Sadhana, Vol. 17, Part 1, March 1992, pp. 75-93. © Printed in India.

Compositional priority specification in real-time distributed
systems

R K SHYAMASUNDARY and L Y LIU*

$Computer Science Group, Tata Institute of Fundamental Research, Homi
Bhabha Road, Bombay 400005, India

'IBM Programming Systems, Cary Laboratory, 11000 Regency Parkway,
Cary, NC 27511, USA ‘

Abstract. Inthis paper, we develop a compositional denotational semantics
for prioritized real-time distributed programming languages. One of the
interesting features is that it extends the existing compositional theory
proposed by Koymans et al (1988) for prioritized real-time languages
preserving the compositionality of the semantics. The language permits
users to define situations in which an action has priority over another
action without the requirement of preassigning priorities to actions for
partially ordering the alphabet of actions. These features are part of the
languages such as Ada designed specifically keeping in view the needs of
real-time embedded systems. Further, the approach does not have the
restriction of other approaches such as prioritized internal moves can
pre-empt unprioritized actions etc. Our notion of priority in the environment
is based on the intuition that a low priority action can proceed only if the
high priority action cannot proceed due to lack of the handshaking partner
at that point of execution. In other words, if some action is possible

~ corresponding to that environment at some point of execution then the
action takes place without unnecessary waiting. The proposed semantic
theory provides a clear distinction between the semantic model and the
execution model — this has enabled us to fully ensure that there is no
unnecessary waiting.

Keywbrds. Compositional specification; real-time distributed systems;
priority specification; message passing models."

1. Introduction

Many approaches have been proposed for the modelling of communicating agents
(Milner 1980), reactive systems (Pnueli & Harel 1988, pp. 84-98), and real-time
distributed systems (Roscoe 1984; Koymans et al 1985, 1988). Most of the above
studies have ignored the notion of priority. This is not satisfactory as priority is very
important in the development of predictable systems (Stankovic 1988). Priority
specification is required when one or more events happen at the same time and some

75




76 R K Shyamasundar and L 'Y Liu

events have greater importance than others. Typical examples of actions which require
special treatment include interrupts in hardware systems and timeouts in communica-
tion protocols. Ada and Occam are two examples of programming languages that
allow specification of priority. One can broadly distinguish priority specification into
the following categories:

(1) Partial order on the alphabet of actions/events.

(2) Priority specification through evaluating expressions dynamically and assigning
priorities to actions/statements.

(3) Priority of actions depending on the environment.

Perhaps the first formal study of priorities has been done in the context of process
algebra in Baeten et al (1985). In this study, prioritization operators have been added
and the consistency of the set of equations have been studied. In other words, the study
falls into type (1) described above. That is, it assumes a global partial ordering of the
actions (of the transition system). From a behavioural equivalence point of view, a
study has been made in Cleaveland & Hennessy (1990) through the study of priority
operators of type (1) in the context of calculus of communicating systems (CCS).
Congruence has been obtained through the notion of patient processes by placing
essentially the restriction that only prioritized internal actions have the pre-emptive
- power. The desirability of overcoming this restriction follows from the examples
discussed in Cleaveland & Hennessy (1990).

A study of the second type of priority has been made in Hooman (1989) in the
context of the study of distributed multi-processing. Here; priorities are attached to
statements and the priorities of statements on different processors are incomparable.
In other words, the relative ordering of priorities on a single processor determines
the execution order; for example, if two synchronized actions have different priorities,
then the priority for the synchronized action is given by the minimum of the two.
Another way of overcoming this problem is to use one-way priority, that is, either
the input or output action can be assigned priority but not both.

Let us look at the specification of reactive systems. Reactive systems maintain a
continuous interaction with their environment at a speed determined by the
environment rather than the program itself. In other words, the outputs may affect
future inputs due to feedback. One of the primary goals of the study of reactive
(real-time) systems is to develop predictable systems (cf. Stankovic 1988). Thus, it
becomes essential to predict the action of each component in the context of
nondeterministic interacting environment. For this purpose, priority plays a vital role.
Hence, priority of type (3) discussed above plays an important role in distributed
reactive systems. Let us look at the priority specification characteristics in Ada which
has been designed keeping in view the design of real-time embedded systems. In Ada
each task may (but need not) have a priority. We quote below relevant aspects from
the revised Ada manual (cf. 9-8) given in Gehani (1983): ‘

e The specification of priority is an indication given to assist the implementation in
the allocation of processing resources to parallel tasks when there are more tasks

. eligible for execution than can be supported simultaneously by the available
processing resources. The effect of priorities on scheduling is defined by the following
rule: -

If two tasks with different priorities are both eligible Jor execution and could sensibly

be executed using the same physical processors and-the same other processing

f——



Compositional priority specification | 77

resources, then it cannot be the case that the task with the lower priority is executmg
while the task with the higher priority is not.

o The above rule essentially corresponds to the pragma feature. The most important
aspect related to priority specification in the context of a rendezvous is cited
below:

For tasks of the same priority, the scheduling is not defined in the language. ... The
priority of the task is static and therefore fixed. However, the priority during a

rendezvous is not necessarily static since it also depends on the priority of the task
calling the entry. '

It can be seen from the above that priority specification in Ada corresponds to that
of type (3) described above. In appendix A, we illustrate through an example priority
specification in Ada by considering the problem of minimizing head movement during
a disc access. Priority specifications corresponding to type (3) given above play an
important role in the specification of process-control systems.

A limited treatment of priority of type (3) has been reported in Pitassi et al (1986).
The study in Pitassi et al (1986) corresponds to a special case of the prioritized
alternative construct of Occam (cf. Occam 1984). The limitation can be understood
by the informal interpretation of the alternative construct given below: Upon entering
a prioritized alternate (ALT) statement, a linear sequence of all the open guards of
the prioritized statement is constructed; if one or more of the open guards is successful
upon entry, thea the first successful guard in that sequence is selécted and the
corresponding statement is executed. If none of the open guards is successful upon
entry, then the prioritized ALT construct is treated as if it were an ordinary ALT
construct. '

So far in the literature, there is no indication as to what approach would be realistic
and useful. In this paper, we provide a formal semantics for priority in the context
of real-time distributed programming languages that have the feature of specifying
priority in an environment rather than providing a global partial order of actions in
the system. The main contributions of the paper can be summarized as follows.

e An understanding of the notion of priority in the context of environment (i.e.,
real-time distributed concurrency) is provided. Our approach does not have the
restriction (as in Cleaveland & Hennessy 1990) that only prioritized internal moves
can pre-empt unprioritized actions. Our notion of priority in the environment is -
based on the intuition that a low priority action can proceed only if the high
priority action cannot proceed due to lack of the handshaking partner at that point
of execution. In other words, if some action is possible corresponding to that
environment at some point of execution then the action takes place without
unnecessarily waiting. It must be clear that such an approach clearly satisfies the
requirement given in Lamport (1985) that realistic priority specification should not
involve unnecessary waiting.

e A composmonal semantic characterization of real-time distributed languages with
priority is presented and, thus, forms a basis for the compositional proof theories
of languages such as Ada and Occam.

The rest of the paper is organized as follows: Section 2 describes an abstraction of
prioritized real-time distributed concurrency in terms of an extension of real-time
communicating sequentlal processes (CSP-R) (Koymans et al 1988) and is referred to
as CSP-R,; further, the language syntax and informal interpretation of CSP-R,




o
1
i
i
{
;

78 R K Shyamasundar and L Y Liu

discussed. Section 3 describes the real-time model and the execution model, and §4
describes the semantic domain and semantic equations. Section 5 discusses parallel
composition both informally and formally; towards, the end of § 5, we discuss the
impact of various parameters including those that affect maximal parallelism on the
prioritized semantics proposed. The paper concludes with a discussion of the results
and the ongoing work.

2. Language syntax

For ease of presentation, we use language CSP-R,, (prioritized real-time CSP) instead
of Ada. It may be noted that CSP-R,, is an extension of CSP-R described in Koymans
et al (1988). In Koymans et al (1988), it has been shown that Ada tasking and real-time
features can be simulated by cSp-R. Further, CSP-R, has the priority features
corresponding to that of type (3) discussed above. In CSP-R, processes communicate
via unidirectional channels, and a channel connects exactly two processes.

D, W-stand for channel variables;
x,u —stand for program variables;
e — stands for expressions;

b - stands for boolean expressions;
p — stands for priority expressions.

Program: P:=S|N

Statement: S::= x:=e|skip|g|waitd|S,;S,| 4| *A4|[N]

Guard: g::= b|D?x| W!e|waitd|b; D?x by p|b; W!e by p|b; wait d
Alternative: A== [[17-;9:~S;] :

Network: Nz:=S,||S,

The informal semantics of the language follows on the lines of the semantics of
CSP-R given in Koymans et al (1988) and Huizing et al (1987). It may be observed
that in our language, priority can be assigned to only I/O guards and not for pure
boolean or delay guards since the local priorities can be manipulated through the
boolean expressions. Further, we assume that pure boolean guards have priority over
the /0 guards. Again, note that the priority for local action/communication can
always be manipulated through the boolean parts of the expressions. For ease of
understanding, we provide an informal interpretation of those commands that are
quite different from those of cSP described in Hoare (1978).

Interpretation of alternative command: if none of the guards is open, then execution
aborts; otherwise, check whether there is at least one open pure boolean guard and
select one of them nondeterministically. In case there is no open boolean guard but
there is at least one other open guard the execution proceeds in the following way:
Compute the waitvalue which is defined to be infinite if there are no open wait guards;
otherwise, it is defined to be the maximum of 1 and the minimum of the values of the
durations of the open wait guards. Let us denote the waitvalue by d. As soon as there
is a possible semantic match for the open I/O command, the communication action
takes place over the channel that has the highest priority (the selection of the
semantically matching commands of equal priority is nondeterministic). However, if
no semantic match takes place within 4 units, then one of the open wait guards with
waitvalue equal to d is selected nondeterministically. It may be observed that we have

J——



Compositional priority specification 79

assumed a priority’ for the boolean guards over the I/0 guards. Note that the 1/0
guards can be assigned any positive priority; we assume a default priority of 1 in case
there is no explicit specification. No explicit priority can be assigned to delay guards;
in other words, the delay guards are assumed to have priority 0. This is consistent
with the semantics of Ada.

For example, consider a system consisting of three robots: P,, P,, and P;. Robots
P, and P, compete for some resource service from P, such that P, or P, have to
wait only linearly (i.e. one can wait till the other gets the service) for service. The
controller for P; can be abstracted through the following control program in CSP-R,:

Pyuii=2*[DIxbyi—i:= I;serve-P, [} Woxby3-i—i:=2;serve-P, ].

Informally, in the program the priority dynamically switches from communication
over D to that of communication over channel W. It must be noted that this does
not mean that the communications over D and W alternate. What this means is that
if this program is placed in an environment wherein the communications over both
D and W are available, then the net result will be that of alternating communications
over D and W. However, in the context of environments wherein the communications
over D and W are not always ready, the behaviour differs. In other words, one of
the important points to be noted is that programs with priority clause in general
cannot be transformed to a program that does not use any priority clause unless the
environment is a priori given directly or indirectly. Note that if several requests having
the same priority, arrive at the same time, then the choice is nondeterministic. To be
more specific, we consider the possible set of actions in the following example.

Pl:=[D1?xbyl - S1
0D2?yby2—S2
1D32zby3 — §3]

Let t, be the time of arrival at this select statement. Let us assume that some
communication takes place over some channel at time ¢, (t, > t,). If we assume that
there is no unnecessary waiting, then the general condition is that ¢, was the earliest
time at which the communication could take place. The possible interpretations are
given by:

1. Communication over D3 takes place at t,; this does not require any other condition
as D3 is the channel with the highest priority.
2. Communication over D2 takes place at t; this implies that communication over
‘D3 was impossible since t,.
3. Communication over D1 takes place at t,; this implies that communications over
- D2 and D3 were impossible since t,.

It must however be noted that how to determine the possibility of the communication or
not is an implementation issue (i.e. implementation of the synchronous communication)
and is not explicit in CSP-R,. Note however, in Ada it is possible to determine such
a possibility through the entry queues.

'One of the reasons for this assumption is that in our semantics for the sake of simplicity
we have assumed that expression evaluation takes no time. This restriction can be removed
very easily. In fact, no generality will be lost with such an assumption.




80 R K Shyamasundar and L Y Liu

Hiding, [ N], has no effect on the execution of N but changes what can be observed
about such executions. In other words, communications along channels in N are
internalized and cannot be observed any more.

3. Model of real-time and execution model

The language CSP-R, is a synchronous language. We assume that time proceeds in
discrete time steps. This is consistent with the argument given in Pnueli & Harel
(1988, pp. 84-98) that integer time domain will be appropriate for synchronous
programming languages, since all the processes refer to the same global clock and
operate only at certain points of time. Thus, our time domain is the set of natural
numbers. For the sake of simplicity, we further assume that all primitive actions (such
as assignment and communication) take one unit of time. Parameterization with
respect to transmission time of the network and range of values for actions (Koymans
et al 1988) are ignored for the sake of simplicity. In other words, real-time is modelled
by relating the ith element of a history with the ith tick of a conceptual global clock.
However, it should be noted that we do not either imply the existence of a global
clock or assume the tightness of synchronization of the processor clocks.

A real-time execution model is useful only if we can make some assumptions about
the progress each process is due to make. In this paper, we use the maximal parallelism
model described in Koymans et al (1988) (we use MAXPAR as an abbreviation). In the
MAXPAR model, at any instant of time all actions that can be started without violating
synchronization constraints will be initiated. In other words, we assume the existence
of a processor for every process. Such an assumption removes the need of considering
resource scheduling. That is, a process is allowed to be idle only if all communication
partners are unwilling to communicate and no local actions are possible at that point.
Towards, the end of the paper, we discuss other aspects of real-time models.

]

4. Denotational semantics of CSP-R,,

Semantic domain

The domain consists of non-empty prefix-closed set of pairs: each pair consjsting of
a state and a finite history leading to this state. Infinite behaviours are modelled by
their sets of finite approximations. In order to enforce maximal parallelism, we have
to record whether the processes are suspended, and if so, on which communication
the process is suspended etc. To enforce consistency of priority the semantics has to
encode the priority information in a suitable manner so that the semantics remains
compositional. These aspects are discussed formally in the following.
The domain is, Dy, = P(S x H) where ' |

o S=Su {1}, S being the set of proper states (Le. partial functions from Id (set of
identifiers) to 7~ (set of expression values), and

o H = set of sequences of records of the form: (4, G), where A1is a set of communication
assumption records referred to as the Action set and G provides the partial order




Compositional priority specification _ 81

information with reference to the action set necessary for checking priority
consistency.

The communication assumption records (CAR for short) are of the following types.

(1) Communication records of the form (D, v) where D is a channel name and veVAL
(domain of values). If the ith element is of the form (D,v), it can be interpreted as
sending or receiving the value v over channel D at the ith tick of the conceptual
global clock.

(2) Ready records of the form R(A) where A is a subset of channel names. If the ith
element of a history is of the form R(A), it ¢an be interpreted as the willingness
of the process to communicate over the channels in A4 at the ith tick of the
conceptual global clock, and the impossibility of communication since one of the
partners is not able to communicate.

(3) Internal moves (denoted [J). If the ith element is El it can be interpreted as a
local action at the ith tick of the conceptual global clock.

In other words, the observable actions are: (a) communication actions with the
associated priority, (b) the time of the observable actions, and (c) the state of the time
of termination.

In the a priori semantics, we keep information about the priority of the various
actions in terms of triples (H, D, L) with the following interpretation: :

o D is the channel over which communication is assumed to have taken plaée.
e H is the set of channels that have higher priority over D.
e L is the set of channels having priority less than or equal to that of D.

Note. Informally, (H,D, L) has the following interpretation.

e Processes are ready to communicate over the channels in Hu {D}u L.

e Communication takes over D; that is, D is the channel that has a partner and there
is no other channel that has a priority higher than D having a ready partner; H
is the set of channels that have higher priority over that of D and D has a higher
priority over those of L.

Obviously, sets H, {D}, and L are mutually disjoint.
Before describing the semantic domain and the equations, we formalise the priority
triples. :

DEFINITION 1

Consider the triple (H,D, L> where -H and L are subsets of channel names and D is
a channel name. Then, the tnple (H,D, L) denotes the relation {(a,D)|acH}u
{(D.b)lbe L}.

Note. (1) By the underlying graph of (H,D, L), we mean a directed graph (V, E)
where V=Hu{D}u Land E is the set of all directed edges (a, b) corresponding to
(a,b) in the underlying relation. We refer to these graphs are priority graphs.

(2) Priority (or precedence) graphs are said to be inconsistent if they are not acyclic.
We use L to denote inconsistent priority graphs. ‘




82 R K Shyamasundar and L Y Liu
DEFINITION 2

Let G, and G, be priority graphs. Then,

1, if G, UG,, is not acyclic,

join(G,,G,) = {Gl UG,, otherwise.

In the following, we describe formally the domain.
Now,

§x H={<o,hy|oeS, heH and |h| < w0}

A set X eSTATE X HISTORY is said to be prefix-closed iff V{o,h)eX, if h' <h then
(LhYeX. :
The prefix-closure of X, denoted PFC (X), is defined as

XU{CLAY}O{<L Y 303h({a, hyeX A K <h)).

The domain consists of all nonempty prefix-closed elements of Dg,,,. Note that the
domain forms a complete lattice with set-inclusion (<); the lub is obtained by U
(set-union) and the least element is {{L,A)}.

The meaning function is of the form, M [Statement]: §— Dy, defining the meaning
of statements from S to Dg,,. For defining the meaning of alternative command
compositionally, we define an auxiliary function G[g, A] from S to D,,,, which gives
the meaning of the guard g in the context of a set 4 of alternative guards. Denoting
the set of alternative guards by 4, we get: ’

Gl[g]} A"»S_'—)Ddom'

Notation. (1) Leth={A41,G1)0{A42,G2) 0 --0{An,Gn) bea finite history of length
n. Then, we use h' = A1o0A20---0An to denote the projection of the history to the
first component while we use h* = G10G20---0Gn to denote the projection of the
history to the second component; the length of 4 is denoted by ||, and the kth element
of h is denoted by h[k]. ' _

(2) The length of the history (trace) denotes the time taken for arriving at the point;
the empty set is denoted by []. Note that R(¢) also denotes [] as well as {¢,v)> In
our notation. '

(3) For convenience, we use {0, 4) to denote, {s,{4,G)>> when G is an empty graph.
(4) If B is a set of histories, then we use {{o, B)} to denote {{a,h) |heB}.

(5) We represent singleton action sets of the form {«}, where a is some communication
assumption record (i.e., {D,v), R(4), or (1), by « itself; we also omit the set symbol
for ready records. For example, {{[1}{[J,R({D, W})}{<D,v)}} is denoted by
O{O,R(D, W)}<D,v>. We omit the concatenation operator (o) whenever it is clear
from the context.

(6) Whenever it is clear, we do not enclose the elements of the trace within the angular
brackets. o

The'sem‘antic equations for the language constructs are forrﬁally defined in appendix
B; in the following, we informally discuss features of the parallel composition.



Compositional priority specification 83
5. Parallel composition
Informal approach
The semantics is based on the real-time semantics discussed in Koymans et al (1988).
The semantic domain consists of state-history pairs. The history is nothing but the

traces of Koymans et al (1988) enriched with the priority information. In the following,
we informally discuss how priority consistency is ensured in the parallel composition.

- QOur semantics has two stages.

e A priori semantics — Here, we consider the semantics of each process in an isolated
way.

e Binding of the processes ~ Here, the meaning of the program is obtained by
considering the meaning of the component processes.

While composing the processes, we check for the mutual consistency of the isolated
assumptions made in each of the processes. As already mentioned, the semantics of
each process is in the domain of state-history pairs. For example, let us consider two
state history pairs, (s;,h;» and {s,,h, ) in processes P, and P,, respectively. The
binding of the states should be understood easily as processes do not share any
common variables. Let us look at the merging of the histories. The two histories are
said to be consistent iff:

(1) Communication compatible — That is, for every communication assumption over
some channel, say D, in some process P, there is a corresponding matching
communication partner in some process P, at the same time.

(2) MAXPAR consistent (no unnecessary waiting) — Check that there is no unnecessary
waiting, that is, histories do not indicate a situation where both the processes are
waiting for a communication that the other process can provide. This can be
verified by checking that there is no common ready-record between any two
histories at the same time.

(3) Priority consistent — Check that the histories are priority consistent, that is,
histories do not indicate a situation wherein a lower priority request has been
accepted in spite of the possibility of a higher priority request.

In the following, we informally show how priority consistency is ensured; communica-
tion compatibility as well as MAXPAR consistent are essentially the same as in Koymans
et al (1988); the formal equations are given in appendix B.

For the understanding of pnonty consistency, let us consider the pnonty assump-
tions {H,D, L) and (H',D', L’} in the histories of any two processes at some time
t. If the sets H, H', {D}, {D'}, L, L' are mutually disjoint then priority consistency
follows trivially. Further, it must be noted that if the two CAR under consideration
are neither communication compatible nor MAXPAR compatible then there is no need
ofa separate check for priority consistency. The basic idea for establishing priority
consistency is to derive the underlying graph and check whether there are inconsistent
(circular) precedences. The important aspect of the¢ graph construction is that it is
done incrementally and the existing graph is augmented only if it is not inconsistent




84 R K Shyamasundar and L Y Liu

after augmentation. In the following, we analyse the relations among these sets and
show how inconsistent histories can be removed; a separate priority check is resorted
to only if the inconsistency does not follow either from communication or MAXPAR
incompatibility. For the sake of informal reasoning, we do a case analysis.

The important cases are:

(1) HnH' # ¢:
e In such a situation, clearly two processes are waiting unnecessarily, since D has
a lower priority than those of the channels in H~ H’ and D’ has a lower priority
than those of the channels in H n H'. In other words, this is not MAXPAR consistent.
Thus, if we can ensure that the histories are MAXPAR consistent, then there is no
need for checking again for priority consistency.
(2) D'eH
e The situation corresponds to the situation of no partner for communication
over D' - corresponding to communication incompability; hence, there is no need
“for a separate check for priority consistency. '
(3) D'eL |
e This case again can be ruled out on the same lines as case (2).
(4) DeH’ ‘
e This case again can be ruled out on the same lines as case (2).
(5) belL
e This case again can be ruled out on the same lines as case (2).
(6) LnL' #¢ ‘
e There is no need for checking priority consistency since by definition, we assume
that communication does not take place over low priority channels.
(7 HhnL'#£¢p AD=D'
o Consider the precedence graph shown in figure 1 (in the graph — denotes higher
priority than) for this case. It can be easily seen that the priorities are assigned
inversely in the two processes on at least one common channel - hence, inconsistent
(the inconsistency can be seen due to the cycle in the graph).
8) LnH'#¢p AD=D'
e Inconsistency in this case follows from the previous case.
O HAL#pAHNL=¢
e From Hn L' +# ¢ it follows that the priority of D’ is greater than or equal to
- that of the common channels of H and L. By considering the second conjunct,
we can conclude that D must have a higher priority than that of D'. In other
words, there is a cycle and hence, inconsistent (see the priority graph shown in
figure 2). -
(10) LnH'£p AHN L'
e The consistency can be ensured in the same way as the previous case.

In the above analysis, we have considered only the important situations; the other
situations can be considered in a similar way. The exact way of keeping track of the
information will be clear from the formal set of semantic equations. The equation for

H—D-—L
= (L B
! ! !
H—D-—L o Figure 1. Priority graph for
H

case (7).



Compositional priority specification 85

H > D > L
_Ll t

D

Figure 2. Priority graph for case (9).

parallel composition is given below:
M[S,|8;]o=
PFC({<0; X 04, hi#h}, join(h?, h3)>|Vie{1,2}:{o;, h;>eM[S;] o
A consistent(cy, hy,0,,h,)}),

where
o, X 0,5(x)=0,(x) ifo,,0, # L A xevar(o;)

=0(x)ifo,0,# L A x #var(a;) \ xevar(o)
= 1 otherwise.

The pointwise merging of the histories h, #h, and the predicate consistent are defined
below: Let cset be the set of common channels in S, and S,. Then, the predicate
consistent is given by,

consistent (hy, h,,cset)A Comm(h,,h,, csét) A NW(hy,h,,cset) A Pri(hy, h,,cset)

That is, h, and h, are said to be consistent iff they are communication compatible
(checked by predicate Comm), there is no unnecessary waiting (checked by predicate
NW) and priority consistent (checked by predicate Pri). Note that the consistency
is checked with reference to the joint channels. Each of these predicates is defined
below:

o Comm(h,,h,,cset)A
V1 ~\<j<max(|hll,|h2|) ve Val, Decset: D, v)ehl[,r] iff {D,v>eh3[j].

That is, for every communication on the joint channel, there is a reciprocal
communication in the other process at that pomt of time with respect to some
priority assumptions.

o NW(h,,h,,cset)A V1 < j<min(|hy|,|h,|): R(A)ehi[j] A R(B)ehi[j]>ANB=¢.
That is, processes are not unnecessarily waltlng for each other

o Pri(h , h,,cset)A
V1< j<min(lhy), hy)), G €M [T A Goeh3[)1:
join(Gy, G,) is an acyclic (precedence) graph.

Pointwise mergmg of histories: Let k, and h, be cons1stent with reference to the set of
joint channels cset. Then, h;#h, is defined by the jth pointwise union as follows:

hy#th,[j]= (A, G, where:
(1) A={<D, 03| || Vj<Ih| ALD, U>"5h1[J] V<D, vyeh3[jl}.

e If the communication is over a channel not belonging to cset (the length of the
two traces may not be equal), then the record is kept without any change; otherwise,
both traces must contain the same communication record (D v) at the time point
j (as required by Comm).

U{R({DL<Ihy| V j < kol A(R(D)eR[j1V R(D)ERI [}




86 R K Shyamasundar and L Y Liu

¢ Obtain the new ready set of channels by taking the union of all the channels over
which the processes are waiting; note that there is no need to check whether the
channel is in cset or not as the consistency test has already assured (by NW) that
there is not unnecessary waiting; internalizing the channel in cset is handled by
the hiding rule.

(2) G=join(hi,h3).

Before defining the equation for hiding, we define hide: graphs x channels—
{L}ugraphs. .

DEFINITION 3

Let G, and G, be any two priority graphs that are consistent (i.e., precedence) and
cset be some non-empty finite set of channels. Then, we define,

jOincset(Gl E GZ) = hlde(_]OU‘l (Gl ’ G2 )3 Cset)'
DEFINITION 4

Let G be some priority consistent graph and cset be some finite non-empty set of
channels. Then,

(1) hide(L,cset)= L.
(2) hide(G,$)=G.
(3) VDecset:hide(G, cset) = hide(G’, cset — {D}) where

G' = {(a,b)eG|D is not in {a,b}}u{(a,b)|(a, D)eG A (D, b)eG}.
Hiding Let cset be the set of internal channels of S. Then,
M[[[S]}]a PFC({ (5, (4, G >|3{ 4, G'> (o,{A',G'Y>eM[S]o
= A'fcset A G = hide(G', cset)})

where A’ fcset is the history obtained after removing all the communications and
readies on channels cset from A'. Note that the empty set is represented by [] and
hence the time points are preserved.

In the following, we sketch proofs of theorems for establishing the soundness
(priority consistency) and the compositionality of the semantics. The following
theorem establishes the priority consistency. :

Theorem 1. Consider an alternative command [{I7-g;— S;]. Let the process be enabled
on channels d,,d,,...,d,(m <n) with increasing order of priority at time t,. Then,
communication started over d; started at t,(t, >t,) implies that communication over
disy,...,d, was impossible durmg t, to t, and communication over d; was impossible
during t, to t, — 1.

Proof. The process was enabled on channels d,,d,,...,d,(m <n) at time ¢, implies
that the traces have the structure oRZ /' ~L B where o and § are some traces upto
t, and after t, — 1 respectively. It must be noted that § would have at least one
non-wait action in its first component. Thus, by the predicates NW and Pri it follows
that this was the earliest possible action. Note that the condition also holds when
we consider hiding. Hence the theorem.



Compositional priority specification 87
Theorem 2. Parallel composition is associative.

Proof. Associativity of the parallel composition ignoring the priority information
follows on the lines of the proof given for CSP-R (Koymans et al 1988). What we need
to show is that the composition of the priority information also satisfies the property
of associativity. In other words, we have to prove that join(join(G,,G,),G3) =
join(Gy, join(G,, G5)). This follows from the fact that the union? of relations is
associative.

Theorem 3. The semantics is priority consistent and compoéitional.
Proof. Proof follows from theorem 1 and theorem 2.

Illustrative example. In the following, we consider a simple example that illustrates
the possibility of a deadlock in a network consisting of n processes, P,, P,,...,P,,
for some given priority. For the sake of brevity, we ignore the values sent and received
in the example. In the example, we consider only two processes P,, and P, which
have {f,7} as the common set of channels. The interesting feature of the example is
that it depicts how the two processes get into deadlock for the given assignment of
priorities irrespective of the behaviour of the other processes.

Example program

Pl:=[a? by. 1— P2:=[w! by 1>
[08? by 2— [y? by 2—
[Iy! by 3] - [1B! by 3—=]

M{[P1]o=rprc({{d’,H,}) where H, consists of
{{R(, B, o) }*o{R (1, B <0t D }, ({7, B}, 0. $D D,
{R@,B.)}*o{{R(1),<B, 7}, G3),

{R(, B, o) }*0<<B,7), G4)},

where G3 = {{y}, 8, {a}> and G4 = (¢,7,{B,a}> and “?” denotes that the value part
is ignored.

M[P2]o =PFc({{0o’,H,)}) where H, consists of,
{{R(B, 7, ) }*c {{R(B,7), <, 7> }, <{B, v} 0, 8D ),
{R(B,7, 0)}* o {R(B), {1, 7>}, GT),

{R(B,y, @) }*0<{<B,7),G8)},

where G7 = ({f},7,{w}> and G8 =<4, B, {1, w} ).
The parallel composition is given by

M[P1|P2]o = {<L,A)}.

Explanation. For the sake of brevity, we consider only those histories that become
inconsistent due to inconsistency of priority. The common set of channels of P1 and

2Note that the operation join is associative.




88 R K Sh_vamasunddr and L 'Y Liu

P2is given by cset = {f,7}. Most of the histories become inconsistent due to predicates
Comm and NW. The following pairs of histories get eliminated due to inconsistent
priorities, that is, both join(G3, G8) and join(G4,G7) are L. Let us take a closer look
at how these two pairs of histories become inconsistent.

hy= CLROLLB I 1 vk B e} ) i hs = (B, 70, <, B {p, 0} ) ).

Obviously, in G3, y has priority over f, while in G8, B has priority over y. Thus,

there is an inconsistent partial ordering. Now, consider the pair of histories,

hy= B 05K,y By o} ) s e = ({R(B), (LB ().

Again here, y has priority over f (in G3}, while in G7, f has priority over y - that
is, the ordering is inconsistent.

In other words, the two processes get deadlocked in the beginning itself despite
the behaviour of other processes in the network, Thus, the two processes do not do
anything.

Real-time execution models , |

In the previous sections, we have discussed semantic specification of priority using
the maximal parallelism model. In this section, we briefly discuss the effect of various
parameters including those that affect maximal parallelism.

e It casily follows that ignoring priority leads essentially to the same semantics as
in Koymans et al (1988).

e In Koymans et al (1988) a spectrum of models ranging from interleaving to maximal
parallelism has been given accounting for the communication media and a range
in timings for actions. The semantics described here can also be augmented on the
same lines to account for the various parameters. However, it may be noted that
in the case of the interleaving model the semantics no longer ensures Lamport’s
requirement (cf. Lamport 1985) that there should not be any unnecessary waiting
in realistic priority specification; this is in conformity with Lamport’s conjecture.

e Though the principle of one processor to one logical process is quite feasible, there
are many situations which force resource restrictions either due to logical design
(for example, recursive processes) or due to physical constraints of space. The need
of resource restrictions leads to scheduling requirements. Thus, the semantics should
be able to handle interrupts of statements with higher priority. One posible solution
is to combine the approaches of this paper with that of Hooman (1989).

e Another aspect that one comes across in realistic situations is that of assumptions
about bus-arbitration or in general fairness issues. Perhaps one can handle some
of these issues in a limited way similar to that of scheduling; a thorough investigation
is needed to tackle the issue of fairness in the context of compositional semantics.

6. Discussion

In this paper, we have developed a compositional denotational semantics for
prioritized real-time distributed programming languages. One of the interesting
features is that it extends the compositional theory proposed in Koymans et al (1988)
for prioritized real-time languages preserving the compositionality of the semantics.



Compositional priority specification ‘ 89

As mentioned already, the language permits users to define situations in which an
action has priority over another action without the requirement of preassigning
priorities to actions for partially ordering the alphabet of actions. These features are
part of the languages such as Ada designed specifically keeping the needs of real-time
embedded systems.

Our approach does not have the restriction (as in Cleaveland & Hennessy 1990)
that only prioritized internal moves can pre-empt unprioritized actions. Our notion
of priority in the environment is based on the intuition that a low priority action can
proceed only if the high priority action cannot proceed due to lack of the handshaking
partner at that point of execution. In other words, if some action is possible
corresponding to that environment at some point of execution then the action takes
place without unnecessary waiting. It must be clear that such an approach clearly
satisfies Lamport’s requirement (Lamport 1985) that realistic priority specification
should not involve unnecessary waiting. The condition of “no unnecessary waiting”
itself provides a sort of priority for unprioritized actions® and thus, provides a natural
model for the tasking features of Ada. In the semantic theory we have proposed there
is a clear distinction between the semantic model and the execution model — this has
enabled us to fully ensure that there is no unnecessary waiting. It is of interest to
note that the real-time semantics proposed satisfies Lamport’s conditions in a natural
way. Also, our work is the first formal semantics for treating priority that is
state-based — thus, having advantages over algebraic approaches for reasoning about
reactive systems.

We believe that the proposed compositional theory provides a sound basis for the
languages for programming reactive systems (see Liu & Shyamasundar 1989). It may
be observed that we have developed the semantics by considering the priorities of
events in each process in an isolated manner. Thus, it is only the partial ordering of
the events that is important rather than the priority number associated with the
events. We have used prefix-closed sets as our semantic domain in order to treat any
general reactive system.

In our semantics, we have given priority for pure boolean guards so as to be
consistent with the semantics defined in Koymans et al (1988). This restriction can
be removed very easily by appropriately changing the a priori semantics of the
alternative command. The theory can also be extended to include priorities of types
(1) and (2) discussed earlier. Furthermore, the semantics can be tailored to terminating
systems by considering complete traces instead of prefix-closed sets. The semantic
equations can be easily extended for this case (the main difference will be that
we would be using greatest fix point rather than the least fix point for iteration). It
may be noted that from the real-time semantics, one can obtain a temporal logic
proof system on the lines of Hooman & Widom (1988). A static analysis of CSP-R,
programs on the lines of the characterization in Liu & Shyamasundar (1988,
pp. 134-138, 1990) can be used for deriving tools for the specification and verification
of prioritized finite state systems. Currently, we are investigating the applicability of
the theory to the verification of communication protocols including complex protocols
such as carrier sense protocols discussed in Pnueli & Harel (1988, pp. 84-98).

3This should not be misunderstood as the priority model proposed; this only shows that
the MAXPAR execution model has some additional advantages in the context of priority.




90 R K Shyamasundar and L 'Y Liu
Appendix A

Consider the problem of minimizing the head movement in disc access which requires
a different scheduling rather than the usual FIFO discipline of Ada. We briefly discuss
the solution described in Gehani (1983) using the strategy of families of entries. Let .
us assume that the requests for service are classified into three categories declared as

type REQUEST-LEVEL is (URGENT, NORMAL, LOW).

Urgent requests are accepted before any other kind of requests. Normal requests are
accepted only if there are no urgent requests pending. Finally requests in the low
category are accepted only if there are no urgent or normal priority requests pending.
Within each category requests are accepted in FIFO order.

This scheme is implemented by a task SERVICE that contains the declarations of

an entry family REQUEST:
task SERVICE is
entry REQUEST (REQUEST-LEVEL) (D: in out DATA);
end SERVICE;

Each member of REQUEST handles one request category. The body of task SERVICE
is given below:

task SERVICE is

begin
loop
select
accept REQUEST (URGENT) (D: in out DATA) do
...processtherequest
end REQUEST;
or when REQUEST (URGENT)COUNT = (0=
—the number of tasks waiting at an entry is
— given by the COUNT attribute _
accept REQUEST (NORMAL) (D: in out DATA) do
...process the request '
end REQUEST;
or when REQUEST (URGENT)'COUNT =0 A
REQUEST (NORMAL)'COUNT = (0=
— the number of tasks waiting at an entry is
— given by the COUNT attribute
accept REQUEST (LOW) (D: in out DATA) do
...process the request
end REQUEST;
end select;
end loop;

end SERVICE

Appendix B

Before describing the semantic equations, we will define the auxiliary functions
required. '



Compositional priority specification 91

Let ¢ be a function from S to Dg,,. Then ¢’ is the function from S to D,,,, defined
by ¢'(c) =ifceS then ¢(0) else PFC({<0,A>}).
Further, ¢* is the function from Dy, to D,,,, defined by,

¢*(X) = {<d',hoh'>|{a,h>eX and (o', >ed'(a)}.
The function G is defined using the following two auxiliary functions.

T({by;G1s-..,bu 8.} 0) = {R(D)|3i: W[b;]o =tt A(g;=Dle V g, =D?x)},

0, if g=AA W[b]o=1t,
waitvalue(b; §, 0) = { max(n,1), if §=wait n A W[b]o =1t,
0, otherwise.

A priori semantics

M[S]L ={<L,A>} for any §; A is the empty sequence.
M[skipo = prc({<, {0} }).
M[x:=e]o =PFC({<o[¥ [e]o/x], {0} >})

e where ¥ is the semantic function (assumed to be given) for evaluating the arithmetic
expressions.

I/O statements
M[D?x] ¢ =Prc({ {o[v/x],{R(DY o{D,v)>>|ve Val,t > 0}).
The semantics corresponds to indefinite waiting till the communication succeeds.
M{[D!e] o = PFC({{o,{R(D)o{D, ¥ [e]a)> )|t =0}).

The semantics of guards is defined in terms of an environment of boolean, /0 and
-wait guards. We do not give the semantics of the wait statement as it follows from the
semantics of the wait guard (assuming empty environment).

M[g]o = G[g, ¢]o, where g is an /O command,
M[Sy;S,]o = M*[S,](M[S,]0),
G[b, A]o =if W[b]o then PFC{<0,A)} else {<L,A>} i,

e where W is the semantic function (assumed to be given) for evaluating the boolean
expressions.

G[wait d,A]o =
PFC({<0,T'(4,0) Y |max{¥ [d]e,1} = mmwalt(Au {waitd}, o)A t}),

e where minwait (4, ¢) gives the minimum of the waiting periods correspondmg to
elements of A.

G[[D"x Alo=
PrC((<oTv/x], T(GRDS, ) Yo ({R(HI(D, 4)),<D,v>},
BPG(D, GRDS)>>|ve V,0 <t < minwait(4,0)}),




L on

92 R K Shyamasundar and L Y Liu

e where GRDS =AuU{Dx by p}, HI(D, A) returns the set of channels in 4 which
have higher priority than channel D, EL(D, GRDS) returns the set of channels in
GRDS which have equal or lower priority than channel D, and

BPG(D; GRDS) = (HI(D,GRDS), D, EL(D, GRDS)>.

G[Dle, A]o =
PFC({{a, T(GRDS, 0} o {R(HI(D, A)),<D, ¥’ [e] o}, BPG(D, GRDS) > >

[0 <t < minwait(A4,0)}),

e where GRDS = Au{D!e by p}. The other interpretations remain the same as in
the case of input guard.

G[b;g,A)o = G[[Q, AJ*(G[b, A] o), where g=D?x by p or Dle by p or wait d.

M[[U;;lgj"*' iAJo=
if Vio W[g%]o(where g? is the boolean part of g;) then
U;‘,=1M[[Sj:ﬂ*(G[[gj> {gll<k<nk #j}]o)
else PFC({{ L, 1)) fi

M{x Alo = u.Ao.if 3i: W[b,Jo) = it then ¢*(M[A] o) else PEC({ (o, 1> })fi

¥

Partial support by the Indo-French Centre for the Promotion of Advanced Research/
Centre Franco-Indien Pour la Promotion de la Recherche Avancee as part of the
project “Formal Specification and Development of Real-Time Reactive Programs”
is gratefully acknowledged.

References

Baeten J C M, Bergstra J A, Klop J W 1985 Syntax and defining equations for an interrupt
mechanism in process algebra, Report cs-R8503, Center for Mathematics and Computer
Science, Amsterdam

Cleaveland R, Hennessy M 1988 Priorities in process algebras. Inf. Comput. 87: 58-77

Gehani N 1983 Ada: An advanced introduction including reference manual for the Ada
Programming Language (Englewood Cliffs, NJ: Prentice Hall) .

Hoare C A R 1978 Communicating sequential processes. Commun. ACM 21: 666677 ‘

Hooman J 1989 A real-time semantics for multiprogramming, manuscript, REX-Concurrency
Day '

Hooman J, Widom J 1988 A temporal-logic based compositional proof system for real-time
message passing, TR 88-919, Cornell University

Huizing C, Gerth R, de Roever W P 1987 Full abstraction of a real-time denotational semantics
for an Occam-like language. ACM Symposium on Principles of Programming Language,
(New York: ACM Press)

Koymans R, Shyamasundar R K, Gerth R, de Roever W P, Arun Kumar S 1985 Compositional
semantics for real-time distributed computing. Proc. Logics of Programs. Lecture Notes in
Computer Science, vol. 197 (Berlin: Springer-Verlag)

- Koymans R, Shyamasundar R K, Gerth R, de Roever W P, Arun Kumar S 1988 Compositional

semantics for real-time distributed computing, Inf. Comput. 79; 210-256

.
-

et



Compositional priority specification 93

Lamport L 1985 What it means for a concurrent program to satisfy a specification: Why no
one has specified priority. ACM Symposium on Principles of Programming Languages
(New York: ACM Press) '

Liu L'Y, Shyamasundar R K 1988 Static analysis of real-time distributed systems. Proc. Formal
Techniques in Real-Time and Fault-Tolerant Systems. Lectures Notes in Computer Science,
vol: 331 (Berlin: Springer-Verlag) pp. 373-388

Liu L Y, Shyamasundar R K 1989 An operational semantics of real-time design language
RT-CDL. Fifth International Workshop on Software Specification and Design (New York: IEEE
Press)

Liu L Y, Shyamasundar R K 1990 Static analysis of real-time distributed systems. [EEE Trans.
Software Eng. SE-16: 373-388

Milner R 1980 A calculus of communicating systems. Lecture Notes in Computer Science, vol. 92
(Berlin: Springer-Verlag)

Occam 1984 Occam Programming Manual, Inmos Limited (London: Prentice-Hall International)

Pitassi T, Narayana K T, Shyamasundar R K 1986 A compositional semantics for Occam, TR
Cs-86-19, Computer Science Department, Pennsylvania State University, Pa 16802 _

Pnueli A, Harel E 1988 Applications of temporal logic to the specification of real-time systems.
Proc. Formal Techniques in Real-Time and Fault-Tolerant Systems. Lecture Notes in
Computer Science, vol. 331 (Berlin: Springer-Verlag) pp. 84-98

Roscoe A W 1984 Denotational semantics for Occam. Lecture Notes in Computer Science,
vol. 197 (Berlin: Springer-Verlag)

Stankovic A 1988 Real-time computing systems: The next generations, COINS TR, University
of Massachusetts




