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1. INTRODUCTION

No non-static solutions, with physical significance, of Einstein’s field equa-
tions are known outside the field of Cosmology. The field of a radiating
mass presents a problem for which general relativity has, so far, not been
able to provide a solution. Schwarzschild’s external solution deals with the
gravitational field of a cold dark body whose mass is constant. The applica-
tion of this solution to describe the sun’s gravitational field should only be
regarded as approximate. Various attempts have been made to generalize
Schwarzschild’s solution in order to make it applicable to non-static masses,
(Narlikar, 1936; Narlikar and Moghe, 1936).

While discussing this outstanding unsolved problem of general rela-
tivity, Professor Narlikar (1939) remarks:

““ If the principle of energy is to hold good, that is, if the combined
energy of the matter and field is to be conserved, the system must be
an isolated system surrounded by flat space-time. A spherical radiat-
ing mass would probably be surrounded by a finite and non-static
envelope Of radiation with radial symmetry. This would be surrounded
by a radial field of gravitational energy becoming weaker and weaker
as it runs away from the central body until at last the field is flat at
infinity. It has yet to be seen whether and how this view of the distri-
bution of energy is substantiated by the field equations of relativity.”

We represent below the solution of the field equations which substantiates
the views expressed above. We begin with the derivation of the energy
tensor for the radiation envelope surrounding a star.

* The treatment as given here is essentially different from that of Professor H. Mineur as
it appears in Ann. de I’Ecole Normale Superieure, Ser. 3, 5, 1, 1933. Our attention was
kindly’ drawn to it by Professor Mineur some years ago.— V. V. N. 23-4-1950.
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2. ENERGY TENSOR FOR A DIRECTED FLOW OF RADIATION

By the term “directed flow of radiation” we mean a distribution of
electro-magnetic energy such that a local observer at any point of the region
of space under consideration finds one and only one direction in which the
radiant energy is flowing at the point. Using natural co-ordinates at the
point of interest, we may take the components of the energy tensor as being
given in terms of electric and magnetic field strengths E and H by the typical
examples given by Tolman (1934).

Tt=—}(E,2— E,>- B+ H,2— H - H?), (2:1)
T*=— (E,E, + H,H,), (2:2)
Tg4=(E,H.— EH,), 2-3)
T#=4 (B + E,*+ B2+ H,*4 H 4 H?). (2-4)

The suffix 0 to a component of a tensor indicates that the component is
evaluated in natural co-ordinates at the point of interest. Considering, for
simplicity, that the axes of our natural co-ordinates are oriented in such a
way that the flow of radiation at the point of interest is in the x-direction
and further that the radiation is polarised with the electric vector parallel
to y-direction, we shall find

E,=E,=H,=H=0; E,=H, (25
and so the only surviving components of the tensor T* would be
TH=TH=T4=}(E H)=p, 29

p being the density of the radiant energy at the point.

Having obtained the components of T# for one system of co-ordinates
we can find them in any other system by the rules of tensor transformation.
For a general co-ordinate system with the line-element

ds*=g,,dx*dx’, 27
the components of T#* will be given by
¢ p o 0xb X .
T+ = 3%, 3%, T8, (2-8)

On using (2+6) this yields

dxH dx? AXH dx? AxH XY XK dx?
o=y
T [bxol X! T Xt 0t U WXt dxpt T dxpt bxol] P

(2:9)

As the radiant energy travels along null-geodesics
dx,l =dx,t=dr (say). (2-10)
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By (2-10) along the radiation flow we find
g pdxtdx’ =0. (2-11)
Next we use (2-10) in

dx# _ dxcH dxoa

dr T v dr
and find 4
xX* dxk dxH .
T =t (2-12)
" With the help of (2:12), (2+9) finally reduces to
L, dxrdy | .
T =Pgr dr° (2:13)
with i d .
& dyv :
8w 7 7 =0. (2:14)

Thus for our case of the outside field of a non-static mass the energy
tensor is to be taken of the form
T? = pubv?, (2-15)
with
v, 08 =0; (v4), v =0. (2-16)
3. THE FIELD EQUATIONS

A star of mass M and radius r, is supposed to start radiating at time .
As the star continues to radiate the zone of radiation increases in thickness,
its outer surface at a later instant ¢, being r=r;. Forr,<r<r, {, <1<y
let the line-element be assumed to be of the form

ds?= — erdr?— r?(d? + sin? 0d$?) -+ e’dt?,

A=A, D, v=2(r, 1) 3-1)
For the nature of radiation we have found the energy tensor T# of the form
T =, . R
p is the density of radiation and the lines of flow are null-geodesics:
v,0f=0; (), " =0. (3-3)
Since (T#*), =0, we have the analogue of the equation of continuity
() =0. | (3-4)

As the flow is to be radial, 2=0, v3=0 and
Ty =pvpl, Tyt= pvgvt, Ty =pvt, T2=T2=0. (3:3)
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Also v,0%=0 simplifies to
— &M (012 + o¥ (s4)2 =0, (3-6)

With the usual expression for the components of T in terms of g,, and
their derivatives, (3-5) gives the following three field equations:

(i) Tle-A24 TA=0, - (3:7)

- A, e ) . .
or ek(; --_)+ + e = | (3-8)
() T TA=0, (3-9)

N—y 2\ 2

Y _~ £ 0 .
or (== %) +5=0; (3-10)
(i)  T,2=0, (3-11)

" 24 I vl

_ N v L _ V - A/ ‘4 53 AV
o~y -Fri) e (54 =0. 3-12)
Here and in what follows an overhead dash or dot indicates a differentiation
with regard to r or £.

If the total energy is to be conserved, the line-element obtained by
solving these equations must reduce to the static form

ZM)"I = @0t + sin 00t + (1= 2 ar (313)

ds~—~——(1
at r=r,t=tyand for r>r att =,

4. THE SOLUTION OF THE FIELD EQUATIONS

On putting e™* =1-— 12—:77? m=mn(r,t) 4-1)
in the field equation (3-8) we find that it is equivalent to
~A ?Ln -v/2 ?_Tz .
eVttt y=0 4-2)
Using the operator
d 13 | 40
— =t 4 0t -, ' 4-3)

we may express this as

dm

=0 (4-4)

A2
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From (4-2) we can cxpress e? in terms of m:
it 2m\~V?2 ‘
er=-"(1-27) . @5)

2

Now we can take the second field equation (3-10). On substituting the values
of A and v from (4:1) and (4-5), we find that

' om 2m\  2m
(i —w)-7)= &)
The first integral of the above equation is |
, 2m
m (1= )=, @7
f(m) being an arbitrary function. (4:7) is the differential equation to be

solved for m.

We now take the third field equation (3-12). We shall show that when
A and v are given by (4-1), (4-5) together with the last differential equation
(4-7), the equation (3-12) is automatically satisfied. The following is an
identity holding between the components of the tensor T,”.

d d ' 2 X
Sr (Tll) + -b-i (T14 —_— % (T44__ Tll) + ; (Tll'“' T22) _]_ T*4 (-..2|—1.}) — O.
| @9)
With the help of this identity and the two equations (3-7) and (3-9) the
equation (3:11) can be transformed into

g;(rw T =0. 4-9)

Thus the third field equation is satisfied, i.e., T,2=0 provided (4+9) is satis-
fied, i.e., provided

Sl (1-2)f =0, (4-10)

i.e., provided g? =( when we use (4'7)‘.. And the last relation is already

proved as (4-4) above.

Hence we have solved all the field equations and the final line-element
describing the radiation envelope of a star is

2m1

ds?= —- (1 —-——) dr? — r®(d* +- sin? 6dq$2) + 12( grﬂ) dz?,
4-11)

f
|
|
|
|
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with m' (1-—- %’;’?) =f(m), m=m(r, 1)

for r<r<m LSt

The surviving components of energy tensor are

! 9

- T'= T44:£f2 y Tit= 4;:;{,.2 , Tyt=— Zgi';g : 4-12)
(Vaidya, 1943).

5. THE OPERATOR 4
dr

The relation '(4 -4)

is a type of relation peculiar to the field we are investigating. In this section
we obtain some more relations of this type. On eliminating v* from v,0* =0
and (v*), v*=0 we find

1 1 :
%7;. + g;i A2 |yl (N-_.zw— + )\e“""‘”z) =0. (5-2)

But the last term on the left hand side can be shown to vanish by using the
field equations (3-8) and (3-10). Hence (5-2) becomes

vt
4 =0 (5-3)
Another such relation can be obtained by starting with the cquation of conti-
~ nuity (3-4)
(o ‘UM)p, =0
which when written out in full gives
0 3 q ‘ v — ‘
sy 7 sin Bpot eM)Z) =, (5-4)

When #* is eliminated again we find
d 0 -y ) X ' \ ~p\/ 9
) + O () + (o) (S 4 e 1) =0, (5:5)
Like - (5+2) this also reduces further to give
d
ir (r#pv?) =0. (5:6)
(5-3) and (5-6) together can be used to obtain

() =0 or & (AT =0 (57
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d
and 7 (r*p) =0 (5-8)
the former of which would again imply T,*=0 as seen in the last section,

From the definition of the operator

d _ 10, 40
#= e

it is clear that it differentiates following the lines of flow. Hence the rela-
tions (5-1), (5-3) and (5-8) show that m, »* and r% are conserved along the
lines of flow. Here we shall try to understand the phrase * conserved along
a line of flow”. At any time ¢, a spherical wave-front of radius r=the"
radius of the star starts moving onwards. At every point of this wave-front
the functions m, v, r*% have certain values at the start. The functions will
retain these values at any point of this wave-front throughout the motion
of the wave-front. The boundary r=r, at t=t, is a wave-front. At
t=t,, this wave-front started moving with radius »=r,. At that time the
value of m on the wave-front was M the total mass of the star. Our conser-
vation result now asserts that on this first wave-front, the value of m will
always be M. Thus at f=¢, on the boundary of the radiation zone r=r; we
find m=M.

We may add some simple mathematical properties of the conserved
results. If

in our co-ordinate system, it means

n ?ib_ a_¢ﬂ=0
X dx?

which means that 3 [0x is a null-vector.
It follows that

W ) W '
Ghre) o 2
For a line-clement of the form (3-1), we have from (5-9) that if
dis d
=0, S (E)=0 (5-10)

which will show that (4-10) is a consequence of (4-4).
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The actual values of #* and v* may now be deduced. From (5:1) and
(5-3) we have

o om'

Tl (1D
Hence

n=g(m), =~ " 4 (m). (5:12)
¢ (m) is now to be obtained by using any one of the equations -

l 9 .
- 1M "
Ti=Ti= r2 T =g T 4mr®

Thus 4mr2pv,wl= — m

or

By =4, (1 =)

S GV (e

drrip 4rr?p

or

(5-13)

6. THE BOUNDARY OF THE RADIATION ZONE

For the field of the radiation zone of a star we have two boundaries
(1) the boundary separating radiation from the material contents (or the
internal) of the star and (2) the outer expanding boundary of the radiation
zone separating it from ‘empty’ space beyond. We shall try to find the
conditions at these boundaries which will ensure a unique solution.

L]

The line-element under discussion is
2 2
ds2=—-( - ;”) — r2(d0? - sin® dg?) - 7 f (1-—.571)[1:2, (6-1)
, 2m
m (1= =2) =1 (m. (62)

It contains two arbitrary functions. f(m) is one of them. The other is an
arbitrary function of ¢, say ¢ (f), which appears when we solve the partial
differential equation (6-2) for m.

The expanding bounding surface of the radiation zone has been taken
to be a sphere of radius r=r; at a time t=#. Obviously r, and ¢ are inter-
connected. We shall now say that this bounding surface is a sphere of
varjable radius r=R (f) which would, of course, mean that R (1) =r,.
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Beyond the bounding sphere of the radiation zone the space is ‘ empty’
and the line-element is
-1
dt=— (1= 2 ar -+ sinroagh + (1 - 2 e 69

We show now, that the continuity of g, at r =R (z) will be sufficient, firstly,
to locate the boundary at any time ¢, i.e., to determine the function R (¥),
secondly, to find out'the arbitrary function 4 (¢) and thirdly to ensure that
the total energy of the distribution is M.

Let Vm,r) =6 (6-4)

be the general solution of the equation

v (1= ) =

¥

the condition for which is

W 2my o
5 (1= F)=—1) g (63)
The value of nt is givenl by
WL ‘.
T - &9
Continuity of g, gives, at r=R ()
m=M
" (6-4) and (6:6) then give
VOLR)=4() (6
W
— M) 55, =4, (69
WV WV ST\ Y
Here M and R denote the values of the derivatives S and 57 Tespec-

tively at m=M, r=R; whichis equivalent to saying that they denote the
corresponding partial derivatives of V when the variables m and r in V are
replaced by M and R. (6-7) and (6-8) are the equations to determine the
two functions R (7) and ¢ (2).

To eliminate ¢ (f) between (6-7) and (6-8) we differentiate (6-7) with
respect to f, to get ‘
W

RR=9
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which with (6:8) gives

vy

R
We shall now compare (6:9) with (6-5). (6-5) is a relation in m and r.
When m=M, r=R, it becomes

—— 70 ;. (69

W IMy oV 6-10
w1~ )=~/ (610
Comparing (6-9) and (6-10) we find
R=1-2M,

R

The general solution of this last differential equation is
R +2Mlog (R — 2M) — t=a contsant,

which in our former notation, would mean that if the boundary of the radia-
tion zone is r=r, at a time t=1¢,

1+ 2M log (r, — 2M) — t, =a constant. (6:11)

The function ¢ (¢) is now given by (6-7). It is interesting to note that the
boundary radius r=R (f) is determined independently of the nature of the
function V (m, r).

Before we proceed further let us study the condition 7= — f (M) at
r=R (). It says that, at all times, on the boundary of the radiation zone,
m is a constant. But 1 is not conserved along a line of flow. Using the
explanations of the last section, we say that the radiating star goes on
cmitting a series of wave-fronts. As 7 is not a conserved function, it is
not constant for each one of these wave-fronts. But as m contains an arbit-
rary function of 4, it is possible to select this function in such a way that
i takes up a constant value on a particular wave-front. And this is what
we have done by the condition (6:8). Note that the continuity of g,, at
r=R ensures that at the start, r=ry, 1=1, the line-eliment is again (6-3),

The conditions at the boundary =R (¢) have left f(rz) undetermined.
We expect that f(m) will be determined by the conditions at the inner
boundary of the star. It is clear that f(m) is governed by the conditions in
the interior of the star, different stellar models giving different forms of JS(m).
That this will be the case, can be very easily seen from the definition of JS(m);

fm)=m' (1 - %;-’1)
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or approximately f(m)=m’' or again f(m)= — m, because m’ is almost
equal to —m. Thus f(m) measures the luminosity of the star, at the
Newtonian level of approximation.

Lastly we may now verify that the principle of conservation of energy
holds good. The line-element (3-1) can be expressed in the form

A
¢ 5 L (xdx + ydy + zdz)? + e* dr®

ds*= — {(dx)® + (dy)* + (d2)*} — —
(612)

By using the well-known formula! the energy content of (6-12) is found to

be
E=1lim {4r (e* — 1) e>-M/2} (6-13)
7> 00

Hence for all distributions for which the line-element (3:1) goes off conti-
nuously over some boundary fo the Schwarzschild’s form (6-3), the principle

of conservation
E=M

holds good.
7. THeE ELECTRO-MAGNETIC FIELD

The outside of a radiating star is the seat of electro-magnetic phenomena.
So the field which we have considered above must be capable of being
obtained from an electro-magnetic potential K,. That this is the case,
has been already shown elsewhere (Narlikar and Vaidya, 1947, 1948).
8. PARTICULAR SOLUTIONS OF THE EQUATION m’ (1 - ‘%’3.") =£(m)

We shall here solve the equation

om 2m\
5 (1 — 7—) = f(m) (8-1)
under different assumptions for f(m).

Case (1): Let f(m) be a constant.

fm)=k <%
m is given by the algebraic equation (m — ar)* (m — Br)® =¢ ().
Here | a, B=%{1 & (1 — Bk)¥2};

A, B=1{1F (1 —8k)V2}.
# (¢) is an arbitrary function of ¢.

* Formula (91-1) on p. 232 of Relativity Thermodynamics and Cosmology by R. C. Tolman
(1934) was used,
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Next let f(m)=k=1%.
m is given by the algebraic equation r=4(m — r) {log (4m — r) + ¢ (1)}
Finally let f(m)=k > %. m is given by the equation

2 tan { 1 ) 8k — 1)v2 | | = @k—1)t log 2m2—mr-+krd)+4 (1),

Case (2): Some more particular solutions may be obtained by trying
the following method. The condition that the total differential equation

m'dr + mdt — dm=0 (8-2)
should be exact is given by ‘
dt _dr _ (r—2m)dm _ (r — 2m) d ()
-1 T (d ) -3
- T s ®:3)

Solving (8-3) we try to obtain m as afunction of m, r and ¢. Then this m
and m’ from (8-1) will make (8-2) exact. The solution of (8-2) will therefore
give us the final solution for m. It can now be verified that the following
is a solution of (8-3)

m(r—2m)(m—ar)'(m—prly=¢(® (8-4)
where (a4 B)2n=—1, "B -f(m)=k" (8:5)
a=a(m), =B (m), y=1y (m), k=a constant, (8-6)
(K2 + 22 D) — k3 + 20 (Fm) ) )

and f(m) is to be taken as |
(.[)%’1) }%l—%zﬂ)“”m — (4f(m) + 1 "l 2,2)1+'m. (8.8)

n, ¢ are constants and1 +»n % 0, 3 4 2n 5£ 0. Various cases follow from
this solution for different values of n.

Case (3): 1+ 2n=0, f(m)=cm —1, ¢ a constant. Then
, 2my
m (1 — »»»—;)——cm 1,

4 cm?(r — 2m)2 = ¢ (cm — 1)2 (cr? — 4r + 4n).

The complete solution for m is

= =+

— —c‘log (em — 1) =4¢ (D).
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Case (4): Let5 + 61 =0 then 501 (m) = (625 cm + 36)1”2 ¢ a constant.

m(jrp('—)zm)x(m N=4, (3f+ 200) = X. (m . mr + 3f+ 200)5/6

The final (m, r) relation is given by

V= f -~-—2—~m X )dm,

where the integrand on the nght hand s1de will be a function of m only and

v:erdr+¢(z).

In the last expression while performing the integration with respect to r,
m is to be treated as a constant.

My thanks are due to Professor V. V. Narlikar for having suggested
this problem and for general guidance during the work.

SUMMARY

A star of mass M and radius r, is supposed to start radiating at time ¢,
The zone of radiation extends to r=r, at a later instant #=1¢,. The energy
tensor for the radiation zone, describing the directed flow of radiation, is
evaluated and a relativistic line-element representing the field of radiation
for ry < r<r, and corresponding f, < ¢ < t, is obtained. It is shown that
certain quantities m, v', r?, etc., are conserved in the field along a world-line
of flow. At r=r,, t=1, and at r=r, t=1,, the line-element reduces to
Schwarzschild’s static form for a mass M. The conservation of energy is
verified. The electro-magnetic potential K, of this field has already been
obtained elsewhere.
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