
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol.6, No.1, January-February 2007

Cite this article as follows: Jagadish S, Shyamasundar R.K.,: “UML based approach to specify
secured, fine-grained concurrent acces to shared variables”, in Journal of Object Technology, vol.
6, no. 1, Januar-February 2007, pp. 107-119 http://www.jot.fm/issues/issue_2007_01/article3

UML-based Approach to Specify
Secured, Fine-grained Concurrent
Access to Shared Resources

Jagadish Suryadevara, Birla Institute of Technology & Scinec, INDIA
Shyamasundar R.K., Tata Institute of Fundamental Research, INDIA

Abstract
In object oriented paradigm, a concurrent system can be regarded as a collection of
autonomous active objects which synchronize and communicate through shared
passive objects. In this paper, we propose a UML-based approach to specify secured,
fine-grained concurrent access to shared resources ensuring data integrity and security.
The goal of the approach is to develop the UML specification with precise executional
semantics, yet independent of low-level synchronization primitives and implementation
environment. The approach is largely inspired from the language constructs of CDL*. A
light-weight extension of UML 2.0 meta-model is proposed for the required constructs
and semantics. UML protocol statemachine is used to define the access protocol for
shared resources and UML activity is used to specify the behavior of methods
implementing plausibly concurrent operations. The UML activity construct is extended to
support concurrency features; synchronization regions, mutual exclusion and
conditional synchronization not supported in current UML2.0 semantic model. The
approach can be easily extended to a programming framework of design and coding.

1 INTRODUCTION

Object oriented paradigm, due to features like abstraction, data encapsulation supports
design methodologies for various kinds of complex systems like Real-Time, Embedded,
Concurrent, Mobile, and Distributed. In particular, the abstraction feature supports
formal framework for reasoning with the system through static or dynamic analysis. Due
to these reasons efforts of OMG, Object Management Group, in promoting and refining
UML, Unified Modeling Language [2], are received with wide-spread enthusiasm and
adoption. The recent UML2.0 specification with well-defined semantic foundation based
on fine-grained action semantics is the result of continuous ongoing efforts of UML
community including formal methods researchers towards semantic refinement of UML

As UML is intended by its designers to be a family of languages, its specification left
several semantic variation points to be defined by the requirements of the domain under

UML BASED APPORACH TO SPECIFY SECURED, FINE-GRAINED CONCURRENT ACCES

TO SHARED VARIABLES

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

consideration. In addition to these semantic variation points UML provides standard
extension mechanisms known as profiles, stereotypes, and constraints to support specific
domain modeling

In spite of several efforts, concurrency in UML remains an active research area,
requiring concrete approaches to precise modeling to support the programming activity.
UML through its active object paradigm, provides various mechanisms to specify
concurrency;

• isActive meta attribute of metaclass Class to specify whether the object is active
or passive,

• concurrency meta attribute of metaclass Operation to specify concurrent
operation invocation, and

• orthogonal regions of the state machines to specify concurrent activities in an
object.

At run time, these mechanisms should work together correctly in order to ensure the
correct behavior of a model. But, unresolved ambiguities and inconsistencies among
various mechanisms remain a main hurdle in specifying precise concurrency in UML.
Though good designers can avoid these inconsistencies, expressive constructs with well
defined semantics are desirable. In this paper we have suggested improvements to the
UML semantic model to specify fine grained concurrency. But it is not our goal to define
formal semantics in this paper, a task that shall be taken up in future work.

In this paper, we propose a UML-based approach to specify fine grained concurrent
access to shared resources independent of implementation aspects. The rest of the paper
is organized as follows. Section 2 states the design goals of the proposed approach in the
specification of concurrency. Section 3 describes the inadequacies in UML semantics for
specifying concurrency using classical readers-writers problem. In Section 4, we provide
an overview of CDL*. The approach of the paper together with proposed extensions to
UML semantics is described in Section 5. Section 6 describes related works.

2 GOALS OF THE APPROACH IN THE SPECIFICATION OF
CONCURRENCY

The approach of this paper is largely inspired from the semantics of the language
constructs of CDL* [1]. The CDL* constructs provide (i) data integrity without resorting
to unnecessary mutual exclusion, thus providing fine-grained concurrency (ii) dynamic
resource management. These constructs are supported by a compositional proof system
for proving interference freedom of concurrently executing operations and to establish
live-ness axioms and deadlock-free properties.

We state the following goals to drive our approach in specifying concurrency in
UML.

a) To retain the classical UML constructs and semantics to the maximum extent

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 109

b) To provide UML extensions for expressiveness and precise operational semantics
c) To provide a higher level specification independent of execution environments
d) To provide fine-grained parallelism, synchronization, and mutual exclusion

without using low-level synchronization primitives like semaphores and monitors
e) To support formal analysis of the system specification

3 INADEQUACIES OF CLASSICAL UML SEMANTICS TO
SPECIFY FINE-GRAINED CONCURRENCY

In this section, we discuss inadequacies and inconsistencies in UML semantics through
the UML-specification of the classical readers-writers problem with writer priority. As
per the problem specification, a writer must have an exclusive access to the data while
the readers can access the data concurrently.

UML objects can be active or passive as specified by the attribute isActive in
metaclass class. The meaning of active/ passive in UML is not entirely the same as in
many object oriented concurrent languages [3]. In these languages, ‘active’ objects have
internal control over concurrent requests made towards them where as ‘passive’ objects
need external synchronization mechanism. In some of these languages for example;
Eiffel, and ACT++, passive objects can only be used locally within an active object.

In UML, an active object has a thread of control and runs in its address space while
passive objects run within the context of another active object which controls the caller
[2]. In the absence of such a controller, passive objects execute their methods
concurrently in the callers’ thread of control and thus need explicit synchronization. In
UML, though the semantics are not well defined, passive objects still have a degree of
control over the invocations made towards them through the specification of meta-
attribute concurrency with values sequential, guarded, or concurrent [2].

In general, active objects in UML follow run-to-completion semantics; no further
messages are accepted until the current message is fully processed thus avoiding side
effects due to interleaved execution of actions. The following issues can be identified
from the UML specification of readers-writers problem. Readers, and writers are
specified as active objects and we consider various options to specify the involved shared
resource Buffer.

• Buffer as active object associated with a state machine: Parallelism can not be
specified. For example, this specification precludes simultaneous reader activities
due to inherent mutual exclusion of message processing resulting from run-to-
completion semantics of the associated state machine. Thus the Buffer becomes
internally sequential. Also deadlock issues arise when currently executing
operation makes a synchronous operation call to it self. The only advantage of this
choice is the implicit synchronization due to sequential execution.

UML BASED APPORACH TO SPECIFY SECURED, FINE-GRAINED CONCURRENT ACCES

TO SHARED VARIABLES

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

• Buffer as passive object: The metaclass Operation has an attribute concurrency
that specifies the semantics of concurrent calls to the same passive instance. The
attribute can have one of the values: sequential, guarded, or concurrent dividing
the operations of the class into three categories. By making operations concurrent,
multiple invocations of an operation can exist simultaneously resulting in required
parallelism. Though apparently this choice seems to satisfy the requirements of
readers-writers problem, concurrency conflicts may arise requiring explicit
synchronization mechanisms using low-level primitives like semaphores,
monitors. Also passive object semantics is not clear in UML.

• In either of above choices, a well-defined event deferral mechanism is required.
For example write, read events need to be preserved till appropriate state/ guard
condition is reached. The availability of this mechanism is not clear particularly
for passive objects as UML semantics of passive object and state machine conflict
severely [4].

Other ambiguities and inconsistencies regarding concurrency in UML object model are
well identified in [4, 5].

4 OVERVIEW OF CDL* CONSTRUCTS

Language constructs of CDL* provide modular specification with separation of concerns
through MODSPEC, MODDES, and MODBODY parts of a module [1]. MODSPEC part
provides unambiguous specification to both analyst and the implementor and facilitates
modular verification. The syntax and semantics for the use of a module depend only on
the MODSPEC part and is independent of other parts involving design (MODDES) and
implementation descriptions (MODBODY). The constructs of the language provide high
level specification of synchronization properties ensuring data integrity without resorting
to unnecessary mutual exclusion due to low-level mechanisms like monitors. Also, the
constructs are supported by the proof rules for the non-interference of concurrent
procedures to establish the deadlock and live lock freedom of the programs.

The semantics of procedures and commands is described through designative phrases
given in square brackets […]. From concurrency point of view, the main construct of a
CDL* program is the shared-resource defining a set of shared data and a set of
operations that can be performed by the processes on the data. The structure of the
construct enables to synchronize processes, transmit data between them, and control the
order of accesses by the processes to the shared data. We consider below the CDL*
specification of readers-writers problem (as given in [1]).

ENTRY clause specifies the operations that are visible outside the module.
PARALLEL clause specifies the procedures that could be instantiated concurrently.
INVAR clause specifies the invariance of the resource as well as other properties e.g.,
liveness etc.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 111

MODSPEC SHARED reader-writer

 EXPORT
 TYPE page : some_type;

 STATE
 VAR buff: page;
 VAR nr, nw: INTEGER INIT 0;
 VAR writerbusy: BOOLEAN INIT FALSE;

 INVAR [writerbusy → nr=0];

 PARALLEL (read, read), (startread, startread),
 (endread, endread),
 (read, startread, endread)
 TRANS

 ENTRY PROC startread
 [nw=0 → nr := nr+1];
 ENTRY PROC read(OUT x:page)
 [x := buff];
 ENTRY PROC endread
 [nr : = nr-1];
 ENTRY PROC startwrite
 [nw : = nw+1;
 ¬ writerbusy AND nr=0 →
 writerbusy := TRUE];
 ENTRY PROC write(IN x:page)
 [buff := x];
 ENTRY PROC endwrite
 [nw := nw-1;
 writerbusy := FALSE];

END MODSPEC SHARED reader-writer;

MODBODY reader-writer
 PROC startread
 [nw =0 → nr := nr+1];
 DO DELAY (nw=0);
 nr := nr+1
 END startread;

 PROC read(OUT x:page)
 [x := buff];
 DO x:= buff;
 END read;

 PROC endread
 [nr : = nr – 1];
 DO nr := nr – 1;
 END endread

 PROC startwrite
 [nw := nw+1;
 ¬ writerbusy AND nr=0 →
 writerbusy := TRUE];
 DO nw := nw + 1;
 DELAY (writerbusy AND nr =0);
 Writerbusy := TRUE
 END startwrite;

 PROC write(IN x:page)
 [buff := x];
 DO buff := x
 END write;

 PROC endwrite
 [nw := nw-1;
 writerbusy := FALSE];
 DO writerbusy := FALSE;
 nw := nw-1
 END endwrite;
END MODBODY reader-writer;

Fig 1. Specification of readers-writers problem under the assumption of trustworthiness of the processes

Specification given in fig.1 assumes that the processes are trustworthy. That is, the
readers and writers follow the procedures in the order startread, read, endread and
sartwrite, write, and endwrite respectively. The solution given is essentially the solution
that can be described using monitors under the assumption of trustworthiness of the
processes. It can be easily seen that if the processes do not call the procedures in the
expected order then the program does not satisfy the specifications. Following access
clause can be added to above specification making it valid without the assumption of
trustworthiness of processes:

ACCESS (startread)(read)(endread), (startwrite)(write)(endwrite);
ACCESS (startread)(read)*(endread), (startwrite)(write)*(endwrite);

ACCESS clause defines the order in which the visible procedures could be accessed by
the invoking processes. The order refers to the access order for each process and not just
the general order of procedure invocation on the shared data. Access-expression is
defined recursively through operators; nondeterministic choice (,), repetition (*), and

UML BASED APPORACH TO SPECIFY SECURED, FINE-GRAINED CONCURRENT ACCES

TO SHARED VARIABLES

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

sequencing by concatenation.The second ACCESS clause above allows indefinite
number of reads or writes after acquiring the resource. The access clause has wider
perspective than that can be inferred from the above example, particularly for serial
access devices (for complete discussion and more examples the reader is referred to the
original work [1]).

5 PROPOSED APPROACH

Though UML provides constructs to model concurrency, many clarifications regarding
semantics and semantic variation points are required for a consistent and unambiguous
specification. Also the constructs and semantics related to concurrency are scattered in
the official UML2.0 specification. In the proposed extension, we bring all the needed
constructs and semantics within a well defined context, i.e. a shared resource. Where as
many of the related works in UML [5, 10] are centered around refining the active object
semantics, our work aims at refining the semantics of passive object to model a shared
resource, a central entity for synchronization and communication. In our semantics, a
shared resource is represented by an object which is externally passive and internally
active. This choice presents high concurrency and protection of the integrity against
concurrent calls. Also, this is essentially nothing but represents UML passive object
semantics. The internal activism corresponds to refinement of UML semantics regarding
meta-attribute concurrency which is not clear in UML. The proposed approach is based
on the following extended UML meta-model fragment.

Fig. 2: An extended UML meta model fragment

SharedResource is the core element in the extended meta-model to specify a shared
resource completely. It is a passive object (meta attribute isActive is set false). A
SharedResource may contain invariants expressed as Constraints which needs to be
preserved at run time characterizing correct behavior of concurrent executions of the
operations. Each operation of the SharedResource is of type ParOperation specifying

*

1

+ raisedException + classifierBehavior

1

ProtocolStateMachine

1
+ invariant

*

1

1 1

Class

AccessOrder

Constraint

+ method

Operation
Activity

ParOperation

concurrency: CallConcurrencyKind SynchActivity
isSingleExecution =false

SharedResource
isActive=false Classifier

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 113

concurrent execution characteristics of associated methods. We further constrain that as a
passive entity a SharedResource object can not respond to asynchronous calls and can
only be associated with a protocol kind of statemachine defining the access order for
invoking the associated operations. ProtocolStateMachines can be used to express the
usage protocol of a part of the system. AccessOrder is a ProtocolStateMachine associated
with a SharedResource defining the order in which the visible procedures of a
SharedResource could be accessed by the calling objects. We propose run-to-completion
semantics for protocol transitions; the transition is only deemed completed once the
associated method has fully executed. This solves many inconsistencies regarding UML
semantics of passive objects and statemachines. The AccessOrder can raise an exception
when the specified invocation order is violated by an invoking object and further
behavior can be specified by the modeler.

AccessOrder is a very simple form of protocol statemachine with only operations
associated with transitions and without complex features like concurrent regions,
compound transitions etc. Here the protocol refers to the access order for each caller, and
not just the order of operations that could be applied on the shared resource. In fact, it is
this feature that distinguishes AccessOrder from that of usual protocol machines attached
to classifiers. For example, if the AccessOrder specifies p1 and p2 in that order, then if an
object, say A, has accessed the resource through p1(), then the next permitted operation
by A on the resource is p2(). Furthermore, some other object, say B, will not be able to
access p2() unless it has performed p1() even though A might has just finished the
operation p1().

As the operation call events are the only external events received by a shared
resource no event scheduling is required at object level. Hence, we preclude specifying
guard conditions on transitions and an operation call always result in the execution of the
associated method irrespective of whether the method is currently executing. This is
again consistent with the UML’s passive object semantics. This also resolves the
semantics related to the event deferring mechanism in UML passive objects. As methods
are Behaviors in UML, the necessary synchronization and mutual exclusion mechanisms
can be specified within the method specification.

UML BASED APPORACH TO SPECIFY SECURED, FINE-GRAINED CONCURRENT ACCES

TO SHARED VARIABLES

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

 (i)

 (ii)

Fig. 3: Specification of analysis model for readers-writers problem
 (i) Object diagram (ii) associated AccessOrder

The semantics of operation call mechanism for passive objects in UML is not well
defined and is not sufficient for the fine-grained specification of plausibly concurrent
operations. The metaclass Operation has an attribute concurrency with values sequential,
guarded, concurrent to specify groups of operations which can be executed sequentially,
atomically, or concurrently respectively. But the semantics of these mechanisms is not
clear; sequentiality is not guaranteed by the model, integrity against concurrent calls is
left to the modeler and Guarded operations semantics is not clear regarding the nature of
blocking mechanism. Also the mechanisms are not sufficient for example, to specify
whether the specification allows the multiple invocations of an operation. So we propose
to extend Operation metaclass by ParOperation by redefining the associated concurrency
attribute with new values of CallConcurrencyKind and associated semantics. This
extension is very expressive to model various operation call mechanisms.

A read or write kind of operation specifies the multiple invocation nature of the
operation where as ‘par’ indicates of the group operations that can execute concurrently.
After invocation, the execution of write kind method is blocked until the previous
execution is completed. We extend UML activity concept by SynchActivity to specify the
complete behavior of methods of these operations.

Actions are the fundamental units of behavior in UML and are used to specify fine-
grained behaviors. Their resolution and expressive power are comparable to the
executable instructions in traditional programming languages. These actions are available

<<SharedResource>>
Buffer

buff : page_t
nr : integer = 0
nw : integer = 0
writerbusy : Boolean = false

<<invariant >> writerbusy => nr=0

startread () {readPar}
page_t read () {readPar}
endread () {readPar}
startwrite () {write}
write (page_t) {write}
endwrite () {write}

 * <<active>>
Reader

 * <<active>>
Writer

afterStartRead afterRead afterEndRead

afterStartWrite afterWrite afterEndWrite

startread

startwrite

read endread

write(x) endwrite

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 115

to higher-level formalisms like Statemachines, Activities, etc for describing detailed
behaviors. As UML has not yet adopted a standard textual notation for actions (i.e. the
standard action specification language, ASL), we use conventional programming
language constructs to specify these actions in our extended activity diagrams (see fig. 5,
6).

Activity modeling in UML emphasizes the sequence and conditions for coordinating
lower-level behaviors. The activity formalism in UML2.0 semantic framework provides
advanced constructs for modeling complex control and data flow together with basic
synchronization, and exception handling mechanisms. Even though the activities
mechanism, with new Petri nets like semantics, is powerful enough to model complex
activities it is still short of constructs to model various synchronization aspects. For
example, there are no UML elements to model synchronization regions, mutual exclusion
and conditional synchronization semantics.

We define SynchNode by extending ActivityNode in UML with a synchronization
handler. These handlers can be referred by a unique identifier within the context of the
containing shared resource. These handlers contain attributes in and out (synchronization
counters) which are atomically updated whenever a thread of control enters or leaves the
associated ActivityNode. A SynchNode can be associated with an optional entry/ exit
condition, a boolean expression, which must be true for a control to enter/ exit the
SynchNode. Thus a SynchNode can hold the control tokens till a condition is satisfied.
Though this is in contrast with current UML 2 semantics where only data tokens can be
held, such semantics for treating control as data, including queuing of control, is required
and is called for in [12].

SynchNode represents a synchronization region within a plausibly concurrent method
execution. A global invariant can be derived using in, out synchronization counters of all
the SynchNodes of a shared resource. These invariants can be specified in the class
diagram of the SharedResource (e.g. we assumed the implicit invariant pertaining to
mutual exclusion of read and write kind of operations, which can also be specified
explicitly using the synchronization counters). An approach to compose complex global
invariant (GI) from existing GIs using GI patterns is discussed in [11]. This global
invariant needs to be preserved for the interference freedom of concurrently executing
methods. These SynchHandlers can be part of the execution record (a semantic varion
point in UML2, [6]) of the corresponding methods or the SharedResource object itself.

UML BASED APPORACH TO SPECIFY SECURED, FINE-GRAINED CONCURRENT ACCES

TO SHARED VARIABLES

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Fig. 4: An extended meta model fragment defining SynchNode and associated SynchHandler to model

synchronization regions to specify conditional synchronization, mutual exclusion.

As a presentation notation, this handler can be attached with ActivityNode symbol as a
dotted boundary containing optional name and optional condition(s). A group of atomic
actions in an activity can be specified using dotted action node symbol. The counters in,
and out of associated handler are implicit (see fig. 5, 6) and need not be specified.

 (i) (ii) (iii)

Fig 5: Extended UML 2 activity specification of readPar operations:
(i) startread() (ii) read() (iii) endread()

 (i) (ii) (iii)

Fig. 6: Extended UML 2 activity specification of write operations:
i) startwrite() ii) write() iii) endwrite()

R1
nw = 0

nr = nr+1

nr = nr-1

x=buff

OUT x

R2

in = out

R3
! writerBusy

writerBusy=true

nw = nw+1

IN x

R4
in = out

buff = x

R5

in = out

writerBusy = false

nw = nw-1

+ context

1 0..1

Namespace

SynchNode

Classifier
SynchHandler

entry: Boolean
exit: Boolean
in: Integer
out: Integer
name: String[1..*]

ActivityNode

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 117

6 RELATED WORKS

To specify concurrency some UML methods and tools (RoseRT, Rhapsody, Accord)
extend the semantics of UML active object model defining non-preemptive execution
model (only one message processed at a time) or preemptive execution model (internal
concurrency) with a controller for active objects. Also the internal concurrency of passive
objects is controlled through protection mechanism like semaphores or through
encapsulation inside an active object.

Shane Sendall and Alfred Strohmeier proposed an approach to specify concurrent
operations through operation schema calculus based on OCL [7]. These schemata are
declarative specifications of fine-grained concurrent operation behavior. Pre, post,
invariant, shared resources, signals, and exceptions can be specified in operation
schemas. The approach results in clear analysis model but the implementor has to obtain
the necessary information from careful study of declarative OCL specification of
operation schemas. The approach also uses protocol state machines to define temporal
ordering of operations but constructing them requires complex state machine composition
rules.

Charles Crichton et al. proposed a pattern for concurrency in UML [8]. The approach
is based on modeling attribute states through state machine and operations states through
activity diagram. The analysis model thus obtained can be converted to a formal process
model (CSP) for validation of the design decisions using formal methods tools.

Sebastien Gerard et al. describe ACCORD/UML Methodology for modeling real
time systems [9,10]. The approach defines a real-time object paradigm (RTO). In addition
to attributes, and operations, a real time object consists of a mailbox, and a controller.
The local controller is responsible for mailbox management, scheduling constraints
handling, concurrency constraints handling, and thread management. The functionality is
similar to that of an operating system scheduler. The behavior of an RTO can be
described by a simple protocol kind of a state machine with no orthogonal composite
states, no actions or activities in a state. Operations are classified as read, write, and
parallel type and concurrent execution is allowed as per 1-writer/ N-readers protocol.

Iulian Ober proposed an approach to integrate an existing concurrent object model,
named ATOM, with UML object model [5]. The proposed extension redefines
active/passive object semantics to eliminate involved inconsistencies. Passive objects can
not have statemachines. Active objects are quasi-concurrent: an executing method can
explicitly yield the control for example while it is waiting for an event. Method
invocation is de-linked from the associated statemachine and only signals are processed
by the statemachine. The statemachine runs quasi-concurrently with the methods and is
informed of methods start and end events.

Masaaki Mizuno et al. proposed a unified-process based aspect oriented
methodology [11]. The approach defines steps to weave synchronization code into final
solution. This is a semi-formal approach based on coarse-grained solution with formal

UML BASED APPORACH TO SPECIFY SECURED, FINE-GRAINED CONCURRENT ACCES

TO SHARED VARIABLES

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

constructs and global invariants (GI). As finding suitable global invariants is not an easy
task, GI patterns are defined to compose complex GIs.

7 CONCLUSION

UML 2 activities, with Petri net like semantics, is an expressive formalism to specify
complex control/ data flow and hence suitable to model procedures and processes. In this
paper, we have defined a UML-based approach to specify fine-grained concurrent access
to shared resources without using low-level synchronization primitives and thus avoiding
unnecessary mutual exclusion. This leads to better utilization of resources and overall
system performance. We have cleanly integrated concurrency constructs with UML’s
active/ passive object model through a light weight extension of UML2.0 meta model.
The proposed constructs of the approach are convenient for programming as well as for
establishing the correctness of the specifications. We intend to extend the approach
towards a comprehensive UML profile that can be easily mapped onto design and
implementation models.

REFERENCES

[1] Shyamasundar R.K., and Thatcher J.W., “Language constructs for specifying
concurrency in CDL* ”, IEEE Trans. Software Eng. 15(8): 977-993 (1989)

[2] Object Management Group; “UML 2.0 Superstructure – Final Adopted
Specification”, OMG document, http://www.omg.org/docs/ad/03-08-02.pdf
(2003)

[3] Papathomas. M., “Language Design Rationale and Semantic Framework for
Concurrent Object-Oriented Programming”, Ph.D thesis, University of Geneva,
1992

[4] Gerard. S., Ober. I., Parallelism/ Concurrency Specification in UML, white
paper, UML Conference, Toronto, Canada, 2001

[5] Ober I., Stan I., On the concurrent object model of UML. Proc. EUROPAR'99.

[6] Selic, B., On the Semantic Foundations of Standard UML 2.0, Lecture Notes in
Computer Science vol. 3185, Springer-Verlag, 2004.

[7] Sendall S., Strohmeier A., Specifying Concurrent System Behavior and Timing
Constraints Using OCL and UML (UML 2001)

[8] Crichton C., Davies J., and Cavarra A., A Pattern for Concurrency in UML,
Oxford Computing Lab, (submitted in FASE 2002)

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 119

[9] Gerard, S.; Mraidha, C.; Terrier, F.; Baudry, B. A UML-based concept for high
concurrency: the real-time object. In Proc of ISORC’04

[10] Gérard S., Nikos S. Voros, Koulamas C., Terrier F., Efficient System Modeling
for Complex Real-Time Industrial Networks using the ACCORD/UML
Methodology. International Workshop on Distributed and Parallel Embedded
Systems (DIPES) 2000.

[11] Mizuno M., Singh G., and Nielsen M., A structured approach to develop
concurrent programs in UML. In Proc. Third International Conference on
UML, 2000.

[12] OMG Systems Engineering DSIG, UML for Systems Engineering RFP,
http://www.omg.org/cgi-bin/doc?ad/03-03-41, March 2003

About the authors
Jagadish Suryadevara is currently a member of faculty, computer science group at Birla
Institute of Technology (BITS), Pilani, Rajasthan, INDIA. His areas of research interests
are in critical systems modeling and formal anlysis using UML. He can be reached at
jagadish@bits-pilani.ac.in.

Shyamsundar R.K. is a senior professor and Dean, School of Technology and Computer
Science at Tata Institute of Fundamental Research (TIFR), Mumbai, INDIA. He is a
senior researcher whose areas of research interests include specification and verification
of real-time distributed programs, semantics of concurrency, and logic programming. He
can be reached at shyam@tcs.tifr.res.in.

