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Abstract. A necessary and sufficient set of conditions is obtained that relates any
two context-free grammars G, and G, with the property that whenever G. left—or
right—covers G,, the syntax-directed translations (SDT’s) with underlying grammar
G, is a subset of those with underlying grammar G,. Also the case that G, left—or
right—covers G, but the SDT’s with underlying grammar G, is not a subset of the
SDT’s with underlying grammar G, is considered; in this case an algorithm is
described to obtain the syntax-directed translation schema (SDTS) with underlying
grammar G, to the given SDTS with underlying grammar G, if it exists.
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1. Imtroduction

Context-free grammars have been used extensively for describing the syntax of pro-
gramming languages and natural languages. Parsing algorithms for context-free
grammars consequently play a useful role in the implementation of compilers and
interpreters for programming languages. any of the parsing algorithms require
that the grammar under consideration be in some normal form or have some special
property such as not having left recursion for use with top-down parsing techniques.

We can consider a grammar G, to be similar from the point of view of parsing,
with respect to Gy if L(G,)=L(Gy) and we can express the left and/or right parse of a
sentence generated by G; in terms of its parse in G,. In such a case, we say that G,
covers Gy; hence the parses in Gy can be recovered from those in G, by suitable map-
ping. Similar grammars play an important role in the construction of translators.
Different grammars for the same language, which are similar, can be used at different
stages of translation depending upon the requirements of the particular task.

The importance of syntax-directed translation is dealt with in detail by Aho and
Ullman [1] and Lewis and Stearns [5]. Intuitively, a syntax-directed translation
schema (SDTS) is simply a grammar in which translation elements are attached to
each production. Whenever a production is used in the derivation of an input sent-
ence, the translation element is used to help complete a portion of the output sentence
associated with the portion of the input sentence generated by that production.

An interesting problem relating the covering of grammars and the SDTS of the
grammars is the following: (¢f. Aho and Ullman [1]).
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Problem: [s it true that whenever G, left—or right—covers Gy, every $DTS with (?1)
as underlying grammar is equivalent to an SDTS with G, as utderlying grammar’
The answer to this is in the negative (¢f. Aho and Ullman][l]). N o

In this paper we give a necessary and sufficient set of conditions relz}tmg Gy and
G, so that whenever G, left—or right—covers Gy, the SDT with underlyn}g grammar
G; is a subset of the SDT with underlying grammar G,. Also dn aa_lgorrthm is des-

cribed to obtain the SDTS with underyling grammar G, equivdlent to the given

SDTS with underlying grammar G, if it exists.

I.1. Syntax-directed translations L]
Definition 1.1: SDTS is a 5-tuple,

=V, Vp 2, R, S), where V, is a finite set of nonterminal symbols, V. 1is a
finite input alphabet, .. is 2 finite output alphabet, § is a |distinguished nonterminal
in V. the start symbol and R is a finite set of rules of the form A — a, B, where «
isin (¥, U Vp)* Bis in (¥, U A)*, and the nonterminals in § are a permutation
of the nonterminals in a.

Let 4 — «, B be arule. To each nonterminal of « there is associated an identical
nonterminal of 8. If a nonterminal B appears only once in « and B, then the associa-
tion is obvious. If B appears more than once, we use integer subscripts to indicate
the association. This association is an intimate part of the rule.

A translation form of an SDTS, T, is defined as follows:

(i} (S, §)is a translation form and the two §’s are said to be associated.

(i) If (adB, o’AB") is a translation form, in which the two explicit instances of 4
are associated, and if 4 - vy, ¢’ is a rule in R, then (aypB, «’y'B’) is a translation form.
The nonterminals of y and o’ are associated in the translation form exactly as they

are associated in the rule. The nonterminals of a and B are associated with those of

o’ and 8 in the new translation form exactly as in the old. The association will
again be indicated by superscripts when needed, and this association is an essential
feature of the translation form.

If the translation forms (a4B, a’Aﬁ’);d (ayB, a'y'B’), together with their asso-
ciations, are related as above, then we write (adf, o' AB) == . (ayB, a'y'B").
Definition 1.2: The translation defined by T, denoted = (T), is the set of pairs

{{.MS. ) =% (x,y),xc V*and y € A*}
If Tis an SDTS, then = (T) is called SDT.

Definition 1.3: An SDTS is semantically-zmambiguous if there are no two distinct
rules of the form 4 > o, Band 4 — «, ¥.

Covering of Grammars

Let G, == (V;\;L, Vo Py, Sy and G, = (Vs Vs Py, S5) be context-free grammars
(CFGs) such that L (G,) - - L(G,). )

b,
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Definition 1.4: We say that G, left-covers G, if there is a homomorphism # from P,

to P, such that

(i) If Sy =7 w, then §; ==/ w, and

(ii) For all = such that S; === w there exists =" such that S, === w
and k(') =

Terms and syn}bols not specifically defined here are employed with their usual
meaning as in Aho and Ullman [1].

Definition 1.5: Terminating property

We say that G, and Gy satisfy the terminating property whenever
(i) G, left-or right-covers Gy,

(i) Vv, =V vV

where V(D = {A € Vn, ]1 ‘A -> a, is in P,, such that for all rules in P, with 4 as

the Ieft-31de, i) # /\}, and V%‘,) = Vy, — Vg\l,),

i.e., V(l) N V( 2 —-¢>, and
(i) If 4 € ng then if 4 =3, x € V/jthen

B—/— X e V - where 7y = h(my).
s Bt ()

In the following we assume that the grammars G, and G, are proper and nonre-
dundant and hence the associated SDTS with the underlying grammars G, and G,
will be free of useless nonterminals®.

Proposition: If G, left—or ught—-covels G, (both G, and G, are non-redundant)
and i:B - x; Bx, where x;, x, € V , 18 In. Gy, then A(i:B->x; Bxy) # A

Proof: We have S, ==, x where = is a sequence of productions (i.e..7 = m m,y...

w
- mmgem)and x €V > then by definition of covering, we should have

S] :>h (w)x.

*Ina CFG, G = (Vn, Vr, P, S) a symbol X in Vx U Vris said to be inaccessible if X does not
appear in any sentential form.

A nonterminal is said to be useless if it cannot generate a terminal string.

A CFG is said to be cycle-free if there’is no derivation of the form 4 =——=% 4.
A CFG is said to be proper, if it is cycle-free and free of useless symbols.

A CFG is said to be nonredundant if it is proper and free of inaccessible symbols.

@
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Now, consider S, ==, x' where n' =m ... m 7y .7 and x' € V.. Then.

S; == xsince A(#")=h(x). This contradicts the definition of covering and hence

the proposition follows,

Section 1.2

Let Gy=(VN,, VT, Py, S,) left-or right—cover, Gy= (Vn,, V1, P;. S;). Without loss.
of generality, it can be assumed that ¥y, N Vjy,=¢. Let I and J denote the set of
labels of the production rules of G, and G respectively. o

Let i:A-a be a production rule belonging to G,. In this section, corresponding to
the nonterminal 4 occurring on the leftside of the ith rule associate a set of strings
over (Vn, U Vr)* through the following steps: (In the following, associate a string
with the 7th rule and associate a string with the nonterminal occurring on the left-
side of the ith rule, are used interchangeably, as it will be clear from the context).

Step 1: To begin with, associate with the nonterminal occurring on the left-side of
the ith rule in G, for which /(i)=j, j# A, the nonterminal belonging to ¥y, occurring
on the left side of the jth rule in G;. This is done for all i€ such that A() #A. Form
the set,

1‘1'—‘—*{1‘161/'1\/2

Witd ~a)=j,j # A }.
Step 2: Consider the terminal rules in G,

(a) Let A(i)==A. In this case associate with the ith rule in G,, the string belonging
to Vr* occurring on the right-side of the ith rule.

(b) Let A(i)=j and j#X. In this case, in addition to the string belonging to V7%,
appearing on the right-side of the ith rulg, the nonterminal belonging to ¥, occurr-
ing on the left-side of the jth rule in Gy is associated with the ith rule in G,.

Step 3: Consider the nonterminal rule in G,
(a) Form the set,
Hy={i€l|hi)=Xx}.

First, choose a rule from H, that has a right side consisting of nonterminals of the
following two types only: A

(1) nonterminals (a subset of ¥,) belonging to H.

(2) nonterminals that have been already processed in step 2.

The existence of such a rule is assured from the fact that G, covers Gy, and from
the fact that G, and G, are nonredundant grammars.

Associate with such a rile (say ith rule) strings over VN, U VT)* obtamed by re-
placing each nontermmal occurrmg on the right-side of the ith rule, by its 1espect1ve
associated sets.

-]
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thl\lefct:, consider the rule belongipg to H; whose right-side consists of nonterminals
at are already processed ; associate with this rule the set of strings obtained by re-

a

Repeat this step for all members belong to H,.

(6) Consider the set of nonterminal rules for which A(i) =/, j = A

Choose a rule that has in its tight-side, nonterminals that have been alreads pro-

cessed and associate a set of strings with this rule as indicated earlier. o
Repeat this step till all the rules are exhausted.

_From the above procedure, a set of strings over (Fu, U ¥7)* has been associated
with every rule. Note that if i;:4 — o and Iy:A~f are two rules of G,, then two diffe-
rent sets will be associated with 4, one corresponding torule/, and the other 10 rule i,

The following example illustrates the procedure. )

Example 1.1: Let G, be the grammar
Gy:1: 8" ~08"1: 2: =01

and let G, be the Chomsky normal form (CNF) grammar equivalent to G,
Gy: 1: S+ A4B;2: §> AC:3: B~ SC: 4: A—=0:5- C— 1.

[t can be observed that G, left-covers G, under the homomorphism A(1) =1,
h(2)y=2,and h(3) = h(4) = h(5) = A.

From step I, the first rule is associated with S’ and the second rule also is associated
with §'.

From step 2(a), rule 4 is associated with O and rule 5 is associated with 1.

From step 3(a), rule 3 is associated with S’1.

From step 3(b), rule 2 is associated with ¢ 1 and rule 1 is associated with 05’1,

Section 1.3

In the following, a sequence of production rules belonging to /%, called the parse sei.
is associated with each member of the set of strings associated with each production
rule of G,. The meaning of parse set is made clear by the following example:

e.g., Consider example 1.1.

Rule 5 is associated with the string 1. Since the string 1 associated with this rule
is the right-side of the rule 5, associate a parse =y (the suffix indicates the rule num-
ber). For convenience, the production nuniber is represented as a suffix of =.

Consider rule 3. The string associated with this is S’1. Let us trace the steps
involved during the process of association of the string S’1 with rule 3.

1. Use rule 3.

2. Substitute for C the associated string (the corresponding parse associated with
this string in ). . ‘ .

3. Sis replaced by S’. This step does nnot involve the application of any production
rule G,. It is obtained from the homomorphism % of { onto J.
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Therefore we associate a parse myms with the string 05°1 associated with rule 3.

Consider rule 1 of G,. (i.e., S—AB). The string 05’1 is associated with this rule.
The sequence of steps associating 05’1 with rule 1 is given below:

$ > AB; the parse associated with S is ;.

A is replaced by  0°; the parse associated with A is mg.

Bisreplaced by 8'1; the parse associated with Bismymg. Hence, associate mymarymy
05’1 associated with rule 1.

In this manner associate a parse set with each element of the associated string of
each production rule in G,.

Now, obtain the following sets:

For those rules in G, for which A(i)=j, j# A obtain the set of associated strings
with rule i. Let it be represented by g,;. Let p;; be the corresponding parse sct
associated with the members of g;;.

@

Letp, = {ptlj: Pijse - o Pikj} and
Qj b {qllj’ qlzj’ e ey qlkj} Where /7(];.) o js

for r=1, 2,..., k and p; ;is the parse set associated with rule i, for which A(i,)=/.
Let Pr-{ Dis Pase -+ pm}, where m is the number of production rules in Gj.

Definition 1.6: Define two homomorphisms k, and A, as follows:
h:(Vy UVp)»Vy

L SAifxe ¥V,
() = gxifxe Va,

Now h, is defined for strings associated with the production rules of G,. The
strings associated with each production are strings over (VN1 uv,u i;zv)* where

I7N={Ae VNz | for all rules with 4 as the subject such that, A(4->a)=A1}.
[Here note that for A—x;dx,,x;, %€V 7y, MA—>x)#X}.
hy : (VNI urru VN)'+VN1 U {/\}
hy(x)=2 if XEV, A if XEV, and x if x€ V.,
Before obtaining the required conditions we prove the following lemma:

Lemma 1.1: If h(i:A—a)=j, j#A, then h(e) matches with at least one element of

hy(g;).

Proof: Consider a rule in Gy, i : A->a such that h({) =j(let j : B—y).

Consider an element associated with the ith rule in G,, and let A() =j, j% ). From
the process of association given earlier, it is clear that the parse associated with every
element of g, has atmost one production rule belonging to G, which does not map to A




SN

SDT for context-free grammars : 7
Let an element associated with the ith rule in G, be represented by,
oy Aiay. . . Ay,

where Ay(a;) =A, for all 1 <i<im+1, and 4,,..., 4,, are nonterminals in ¥, such
that P, contains atleast one rule with A4, as the subject for which the mapping £ is
nonempty.

We have,

® .
A= g* iy . Aptye (D

Consider the derivation of a terminal string from 4 such that

A, =y x, € V; where h (g )# A

WAI Ty

Since by the definition of covering,
A =, x € V¥ unplies
B jai x’E VT*a

there should be a nonterminal in y corresponding to every 4;in (1). [Here corres-
pondence ’ is understood in the following way: If A(i)=j and i : 4 <o and j: B>y,
then B corresponds to A]

Hence the lemma follows.

Section 1.3.1

Let M;={x¢€ Pi,y | A(i)==j, if the jth rule in G, is of the form j : A’~~a’ then the
element in g, ; corresponding to x, say B, satisfies the-property, 4y(8) =hy (o)}
Let M={M,, M,,...,M,}, where m is the number of rules in G,.

Example 1.2: Consider example 1.1. The grammar G; has the production rules,
1:5°>0S51 and 2: §-01. It may be observed that the right side of rule 1 in Gy,
viz., 05’1, matches with the string associated with rule 1 of G, in the sense of lemma
1.1. Similarly, the right side of rule 2 in G,, viz., 01, matches with the string
associated with rule 2 of G,; in fact, in this case the strings are identical.

-Section 1.4

In this section, we obtain a sufficient set of conditions for the problem cited in sec-
tion 1. '

Remark 1.1: Consider a rule 4 — BCD - ¢))
and two other rules: F— BE , )
and £—- CD 3)
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Here, 4, B, C, D, E and F are all nonterminals. Now, the direct derivation of rule 1
can be represented by

A
/1N
B8 C O
and corresponding derivation with rule 2 and 3 together can be represented by

/N ﬁ
B £
VRN
C D

The frontiers of these two trees are identical. Now, consider a translation, CDB,
associated with rule 1; the corresponding translation can be achieved by associating
the translations EB and CD respectively, with rules 2 and 3. However, if we asso-
ciate a translation CBD with rule 1, then it is impossible to obtain the same transla-
tion from the set of rules 2 and 3.

Theorem 1.1: If G, left-or right-covers G; satisfying the terminating property (defini-
tion 1.5), then the following conditions form a sufficient set of conditions for the
problem cited in section 1.
(i) each member of M, 1 i< m (m is the number of rules in G;), consists of at
most one multiple-length production* (MLP) rule and
(i) M,NM; (i #J) consists of at most of only simple length production (SLP)
rules for all i # j, so that the SDTS (semantically unambiguous) with the
underlying grammar G; is a subset of the SDTS with underlying grammar G,.

Proof : Consider condition (i)

Since the elements in M, satisfy condition (i), a typical structure for an element in M,
will have the form shown below:

A

|
AN

Let o be the element of the rule D~ o in G, corresponding to this element in M,
that satisfies lemma 1.1.

Let a =x1 'Dl X2 e x,, DI' xr+1, Whel'e xt e VT*, a-nd Di E VNl.

*A production is said to be an MLP if the number of symbols occurring on the right-handside
of the production is more than one; a production is said to be an SLP if there is only one symbol
on the right-hand side. -
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Then

by (xy Dy X oo Dy X)) = by (Ay 4y ... A4p)
i.e., Dl .Dz [N ‘DP‘ ::Ai o Ai)
where i' — 7+ 1 =r.

Now the translations that can be associated with the rule D« in Gy corresponds to
the permutations of Dy D,, ..., D,. To get a corresponding translation in G,, we have
to obtain a corresponding permutation of 4, ..., 4. This is always possible since
A;, ..., Ay are direct descendants of the node B (except for chains). Thus all trans-
lations defined* by,

" N 2 -t
x'y Dpay X'e Dpgy - X'y Dpiry™X g

associated with the rule D - « in G;, can be achieved by associating the corres-
ponding translations with B.

Consider condition (ii) assuming that condition (1) holds.
Case (a): Let (M; N M) === ¢. In this case it is obvious that there is no chance of
two distinct translaiions being associated with any rule of G,.

Hence sufficiency holds in this case.

Case (b): Let (M, N M) consist of SLP rules. Here again the translation asso-
ciated with G, will be unambiguous; this is illustrated below by considering the
typical tree structure shown below:

|
T\,

X

| |

A, Ap - An

Now, since the translation associated with the rules in G, is associated with the
node B (subject of MLP’s) and not with the subject of SLP’s there is no chance of
ambiguous translation being associated with any rule.

In deriving the trees of the SDT’s with underlying grammar G, we essentially
replace a node and its direct descendants in the tree of G, by a corresponding tree
structure and thus the equivalence of the two SDT’s follows since G, left—or right—
covers Gy, and G, and G, satisfy the terminating property.

Hence the theorem follows.

*p is a permutation mapping.
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Section 1.5

Tn this section the necessary set of conditions are developed by refining conditions (1)
and (ii) of theorem 1.1.

Claim 1: Condition (i) of theorem L. can be replaced by the condition that each
member of M;, 1 <i < m satisfies.
(a) The condition (i) specified in theorem 1.1, or
(b) The condition that each member of .M, 1 <i < m consists of one MLP
rule [say 4~ a] for which|hy ()| > 2 and many MLP rules for which

| hy(a)| < 1.

Proof: A typical tree structure correSponding to an element satisfying the above
condition will have the form shown below:

Ay

Now consider the tree structure after pruning all the leaves whose image under 4, is A.
After this operation, the tree structure will take the form shown below:
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This tree structure has the same form as discussed in theorem 1.1. Hence the claim
follows.

Note: Without any ambiguity, we will be in a position to associate the translation
with the node which has descendants more than or equal to two after taking
the image of the leaves under the mapping h,. [i.e., |/ («)| = 2]: note that an
element of M, does not consist of more than one element of the form =, for which

/Z(W,l # A,

Claim 2: Condition (i) can be replaced by the condition that for each element in A7,
-all the distinct translations that can be effected on a corresponding element of Gy
can be obtained by the corresponding translations on the elements of M.

Consider a parse structure corresponding to an element in M;. Let the frontier
of the tree be represented by X, X,, ..., X,. Let i, (Xj X,, ..., X)) = X .., X Let
the corresponding element in G, be « [i.e., the right side of the rule / (i)]. In that
case if a = x; Dy x5, ..., D, x,,; then from lemma 1.1 we have

h]_ ((l) e D]_y [EET .Dr = hx-’) (X]. XQ, coey X)l) —_ Xi, eaa Xl-f
and i'—i4+1 =r

Translation on Dy, ..., D, corresponds to the permutations of D,,..., D,. What
claim 2 says is that all distinct permutations of Dj,..., D, can be obtained for
X,, ..., X;. The proof of claim 2 follows from theorem 1.1. However, the con-
dition is illustrated below:

Let k(i) =jandj: D~ ain G,. Let by (a) = 4; A 4;. Let the corresponding
element in Af, have the parse structure shown below:

B, B, Bisi Bn

e

Or

Now from lemma 1.1 it follows that,

hg(Blﬂz cee Bg D‘l o0 D,- "'Bi+2 ave Bn)
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comnsists of only three elements, say 8; D; D,. Then, it will have the structure

N
/N

Now A,A4,A4, and B, D; D, are in correspondence i.e., the first 4; corresponds to B,
A, corresponds to D; and second A4, corresponds to D,. The possible translations
that can be associated with A4;4,4; are the permutations of A4;A4,A4,, i.e., 4;A,A,,
A4, 45, AsA4A, and that is all: these can be achieved by the set of translations

(&) X - B.B,. B,B, and B, D;D,. D;D,,
(b) X——)- BiB". BiBn and B"""é' .DjDk, Dij and

(¢) X - BB, B,B; and B, - D;D,, D;D,, respectively.

Claim 3: The condition specified by claim (2) is also necessary.
Proof: Now let an element of M, has the parse consisting of more than or equal to

two MLPs for which the length of their images under 4, is greater than or equal to 2.
Then a typical structure of such an element has the form shown below:

r's

|
L
/ / \An

Let hy (A4 A, ... A,_yByB,, ..., B,) match with a string « over (V, U V,)* which is a
right side of a rule in Gy corresponding to M; . Let a=x;D;x,, ..., Dyx, ;.

Now |hy(Ay Ay, ..., Ay_3ByBs, ..., B,)| >3, and let it be equal to Dy, ..., D,.. In other
words, the tree structure after obtaining the H/, image of the eaves will have the
form shown below where i’—i>1 and j'—j>1.-

[ g -
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Now from remark 1.1 it follows that if all D;’s are distinct, a permutation exists,
i.e., D), ---» Dpry for which corresponding elements in G, will be of the form,

Ay...AyB, . .AsB,. .. By

This type of translation cannot definitely be obtained in G, (cf. remark 1.1).
Hence the necessity of the above condition follows.

Claim 4: Condition (ii) of theorem 1.1 can be replaced by the following condition:

M;, 1 < i < jsatisfy the condition of claim 3 and M; N M, i # j, consist of MLP
rules for which the length of the homomorphic image (i.e., 4,) is less than or equal
to 1.

Proof: If M; N M; consist of MLP rules for which ]hg(a)l > 2, then it should be obvi-
ous from the argument of theorem 1.1, that this gives rise to elements of the form
A->a,y and 4-«, y where y#+’ with the SDTS with underlying grammar G,;
in that case the SDTS defined will be ambiguous. This establishes the necessity.

The sufficiency of condition of claim 4 is established in the following:

Now, let M, N M consist of MLP for which |/,(a)| =1 and |a|>1

In this case it follows that the effective translation will be associated with the MLP
rule for which | /()| >2 and with the MLP rules (say B—B), for which |A(B) <1,
we associate a translation of /,(B) itself. Thus no contradiction results; the case
| 72(B) | <1 and |B| =1 has already been treated in theorem 1.1. Thus the sufficiency
of the condition is established.

The above case analysis leads us to the following theorem.

Theorem 1.2: The conditions

(A) M, 1<i<m, have elements consisting of at most one MLP rule or consists of
one MLP rule for which |/,(«)|>2 and many MLP rules for which [/i;(a) | <1 or
consists of MLP rules which can effect all the distinct translations that can be effected
on the rule in G; corresponding to the element considered in M,
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(B) (M, n M;) for ij consists only rules for which | hy(a)| <1, are both necessary
and sufficient so that the SDTS with underlying grammar G, is a subset of the SDTS
with the underlying grammar G,, whenever G, left—or right—covers G;, and G,
and G; satisfy the terminating property.

Example 1.3

G, G,
1: §—041 I: 80141, 0141
2: 414l 2: 4" 141, 141
3: A—>11 3: 4—1, 1

Here G, left-covers Gy (also G, left-covers G,) under the homomorphism 4 (1) == 1,
R(2)=2, h(3)=3. Also, G, and G, satisfy the terminating property (definition 1.5).
It can be observed from the strings associated with Gy, that theorem 1.1 holds in this
case (The SDTS with G, is a subset of the SDTS with G,).

The grammars G; and G, of example 1.1 also satisfy theorem 1.1 Example 1.3 is
given to illustrate that the strings associated with the rules of G, do not exactly match
with the right sides of G;. In the next section we consider the practicability of the
conditions derived in this section.

Section 1.6

Before describing the practicability of the condition we comment on the terminating
property mentioned in definition 1.5.

It should be noted that many of the normal form of grammars that cover their
original grammars satisfy the terminating property; e.g., grammars in two canonical
form, invertible context-free grammars (cf. Gray and Harrison [4]); note that a
grammar need not be covered by any grammar in Greibach normal form

In most formal treatments of parsing, the parser must enumerate all the nodes of
the parse tree. In programming practice, certain nodes of the parse tree have no
semantic significance and do not need to be present in a similar grammar. For ex-
ample, consider the generation tree shown in figure 1, which occurs in EULER given
in Wirth and Weber [6]; see also Gray and Harrison [4].

The chain expr - — lamda is typical of what happens in grammars for programming
languages. Chains exist to enforce precedence among operators and to collect
several categories of syntactic types.

Chain productions rarely have semantic significance. In our running example,
only the following productions have nontrivial semantics.

eXpr — —» var < expr —
var - - lambda

primary —- var
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For the purposes of code generation the tree shown below is as satisfactory as the

tree shown earlier.

In view of the above facts, the conditions obtained seem to be quite interesting.

‘Section 1.7

In this section a general algorithm is described that yields the SDTS (semantically

unambiguous) with

underlying grammar G, equivalent to the given SDTS (semanti-
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expr —
vcr/ \primcry
icllmbdo e VLI' -
A limbda
B8

Figure 2.

cally unambiguous) with underlying grammar G; (Note that G, left—or right—
covers Gy, and G, and G, satisfy the terminating property). Thus it is not necessary
that the conditions stipulated in theorems 1.1. and 1.2 should be satisfied by G,
and Gj if the algorithm is to be applicable.

Algorithm:

Input: Grammars G, and G, (G, left—or right—covers G;) and SDTS with under-
lying grammar G,.

Qutput: The SDTS with underlying grammar G, equivalent to the given SDTS with
underlying grammar G, if it exists; otherwise * NO .

Method.:
Step 1(a): Find the sets M,, 1 <i<\m, where m indicates the number of production

rules in G;. ‘
Set i==1; let n; indicate the number of elements in the set M, i.e, h(i,)=1i, 1 <i, <n,.

Step 1(b): Set n=1.
Step 2: For the nth element in M, where 1 <n<(n;, construct the derivation tree.

The frontier of this tree is expressed in terms of the bracket language of the grammar
G, (¢f. Chartres and Florentin [2]). We illustrate this through an example.

eg, G: S = AB
4 > a
A - S
B - b
B - S

To obtain the bracket language the grammar is augmented as follows: For each
nonterminal 4 which has, say, r different productions 4 - ¢,, k=1, 2,..., r, introduce
left and right brackets 4% and A, k=1, 2, ..., n. Let L and R denote the sets of
left and right brackets, respectively, sointroduced. The kth production 4 - ¢ in G
for A, now carries the subscript k. It actually represents 4 — A4 ¢ A’,.
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The grammar G is converted into G' = (V,, V., S, L, R, P’),‘ where
| L ={S;% 4;% 4,4, B\, B,'} |
R — {S1): Ay, Ay, By, _32)}

The sentence abb belonging to L (G) having the structure shown corresponds to the
- sentence in L (G"),

Sy Agt Sy¢ A,¢ ady) B, bB Sy Ay) B, bB;) Sy

Step 3: Let h(iy)) =i, i # A, i < n;.

Let the frontier of the derivation tree of an element of M, be of the form X¢, ..., X .
Let the next immediate leftmost symbol belonging to L be Y;(. Find the corres-
ponding (leftmost) element belonging to R viz., Y;’. Consider the symbols from
Y,( to Y7’ as forming a single group. Next find out whether there is any symbol
belonging to L beyond Y7’ (i.e., beyond the group obtained earlier). Let it be Z¢.
Then find the corresponding Z'.. The sequence of symbols from Z¢ to 2’ forms the
next group. In this way, the grouping of sequences of symbols is done till X7 is
reached. The number of such groups obtained represents the direct descendants of
X, in the same order (each descendant is represented by the first symbol of each
group belonging to L). The groupings obtained, form the first level of partition of the
concerned frontier of the derivation tree.

e.g., SUAX, X, A B'X; X, B S is grouped as
SUAX; X, 4] [B'X;X,B] S

The tree corresponding to this is shown below:

Thus thcre are two dlrect descendants from node S. Omlttlng the symbols belongmg
to L U R, we can consider the string X; X, X, X, to be part1t10ned to two groups con-

sisting of X, X, and X, X, respectively.

P. (A)—2
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Now, in the same way partition of each of the groups is obtained.
Note 2: A terminating rule expressed in the bracket language will have the form
At by, ..., b,A’; hence no such grouping is possible. :

Step 4: Since the homomorphic image of the frontier of the derivation tree is in
correspondence with the homomorphic image of the right hand side of the ith rule
in Gy, the right-hand side of the ith rule can be partitioned in an identical way ignor-
ing the terminal sequence.

E.g., Let X; X, X, X, be the frontier of the derivation tree grouped as X3 X, X3X;.
Let the right-hand side of the ith rule in G, be a=Y,Y,Y,¥,. Tne corresponding
grouping in this case is ¥;Y, Y37,.

Let the translation associated with this be given by i : 4 — «, 8 (belonging to

G;). Now group the symbols of B corresponding to the groups of «, level by level
using (f;). This is illustrated through an example.

E.g., Let hl (a) == Xl X2 X3 X4 X5 XG
h(B) =Xg Xy X3 X, X, X,

a consists of two level groupings.

First level of groupings of h; (0) : X1 X, X; X, X; X,

Ckorresponding groupings of i, () : X3 X; X5 X, X1 X,

Second level of groupings of A, () : X1 X; X5 X4 X X5

Corresponding groupings of iy (B) : X X5 X5 X, X7 X,

If such a partition of B is not possible at any of the grouping of «, go to step 7; other-
wise the translation is associated with the rules of G,, corresponding to the translation
associated with the ith rule of Gy, in the following way:

Let there be r first level groups in a. Therefore there will be 7 first level groups in
the frontier of the corresponding derivation tree. Let the groupings be represented
by the first element of each group belonging to L viz., the grouping of « is represented
by wyt 4y wy 45, ..., 4.  w,,;, where 4,¢ represent the groupings 1 < i< r and the
frontier is denoted by

Xk( }V]_ Al( Y1 Al) W Az( Y A2)3 ceey Ar( Yr A,.’ W,-+1 Xk)

where X; €V, and is the root of this tree, y,, | <i<r belongs to (V U VT)
Now by the deﬁmmon of translatxon, ycan be grouped* as,

*p is a permutation mapping.
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Wy Ay Wy A gy, o Ay Wrg, Where Wy, 1 i< r+-1 belongs to (Vy U Vp)* and
the groups 4,,,, 1 <i <r, consists of sequences over (VN1 U V,)* [since the lengths
of symbols in LUR are considered as 0, we write (VNIU Vp)* instead of
(VNIU V.ULUR)*], and consists of the same nonterminals that occur in the
grouprepresented bysome A, 1 < i < r. ConstructA4'(,;,, 1 < i< r, corresponding
to AG,, 1 < i < rsothat 4, consists of sequences of (Vy, U Vp)* after renam-
ing of the nonterminals by the corresponding mapping used for the elements M,.
Now associate the translation,

wy A"y - A" Gy Wiy With the node X, (thus with the associated rule 7).
Repeat this for each of the groups 4,,, 1 <i<r.

Step 5: If the given SDTS with underlying grammar G, has to be covered by a
semantically unambiguous SDTS with underlying grammar G,, then go to step 6(a);
otherwise go to step 6(b).

Step 6(a): Find whether the translations associated with the rules are ambiguous
(ie., there are translations of the form 4—a, B; A—a, y); if so, go to step
7; otherwise go to step 6(b).

Step 6(b): n=n+1; if n <ny, go to step 2; otherwise go to step 8.

Step 7: The given SDTS with underlying grammar G, cannot be covered by any
SDTS with underlying grammar G,; halt.

Step 8: i =i+1; if i <m, go to step 1(b); otherwise the SDTS obtained with G, as
underlying grammar is the one required, i.e., the obtained SDTS with G, covers the
given SDTS with underlying grammar Gjy; stop.

Acknowledgement

" The author is thankful to the referee for his suggestions for improving the clarity
of the paper.

References

[1] Aho AV and Ullman J D (1972) Theory of Parsing, Translation and Compiling, Vol I: Parsing,
Prentice-Hall, Englewood Cliffs, N.J.

[2] Chartres B A and Florentin J J (1968) J. ACM 15 pp 447-464

[3] Ginsburg S and Harrison M A (1967) J. Computer and System Sciences pp 1-23

[4] Gray J N and Harrison M A (1972) J. ACM 19 pp 675-698

[5] Lewis II P M and Stearns R E (1968) J. ACM 15 pp 465-588

[6] Wirth N and Weber H (1966) Comm. ACM 11 pp 13-23






