3y+1 "o

(22)
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2k —1)[3A0+1) By + 1)+ 2k —1) (y — m®>'*1]
m2(y + D[3AG3y + 1) — 202k — )m*** 1]

ni 3AG+1Gy+ 1) =4k —ym¥r !

T3AG+ )Gy + ) =20+ 1) Gk —)m> T (24)

8ng =

(23)

From (23) it is clear that when 2k = 1 the radiation density o vanishes and we
recover a special case of the Robertson-Walker universe. This is a remarkable feature of
the above solution.

Here the constants k, A and y must be so adjusted that the physical requirements
p>0,p>0020, e** > 0 are satisfied. We have verified that the rotation of the flow
vector ¢* is non-zero in this case. Note that for the matter dominated epochs we have y
= 0 and for the radiation-dominated epochs we have y = 1/3.

A more general method of obtaining solutions of this type is outlined in the
appendix.

Case (ii) | = constant, p = 0.
Substituting y = 0 and | = constant in (20) we obtain

2(my/m) + (I2/2m*) = 2A. (25)
The first integral of the above differential equation can be readily found to be

m? = B+ Am? + (I*/4m?), (26)

where B is an arbitrary constant of integration. The solution of (26) can be, in general,
expressed in terms of elliptic functions. We shall not give the explicit solution of (26).
The physical parameters p, o and exp (24) are determined from (14), (15) and (16) as

8np = 2A + (2B/m?)+ (1/m*) 2m? — ),

(B+ 1)(m? — I + 2Am* + Bm?)

dno = (P — 2m? — 2Bm® —2Am") °

24 = 2Am* — 1) (I* —2m* — 2Bm? — 2Am*)~!

When we put m = constant = [, we must have B = —3and A = (1/4m?). In this case o
vanishes and we recover the usual Einstein universe. We have seen that the twist of the
stream-lines of the dust distribution filling the model is non-vanishing. For the Einstein
universe it becomes zero. Thus the solution described here represents a non-statlc
rotating generalization of Einstein static universe.

Case (iii) m = constant, p = Q.

Since this case is similar to the case (ii), we shall be brief and simply state the results. The
differential equation to be satisfied by the function I(t) is

12 = C+ A% — (I*/8m*), (28)

which can be solved in terms of elliptic functions. Here C is a constant of integration.
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The parameters p, ¢ and e** are given by
8np = —2A +[(2m? —1%)/m*],

(4m? — 2 —4Am*) 312 — 4m? + 4Am®)
16m*(2m* — 12 —2Am*) ’
2

T 22m =12 =2Am*)’

8no = (29)

eZA

Here also it can be seen that the solution describes a non-static rotating generalization
of Einstein static universe.

In the cases (ii) and (iii) we have considered the matter dominated epochs (i.e. p = 0)
because of our interest in the generalizations of Einstein universe. The solutions for
other equations of state can also be found on similar lines.

5. Solutions withm #n % |

In the early epochs of a big-bang cosmology one may expect radiation in thermal
equilibrium i.e. p = 3p and in the late stages of evolution, where galaxies move freely,
one may expect dusti.e. p = 0. Therefore in this section we consider these two equations
of state along with m#n # 1.

Case (i) p=0,A=0

Puttingp=0,A=0,m=Icosq,n=1Ising,q = constant in (12), we get the equation

QLMD+ @)+ =0. - (30)
It is easy to obtain the first integral of the above equation in the form
IZ={DMm-1, (€29

where D is a constant of integration. The solution of (31) may be parametrized by an
angle H(t) with ‘

D D
l=-i(1—COSH), t=—2—(H—smH)
The parameters p, o and exp (24) can be easily determined. They are given by
1
8np = l~3(3D —4]), exp(24) = 3D/(3D —4l),

2 (3D-2l)
8no = Fm (32)

For p > 0,exp (24) > 0Oand ¢ > 0 we must have 3D —4l > Oi.e.| < 3D/4. The model is

valid for those values of  which satisfy this restriction. Here it should be noted that the
constant D is always positive.
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Case (ii) p—3p=0, A=0.
In this case we obtain the following differential equation for the function I:
3,/ +302/D)+1/P=0.

Here also we have taken m = [ cos g, n = I sin g, ¢ = constant. The first integral for the
above equation is found to be

= (N/P) -4, (34)

where N is a constant of integration. The parameters p, o and exp (24) in this case are
determined as
1 (6N -7
= —212y/13 = e e
8np = 3N —2I*)/1°, 8no E BN —2P)

e** = (3N +I2)/(3N = 212). (35)

Here also the constant N is always positive.

It can be easily seen from (19) that the rotation vector Q' of the stream-lines is non-
vanishing in both the cases. Therefore the solutions of the above two cases represent
rotating cosmological models.

Appendix

In the axially symmetric case m = n it is convenient to replace differentiation with

- regard to t by one with regard to m. As a matter of fact we use the substitutions 12

= 2ym?, m? = 4un and replace d/dt by d/dz where e* = m. Using these substitutions in
(5) and also noting that we are now dealing with the axially symmetric case m = n, we
shall find,

Ry = —exp(—22) [2un,, + (u, + 8, + 2p, + 8u+ 1]
Riz2y= Ry = —exp(— 2z)[4un, + Qu, +8u—1)n+ 1]

Ryss)y = exp (—22)[2p0 + (u, + 8, + 4, + e+ 901,

where the subscript z denotes differentiation with respect to z. The advantage of these
substitutions is that for simple cosmologically relevant equations of state like p = 0, p
= 3p or p = (constant)p we get a tractable relation between n and p. For example, for
the equation of state p = 0, taking the cosmological constant A =0, we find the
equation

@

2un,, + (1, + 8uyn, + 4(u, + p+3)0 = 0. (A1)

We are still left with the freedom of choosing a third relation between [, m, n. We can
choose it in a way which can help us in working with (A.1). For example choosing u,
= az+ b, a, b, constants, one can make (A.1) amenable to a power series solution fornin
terms of z. ‘
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