Information Processing Letters, Vol. 98, No. 5 (2006) 206210 1

A Closer Look at Constraints as Processes

N. Raja * R.K. Shyamasundar

School of Technology & Computer Science
Tata Institute of Fundamental Research

Mumbai 400 005, India

Keywords: Programming calculi; Formal semantics; Program correctness;
Concurrency; Compositional encoding.

1 Introduction

Every major paradigm of programming is built around a few key design
concepts and principles. In order to study and analyse these concepts, it is
essential to embody these conceptual mechanisms in a minimal core calculus.
Such a core calculus helps in abstracting away from the syntax of particular
programming languages which belong to that paradigm, thereby making it
possible to analyse the paradigm in a syntax independent manner [12]. A
well known instance of such a scenario is provided by the inter relationship
between the paradigm of functional programming and the A-calculus [2].

A major enterprise in the conceptual analysis of various paradigms, is
the analysis of the expressive power of seemingly disparate paradigms of
programming, in order to discover underlying similarities between them,
and to carry over successful analysis techniques across paradigms. Once
again, the availability of minimal core calculi helps in achieving this step,
by providing a framework for the development of a semantic foundation for
one paradigm in terms of another.

The v-calculus [15] and the 7-calculus [8] may be considered as rep-
resenting minimal calculi which capture the core features of two distinct
paradigms. The y-calculus [15] embodies higher-order concurrent constraint
programming [16], an instance of which is the Oz programming language

*Email address: raja@tifr.res.in; WWW: http://www.tcs.tifr.res.in/ raja
'Email: shyam@tcs.tifr.res.in; URL: http://www.tcs.tifr.res.in/~shyam

Information Processing Letters, Vol. 98, No. 5 (2006) 206210 2

[17]. On the other hand the w-calculus [8] embodies interactive concurrent
programming [7], an instance of which is the P1icT [13] programming lan-
guage.

The problem of relating the paradigm of higher-order concurrent con-
straint programming to the paradigm of interactive concurrent program-
ming is an important one. It can be solved by relating the y-calculus to the
m-calculus. A solution to this problem has been attempted before by the
paper titled Constraints as Processes [18], which tried to present a semantic
preserving embedding from the 7-calculus to the m-calculus, along with a
proof of correctness of the embedding.

However, we demonstrate that the embedding proposed by the above
paper is incorrect. We construct a concrete counterexample, which involves
two ~-terms that are behaviorally equivalent, but their corresponding -
terms that arise from the embedding are not equivalent, thus violating the
correctness criterion of the embedding. We trace the source of error in
the mapping proposed by the above paper to the violation of one of the
basic principles of concurrent programming, namely the non-preservation of
atomic transactions.

The rest of this paper is organized as follows: Section 2 presents a coun-
terexample which shows that the correctness criterion is violated by the
embedding; Section 3 traces the root cause of this error to the incorrect
handling of atomic transactions by the embedding; Section 4 reviews re-
lated work; and finally Section 5 concludes the paper.

2 Logic variables and their concurrent updates

The 7-calculus contains the notion of logic variables, and uses elimination
as a form of constraint solving. The semantics of the y-calculus is defined
by a structural congruence and a reduction relation [15]. An example of a
reduction in 7y-calculus is:

Example 2.1 (Reduction in vy-calculus)
dz(z=a N E) — F{a/z} if # a and a free for z in I

where 32 (z = a A F)is a y-term, which comprises the conjunction of a
subterm E with the “fact” that z is a. The reduction results in E{a/z},
which is £ where the logic variable z is “eliminated” and replaced by a.
The m-calculus contains the notion of agents interacting by sending and
receiving data over named ports, where the data communicated are again

Information Processing Letters, Vol. 98, No. 5 (2006) 206210 3

ports. The semantics of the w-calculus is also defined by a structural congru-
ence and a reduction relation [7]. An example of a reduction in 7-calculus is:

Example 2.2 (Reduction in 7-calculus)
b(z).Plb<a>.Q — Pla/z}|Q

where b(z).P is an agent which receives something for z along b and contin-
ues as the subagent P, while b < a > .QQ is another agent which transmits a
along b and continues as the subagent (). The agents interact when they are
combined using the parallel operator “|”, and reduce to P{a/z} | @, where
the bound occurrences of z in P are replaced by a.

In [18], a compositional encoding is presented from the vy-calculus [15]
to the m-calculus [7, 8], along with a correctness proof. We do not repeat
the complete definition of the encoding here. For details of the encoding, we
refer the reader to the paper [18]. However, we provide those parts of the
encoding that are relevant for the purposes of this work.

The correctness criterion of the encoding is formalized in the above pa-
per by requiring the following property: If two 7-calculus terms are behav-
iorally equivalent, then the encodings of these terms into the m-calculus are
also equivalent, and vice versa. In this section, we show that the encoding
provided in the above paper does not satisfy the stated correctness criterion.
In particular, we shall present a counterexample which involves two y-terms
G and G’ (say) which are behaviorally equivalent, but their encodings into
the m-calculus represented by P and P’ (say) respectively are not equivalent,
thus contradicting the correctness result.

We construct the following scenario involving two distinct logic variables
trying to update to each other concurrently. Let z and z be two logic
variables of y-calculus. The terms represented by the equations Jz(z = 2)
and Jz(z = zAz = z) are behaviorally equivalent in the y-calculus. However
the encoding leads to two 7-terms which are not equivalent in the 7-calculus.

The 7-calculus has three kinds of basic entities, names, variables, and
terms. Names and variables are also called references. Our focus will be
on the encoding of variables, and on update operations involving them.
The encoding maps each logic variable of «-calculus to a corresponding -
calculus process term, which is called the handler agent for that variable.
For instance, the logic variable z of y-calculus is mapped to the handler

Information Processing Letters, Vol. 98, No. 5 (2006) 206210 4

agent V'(z), which is a process term of m-calculus. V' (z) is defined as:

Viz) i/ x> value(e,)<z > .V(z)
+ 2 p>update(u).
[z =u](V(z),u>value < ve,z > .c(u).
[z = «](V(2), R(z, w)))
+ zp>eq(y,y,n).
(V(z)
| ubvalue < ve,z > .c(u).[r = u|(7,T>eq < u,y,n >))
where,
R(z,u) = 'u>name(a).7>name < a >

| lz >value(c,v).[u=v](C < u>,u>value < ¢, v >)
| 'z >update(v).u>update < v >
| lz>eq(v,y,n).uteq <wv,y,n>

The handler agent interacts with the environment to perform operations

involving the corresponding logic variable. In particular it also accom-

plishes update operations on the logic variable through the interaction “z p

update(u)” which tells 2 to update to the reference u. The v-calculus equa-
7

tion “z = z” imposes the equality of z and z on all terms. The encoding
of such a constraint is given by

[x=2] = zpupdate < z>

A variable z which has been updated to a variable z is handled by R(z, z).
In the encoding, equivalence classes of logic variables are represented in the
form of trees, constructed using 7-calculus processes. The encoding imposes
certain conditions in order to ensure that the tree representations do not
become circular. In particular when a logic variable (say z) is processing
an ‘z > update’ request, no other logic variable is allowed to update to z.
This is ensured by disabling ‘z1>value’ requests during update sections, and
vice versa, since another variable must read the value of the reference it is
updating to. The encoding does indeed take measures to prevent circularities
when z is told to update to itself either directly or indirectly. However, the
encoding does not prevent incorrect behavior in cases where two distinct
logic variables are trying to update to each other concurrently.

This can be demonstrated as follows. Consider another logic variable
z which is distinct from the logic variable z. The 7-calculus process V(z)
denotes the corresponding handler agent that encodes z. Let logic variables

Information Processing Letters, Vol. 98, No. 5 (2006) 206210 5

x and z be such that they have so far not been subjected to any update
operations. Now, consider the encodings of the two behaviorally equivalent
v-calculus terms, namely Jz(z = z) and Jz(z = z A z = z).

The encoding of the y-calculus term Jz(z = z) is given by

[Fz(z=2)] = (v2)(V(z) | V(2) | x> update < z >)
which, after several reductions, results in:

(va)(R(z, 2) | V(2))

thereby achieving the required update.

On the other hand the encoding of the other behaviorally equivalent
y-calculus term Jz (2 = 2 A z =) is given by the following parallel compo-
sition:

[Fz(z = 2Az=12)] = (vz)(V(2) | V(z) | z>update < z > | z>update < z >)

The above parallel composition, after several reductions, results in the fol-
lowing parallel composition, which cannot evolve any further:

(vz)(zp>value < ve,z > .c(u).[z = ul(V(z), R(z, u))

| 7o value < ve,z > .c(u).[z = «](V(z2), R(z, v)))

Thus, processing the request z >update < z > in parallel with the request
zbupdate < z > fails to achieve the required update of the logic variables
to each other. This can be clearly seen from the above parallel composition
of terms which cannot evolve any further.

3 Discarded atomic transactions

The 7-calculus and the w-calculus are based on two very different paradigms
of concurrent computation. The v-calculus may be thought of as being
built on the shared memory model of concurrent programming, while the
m-calculus may be considered to be based on the message passing model.
The v-calculus utilizes a central shared memory, called a blackboard [15],
and uses global substitution of variables to achieve state updates. The
m-calculus utilizes message passing through named channels between con-
current processes.

Information Processing Letters, Vol. 98, No. 5 (2006) 206210 6

The embedding of logic variables from the 7-calculus to the w-calculus
needs careful consideration. With the underlying memory model of ~-
calculus, operations which involve multiple logic variables appear very nat-
ural. One such operation is that of updating two distinct logic variables to
each other. On the other hand, as we have seen in the last section, simu-
lating such update operations of logic variables in a message passing model
becomes error prone.

In the y-calculus, the act of updating two distinct logic variables to each
other is an atomic transaction [6], and it is essential that this atomicity
be preserved by translations to the message passing paradigm. Such an
updating process in the message passing paradigm, should be able to acquire
its resources (namely the two logic variables) without leading to deadlock
or starvation. One of the simplest ways of encoding operations involving
more than one logic variable simultaneously, is to use the two-phase locking
algorithm [6] familiar from distributed computing. Using a more complex
encoding it is possible to program the two-phase locking strategy from the
basic constructs of m-calculus. On the other hand, a more elegant alternative
would be to extend the w-calculus with mechanisms which would simplify
the translation of two-phase locking into it [3]. Of course, apart from two-
phase locking, there are a number of other well known strategies to ensure
atomicity of transactions [6].

4 Related Work

Related research may be classified under four main sub-headings. They are
discussed in the following sub-sections.

4.1 From sequential logic programming to w-calculus

Sequential logic programming and sequential Prolog may be considered as
special cases of concurrent constraint systems. Work reported in [5, 14]
provides translations of logic variables, sequential unification, and other fea-
tures of Prolog to w-calculus. However, these papers do not provide proofs
of formal correctness, and also remain unencumbered by the complexities of
concurrency in their source languages.

4.2 TFrom concurrent constraints to enhanced w-calculus

There are papers [9, 15] which provide an embedding from different vari-
ants of concurrent constraint calculi to enhanced versions of the m-calculus.

Information Processing Letters, Vol. 98, No. 5 (2006) 206210 7

However the embedding proposed by these papers [9, 15] require the sup-
port of extra enhancements to the primitives of 7-calculus, such as variables,
equations, and elimination rules, in order to define the mapping.

The update calculus [10] and the fusion calculus [11] are process calculi
which posit entirely new primitives which are not present in the 7-calculus.
Such primitives are called update and fusion in the two calculi respectively.
They provide the capability to perform actions which result directly in global
side effects, or in side effects whose scope can be explicitly controlled with
the help of a scope operator. Thus, it should be noted that in these calculi
the basic mechanisms for updating a shared state are already present, and
there is no simple way of translating such primitives to the m-calculus. The
work reported in [19] embeds a calculus with concurrent constraints into the
fusion calculus.

4.3 From concurrent constraints to basic m-calculus

The only work of this kind is that in [18], which tries to provide a translation
from concurrent constraints to the minimal w-calculus without requiring any
additional enhancements. However, as we have demonstrated, the embed-
ding it proposes leads to deadlocks.

4.4 TFrom other domains to extensions of wm-calculus

The m-calculus has been extended in many other ways in response to mo-
tivations from various other application domains. Such extensions include
the applied 7-calculus [1] which has extensions like value passing, primitive
functions, and equations among terms, in order to analyse security proto-
cols. The extended m-calculus [3] considers extensions such as message loss,
sites, timers, site failure, and persistence, to the asynchronous version of
the m-calculus [4] so as to examine transactions in the presence of partial
failures in distributed systems.

5 Conclusion

The task of relating core calculi which correspond to different programming
paradigms is an important one. However, as shown in this paper, one needs
to be aware of the various subtleties that need to be taken care of in order
to avoid pitfalls and inaccuracies that are likely to arise in proposed em-
beddings. The purpose of this paper is not to merely act as a bug report,

Information Processing Letters, Vol. 98, No. 5 (2006) 206210 8

but instead to effectively demostrate that the problem of relating higher-
order concurrent constraint programming to the paradigm of interactive
concurrent programming still remains open. Though we have hinted at us-
ing standard algorithms from distributed programming to solve the problem
correctly, nevertheless the task of constructing a fully abstract encoding be-
tween the two paradigms will prove to be highly intricate and non trivial to
achieve.

A useful intermediate step which might help in the construction of el-
egant encodings between various calculi, would be the provision of simple
extensions for the core calculi. Analogous to similar situations in logic,
such extensions could take the form of conservative extensions of the min-
imal calculi, in order to retain the minimality feature of the core calculi.
While in logic the notion of conservative extension has the clear meaning
of preserving satisfaction of original sentences, in the world of calculi for
computation it should mean conservativity in dynamics and in behavioural
semantics. T'he update calculus and the fusion calculus cannot be considered
to be conservative extensions of the w-calculus because there is no simple
way of translating the primitives of these calculi to the w-calculus. Formu-
lated in this manner, conservative extensions would equip the underlying
core calculi with higher-level constructs which provide a convenient handle
to reduce the complexity of various embeddings, and would also enrich the
core calculi by making them more elegant frameworks for the analysis of
real-world programming language characteristics and features.

Acknowledgements

Our thanks to the referees for their helpful comments. Our thanks to
Ms. Margaret D’Souza for typing and proofreading this paper.

References

[1] M. Abadi, C. Fournet, Mobile Values, New Names, and Secure Com-
munication, Proceedings of POPL’01, ACM Press (2001) 104-115.

[2] H.P. Barendregt, Functional Programming and Lambda Calculus,
Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics (1990) 321-363.

[3] M. Berger, K. Honda, The Two-Phase Commit Protocol in an Ex-
tended Pi-Calculus, Proc. Express’00, Electronic Notes in Theoretical
Computer Science, Vol. 39, No. 1 (2000).

Information Processing Letters, Vol. 98, No. 5 (2006) 206210 9

[4]

[14]

[15]

[16]

K. Honda, M. Tokoro, An Object Calculus for Asynchronous Commu-
nication, ECOOP’91, LNCS 512, Springer (1991) 133-147.

B.Z. Li, A m-Calculus Specification of Prolog, ESOP’94, LNCS 788,
Springer (1994) 379-393.

N.A. Lynch, M. Merritt, W.E. Weihl, A. Fekete, Atomic Transactions,
Morgan Kaufmann (1993).

R. Milner, Communicating and Mobile Systems: The Pi Calculus, Cam-
bridge University Press (1999).

R. Milner, J. Parrow, D. Walker, A Calculus of Mobile Processes (Parts
I and 1II), Information and Computation 100 (1992) 1-77.

J. Niehren, M. Muller, Constraints for Free in Concurrent Computation,
Asian Computing Science Conference, ACSC’95, LNCS 1023, Springer
(1995) 171-186,.

J. Parrow, B. Victor, The Update Calculus, Proceedings of AMAST’97,
LNCS 1349, Springer (1997) 409-423.

J. Parrow, B. Victor, The Fusion Calculus: Expressiveness and Sym-
metry in Mobile Processes, Proceedings of LICS’98, IEEE Press (1998)
176-185.

B.C. Pierce, Foundational Calculi for Programming Languages, Hand-
book of Computer Science and Engineering, CRC Press (1997) 2190-
2207.

B.C. Pierce, D.N. Turner, Pict: A Programming Language Based on
the Pi-Calculus, Proof, Language and Interaction: Essays in Honour of
Robin Milner, MIT Press (2000) 455-494.

B.J. Ross, A m-Calculus Semantics of Logical Variables and Unification,
Proc. of First North American Process Algebra Workshop, Workshops
in Computing, Springer-Verlag (1993) 216-230.

G. Smolka, A Foundation for Higher-Order Concurrent Constraint Pro-
gramming, Proceedings of Constraints in Computational Logics, Lec-
ture Notes in Computer Science, Volume 845, Springer (1994) 50-72.

G. Smolka, The Oz Programming Model, Computer Science Today,
Lecture Notes in Computer Science, vol 1000, Springer (1995) 324-343.

Information Processing Letters, Vol. 98, No. 5 (2006) 206210 10

[17] G. Smolka, The Definition of Kernel Oz, Constraints: Basics and
Trends, Lecture Notes in Computer Science, Volume 910, Springer
(1995) 251-292.

[18] B. Victor, J. Parrow, Constraints as Processes, Proceedings of CON-
CUR’96, Lecture Notes in Computer Science, Volume 1119, Springer
(1996) 389-405.

[19] B. Victor, J. Parrow, Concurrent Constraints in the Fusion Calculus,
Proceedings of ICALP’98, LNCS 1443 (1998) 455—-4609.

