Sadhand, Vol. 17, Part 1, March 1992, pp. 1-28. © Printed in India. .

Modelling real-time systems: Issues and challenges

R K SHYAMASUNDAR and S RAMESH*

Computer Science Group, Tata Institute of Fundamental Research, Homi
Bhabha Road, Bombay 400 005, India

*Department of Computer Science and Engineering, Indian Institute of
Technology, Powai, Bombay 400 076, India

Abstract. In this paper, we discuss the issues and challenges that lie in
the specification, development, and verification of real-time systems. In -
our presentation, we emphasize on the issues underlying modelling of
real-time distributed concurrency.

Keywords. Real-time; reactive systems; concurrency; bisimulation; trace
equivalence; scheduling.

1. Introduction

Real-time systems are designed to cater to many applications ranging from home
appliances or laboratory instruments to process control systems, flexible manu-
facturing, flight control and tactical control in military applications. Flexible
manufacturing is a special kind of real-time application where the behaviour of each
manufacturing machine can be adapted instantaneously to continuously changing
working conditions while still satisfying a global optimality criterion. In flight control
systems real-time automatic manoeuvering is used to achieve significant reduction of
fuel consumption and also for tactical control over the target. In these systems, the
timely execution of requests and responses by the computers is critical to the successful
operation of both the physical systems and the computer itself. That is, in addition
to the normal functional requirements, it is necessary that responses to inputs (from
the environment) must happen in a given interval of time. We refer to these systems
as real-time systems and the specified intervals of time as deadlines. We use the
qualification reactive to refer to the fact that the system has to respond to environment
stimuli continuously. In such systems one can distinguish two kinds of deadlines.

e Hard deadlines: Here, it is important that the deadline must be met; otherwise the
result is useless; in other words, what is needed is the right output at the right time.
o Soft deadlines: In these deadlines, not meeting the deadlines results in the
degradation of the system performance. “

One of the common concepts that counter a majority of the process control systems
is that of providing continual feedback to an unintelligent environment. The continual
demands of an unintelligent environment cause these systems to have relatively rigid
and urgent performance requirements, such as real-time response requirements and
fail-safe reliability requirements. It seems that this emphasis on performance

|
.
‘1
?i
4
=

2 R K Shyamasundar and S Ramesh

requirements is what really characterizes time-critical systems, and causes us to be
more aware of their roles in their environments than we are for other types of systems.
The interface between. a process control system and its environment tends to be

complex, asynchronous, highly parallel and distributed. This is another direct result .

of the process control concept, because the environment is likely to consist of a number
of objects which interact with the system and each other asynchronously in a parallel
fashion. Furthermore, it is probably the complexity of the environment that
necessitates computer support in the first place. This characteristic makes the
requirements difficult to specify in a way that is both precise and comprehensible.
Finally, embedded systems can be extraordinarily hard to test. The complexity of the
system/environment interface is one obstacle, and the fact that these programs often
cannot be tested in their operational environments is another. It is not feasible to
test flight-guidance software by flying with it, nor to test ballistic-missile-defence
software under battle conditions. Further, embedded systems are especially likely to
have stringent resource requirements. These are requirements on the resources, mainly
physical in this case, from which the system is constructed. This is because embedded
systems are often installed in places (such as satellites) where the weight, volume or
power consumption must be limited, or where temperature, humidity, pressure and
other factors cannot be as carefully controlled as in the traditional machine room. It
isimportant to note that a failure quite often results in economic, human and ecological
catastrophes. Thus, safety and reliability are extremely important for time-critical
process control systems. Various parameters one has to cope up with in building

such systems can be seen from some of the main characteristics of real-time systems
given below. ' ‘

(a) The system tends to be large, complex and can be extraordinarily hard to test.

(b) The environment that the system interacts with is nondeterministic. That is, most
~of the times, there is no way to anticipate in advance the precise order of external
events. ' ,

(c) High speed external events (perhaps in parallel), must be able to affect the flow
of control in the system easily.

(d) The requests must be responded and handled within certain bounded time limits.

(e) The system is a coordinated set of asynchronous distributed units.

(f) The mission time is long. The system not only must deal with ordinary situations
but also must be able to recover from some extraordinary ones.

It must be quite evident from the above characteristics that the design of complex
real-time systems poses a serious challenge since many of the requirements and
restrictions are often conflicting with one another. Thus, one of the most important
needs is to design sound methodologies for the specification, verification and
development of real-time systems that would support the common requirements of
flexibility and predictability of systems. This would certainly go a long way in bridging
the thin line between acceptable and unacceptable systems. :
In this paper, we discuss the issues and challenges that lie in the specification,
development, and verification of real-time systems with an emphasis on the modelling
of distributed real-time concurrency. The rest of the paper is organized as follows: §2
discusses aspects of real-time systems that make it different from other systeins and

the notion of time; §3 surveys the issues of modelling real-time reactive systems in

some detail as the study provides a basis for observation-based specifications. The

challenges in the design of real-time systems are highlighted in §4 followed by a
discussion in § 5. ' ‘

Modelling real-time systems: Issues and challenges _ 3
2. Characteristics of real-time systems

In this section, we discuss the need of explicit time, the difference between real-time
and traditional systems and the problem of real-time system design.

2.1 What is the purpose of explicit notion of time?

Traditional programs describe transformations that change values of variables in
discrete steps. Any processor implementing these transformations takes a finite amount
of time. In the interest of generality, programs are usually designed such that the
computed results are independent of the execution speed of their processor(s). In
other words, time considerations are completely irrelevant for the functional behavour
of programs and their correctness; perhaps it is only relevant for questions of schedule
“and efficiency.

To avoid the need to cope with explicit time considerations even in the case of
- concurrent programming, a common agreement has been evolved to use the concept
of nondeterminism to abstract from concrete time to handle classes of processes
working with different relative speeds. Such an approach helps to avoid harmful
comparisons of execution times and thus, provides highly abstract semantic models
for non-sequential programs. The only indispensable assumption we need is that the
processor have non-zero finite speed. Adherence to execution-time independence
affords the tremendous advantage that a program’s validity can be deduced solely’
from the static program text containing logical assertions on the state of the
computations after each statement and signal exchange. If we depart from this rule
and let our program’s validity depend on the execution speed of the utilized processors,
we enter the area commonly called real-time programming (Wirth 1977). There are
two main reasons for designing time-dependent programs.

(i) One of the principal reasons for consideration of execution-time dependent
programs in the case of concurrent programming systems is that certain processes
are not programmable at discretion, as they may be part of the environment; this
leads to situations wherein processes fail to wait for synchronization signals indicating
completeness of the cooperating partner’s task. As a result, cooperation with such
processes will necessarily have to depend on processor speed.

(i) The other important reason for considering time explicitly is the case of reactive
systems that model some physical process; here, the internal laws which define the
natural behaviour of the physical process are functions of a parameter referred to as
physical time. The need for reference to absolute time (or clock) for these: classes is
obvious.

In the rest of the paper, we essentially concern ourselves with the latter category.
22 What are real-time Systems

There have been several dichotomies of systems such as deterministic/nondeter-
ministic, synchronous/asynchronous, off-line/on-line, virtual time/real-time, sequential/
concurrent etc. However, from the point of view of the basic philosophy of design,
- we can conveniently distinguish three categories of systems dependmg on the way
- the systems interact with their environment.

(2) Transformational: get the input in the beginning and send the output at the end.
(b) Interactive systems: interact at their own speed with users or with other systems.

e

4 R K Shyamasundar and S Ramesh

(c) Reactive systems: maintain a continuous interaction with their environment, It)}l;let
at a speed which is determined by the environment (and- not by the prC}grzlgl olx{' he
system). In other words, the output may affect future.lnputs due to ?e gc 1 \
general, we can further categorize these systems depenc.hng on _th.e need for al S(zi ute
time. However, in the sequel we will make the distinction explicit when required.

From the design point of view (a) and (b) have almost identical characterlgtlcs in the
sense, these systems can be characterized by functions. However, the same 1is not true
of reactive systems. A reactive system, in general, does not .compute f)r perfo.rrn
functions (Harel & Pnueli 1985) but is supposed to maintain a certain ongoing
relationship with its environment. '

The dichotomies mentioned earlier are equally applicable to these sy§tems.
However, what we are interested in mainly is to see how the methods of design c?f
traditional systems are not amenable for the design of reactive systems. For this
purpose, let us look at some of the issues one is faced with in the development of a
complex system.

2.3 How to design a reactive system?

The main issues one addresses in the development of a complex system can be broadly
categorized as follows.

(@) The need for separation of concerns: that is, the question is, how doe§ one
decompose the behaviour of the system? This is an important issue as it provides a

---basis for system design.

(b) Refinement of behavioural components of the systems.

" {c) Interaction of the behavioural components.

In the case of reactive systems, most of the times it is even difficult to provide some
behavioural decomposition even if one ignores the necessity of the decomposition
forming the basis for system design. In other words, the separation of concerns turns
out to be extremely difficult. For example, even small real-time systems such as tactical
embedded system for an aircraft might be simultaneously maintaining a radar display,
calculating weapon trajectories, performing navigation functions etc. In these kinds

- of systems, one sees that (1) the code implementing the various tasks is mixed together

such that it is difficult to determine which task(s) a given part of the code performs,
and (2) the timing dependencies between code sections are such that changing the
timing characteristics of one section may affect whether or not many otherwise

unrelated tasks meet their deadlines. Thus, one of the challenges is to provide a
method for behavioural description such that:

(i) behavioural description leads to separation of concerns;

(i) the behavioural description captures the what part effectively in a compositional
(incremental) way.

In the case of transformational systems, it is
a way reflecting the natural structure of the pro
is almost impossible since the interface between the system and the environment is
complex, asynchronous, nondeterministic, highly parallel and distributed. In other
words, the behavioral description is the main issue that makes it quite difficult from
the traditional systems. Thus, one of the immediate needs is to come up with a

possible to decompose the system in
blem. However, such a decomposition

Modelling real-time systems: Issues and challenges 5

compositional (or modular) behavioural description of the real-time systems. This
would provide a basis on which a sound methodology for real-time programming
can be built. :

3. Issues of modelling real-time reactive systems

As discussed already, a reactive system maintains continuous interaction with the
environment and maintains a certain ongoing relationship with the environment. The
three parameters that play a vital role in the modelling of real-time reactive systems are:

e communication mechanism;
e environmental abstraction;
e real-time.

Modelling of environmental abstraction is dependent on the actions that can be
observed. In other words, models of concurrency for distributed systems provide a
nice basis for environmental abstraction for reactive systems without the explicit
notion of real-time. Thus, the issues of modelling real-time reactive systems can be
broadly categorized into:

e models of communication;
~e models of reactive systems;
e real-time and concurrency.

3.1 Models of communication

There are various ways of transmission from one task to another. Normally, in any
mode of communication, one can identify three entities: sender, receiver and medjum.
The first two are active processes whereas the third is passive and it denotes the form
of information in transit. A spectrum of media can be obtained based on various
parameters such as:

whether the sender can always send a message or can be blocked;

o the receiver may receive a message provided the medium is not empty;

e whether there is any constraint on the number of messages;

o whether the transmission is one-to-one or one-to-many etc;

o whether the order of messages received is the same as the order of messages sent etc.

It must be quite clear that a careful treatment of the media is essential for realizing
a general model. Based on the various hardware architectures, one can obtain a
variety of models. Some of the prominent ones are discussed below.

(1) The shared memory discipline broadly follows the following discipline:

o the sender may always write an item to a register or a location (of course, one
assumes that the access of a register is mutually exclusive);

e the receiver may read an item from a register (or a location);

o reading and writing may occur in any order.

(2) One can treat the act of sending and receiving as one single indivisible act of
communication; in other words, it can be treated as a point-to-point action. This is
often referred to as synchronous or handshake. Such a discipline unifies the three

6 R K Shyamasundar and S Ramesh

entities in the sense that sender and receiver participate in indivisible acts of
communication experienced simultaneously by the sender and receiver. A further
refinement can be obtained by defining whether the two participating agents exchange
information with each other or the information flows in an unidirectional way. The
equations for handshake communication will be discussed in the coming sections
where the net effect of communication is replaced by a single non-observable action,
denoted by t referred to as the silent action or the perfect action. In fact, different
models can be obtained by considering details such as whether the channels can be
shared or the complimentary actions can be mapped to some other alphabet. Most
of the formalisms of cSP (Hoare 1988), and ccs (Milner 1980), are built on these models.
(3) Another discipline, referred to as the asynchronous discipline, has the following
characteristics:

e the sender is not blocked,; ,
e the receiver can receive a message provided the medium is nonempty.

The asynchronous discipline can be further refined by:

e allowing simultaneous message transmission to various agents rather than point-to-
point; this is often referred to as broadcast transmission.

e many agents can combine and exchange information among themselves; this is
referred to as multicast.

A formal analysis of the broadcast mechanisms has been detailed in Shyamasundar
et al (1987); the multicast paradigms can be seen in the exchange functions treated in
Fitzwater & Zave (1977) and also in Shyamasundar et al (1991) in the context of
formalizing coordinating actions.

32 M od'els of reactive systems

To make the discussion concrete, we take a very simple scheme for specifying behaviour
of reactive systems without an explicit clock. A reactive system has an alphabet of
events, corresponding to the set of possible observable® events in which the processes
may be involved. The events require the participation of both the system and its
environment which can be taken to be a user/anothér sub-component of a larger
system. Following the notation of Milner (1980) and Hoare (1988), any reactive system
is a well-formed syntactic term involving the events and the two operators +and |.
More precisely, given an event alphabet E, reactive processes are defined as follows.

(1) nil is a process which performs no actions.

(2) If p is a process then, for each eeE episa process which performs first an e and
then behaves like p.

(3) If p, q are processes then p + g and p||q are processes.

The operators + and | denote respectively the nondeterministic choice and the
parallel composition operator. The operational semantics of the above language is
given in terms of a labelled transition system.

A labelled transition system is given by (Proc, Act, —) where Proc is the set of

!The role of observation in the modelling of real-time reactive systems is discussed while
relating the models of reactive systems with time.

Modelling real-time systems: Issues and challenges 7

process states, Act is the set of actions (or events) and — < Proc x Act X Proc.p—*“q
is interpreted as follows: P is observed to do a, and changes to become g.

In sequential programming languages, there is a clear-cut notion of what the
observable behaviour of a program is: an input/output pair leading to the semantic
description of a program as a function or in the nondeterministic case, a relation or
multifunction. However, for concurrent/reactive languages, there is no single canonical
notion of observable behaviour but rather a' multiplicity of semantic models. In
particular, each notion of observability yields an answer to the following basic question
which any semantics should address.

When do two expressions have the same meaning? That is,

p ~ q<>V observable property A:psat A<>qsat A.

In other words, two processes are equivalent (hence, have equal meanings) when they
admit the same observations. By varying the notion of observable property of behaviour,
we also vary the associated equivalence; the more we can observe, the more chances .
we have of distinguishing processes and, hence, fewer processes are made equivalent
(equivalence is finer). Now, the transitions for the language defined above is given
below: Let — be defined as the least relation satisfying the following axioms:

app

pHY
p+q5p

q>q
p+q5q
p=p'=plg®spiq
q>q=plg®>plq .

With the above language and the transition system, let us consider the various classes
of observable behaviours that lead to different equivalences. Some of the presentation
is based on the unpublished lectures by Abramsky (1989) and by Groote (1988).

3.2a Traces: Here, only sequences of actions can be observed; this is the simplest
notion leading to the coarsest (reasonable) equivalence. Define,

©oaz an

p&q,s=ay,...,a,(aeAct*)iff Ap,,...,p-1 A pi;pl-» cee g,
Traces(p) = {se Act*|3g, p:»q}. Then, the equivalence is defined by
p ~ rq<> Traces(p)= Traces(q).

The above equivalence is too coarse as it ignores the differences in deadlock behaviour.
This is illustrated in the classical example shown in figure 1.

In the above example, Traces(p)= Traces(q) = {¢,a,ab,ac}. It may be observed
that after doing a, p can always do b, while g can sometimes refuse to do b. -

Figure 1. Trace equivalence.

8 R K Shyamasundar and S Ramesh
a a ~ _
p: T q: a
7(.«
b MT b

Figure 2. Complete trace equivalence.

3.2b Maximal (complete) traces: Consider the processes shown in figure 2.

It can be easily seen that p ~ +g. However, it can be seen that the processes can in
fact be distinguished by observing that process p has a trace a from which there is
no further action and process g does not have such a trace. Refinements corresponding
to such experiments can be obtained by adding the capability to observe inactions.
Maximal (complete) traces of processes lead to such refinements.

Let p-» denote the fact that there does not exist any a and p’' such that p—“p".
Then, the maximal traces? (MT for short) are defined by,

MT(p) = {o|oeA*,3q,p—>7qgH}.
Then the equivalence is defined by p ~ \rg<MT(p) = MT(qg).

3.2c Failure sets: If seFT(p) can be interpreted as: after process p does s, it refuses
to do any action. A refinement of such a notion can be obtained by observing a
process refusing a subset of actions offered by the environment. The equivalences
that can be obtained with such an observable capacity are formally defined below.

Let (s, X)eAct* x P(Act). Define, F(p) = {(s, %)|3¢, p ~°q A YaeZ,q-»"}. Then the
equivalence is defined by p ~ pq<>F(p) = F(q)

Consider processes p and g shown in figure 3. .

It can be easily seen that MT(p) = MT(q); however, F(p) # F(q).

Figure 3. Failure set equivalence.

3.2d Failure traces: A refinement of the failure equivalence can be obtained by

~considering failure sets at all the intermediate points of the traces. Failure traces

(denoted FT) is defined by,
FT(P) = {(ag, X o)1, %)+ (an, &)1 3p

=Pos** P P> Pis 1, VAL, p; 7,0 < i< n}.
Then the equivalence is defined by,
P ~rrq<FT(p) =FT(qg).

Consider the two processes shown in figure 4.

The two processes are not distinguishable under failure sets whereas they are
distinguishable under failure traces. The latter follows from the fact that (a, {b})cee
FT(p) — FT(q).

2This is useful for terminating systems.

Modelling real-time systems: Issues and challenges 9

p: a(b+cd) +a(f+ce) q:a(b+ce) +a(f+cd)

Figure 4. Failure trace equivalence.

3.2e Ready sets: Ifinstead of observing what actions cannot be done, the enablement
or the readiness of actions can be observed then one gets another notion of ready
equivalence. Surprisingly, it turns out that this notion refines that of failure set
equivalence. Define,

R(p)={(s,%)|3q'p>*q A VaeAct, q>"<>aeX}.
Then the equivalence is defined by,
P ~r4<>R(p) = R(g).

Consider the processes shown in figure 5a.
It can be seen that the two. processes shown in figure 5a are not distinguishable
under failure sets whereas they are distinguishable under ready sets.

Note. It is of interest to note that from the set of ready pairs of a process graph?,
the set of failure pairs can be deduced but not the other way round.

Consider the processes shown in figure Sb. It can be seen that p ~®q; however,
p +FTq. Thus, from figures 5a and b, the incompatibility of failure traces and ready
sets follows.

(b)

Figure 5. (a) Ready set equivalénce. (b) Ready set and failure trace equivalence.

3In this paper, we have used these terminologies in an informal sense; for a formal definition,
the reader is referred to Baeten & Weijland (1990). ' :

10 R K Shyamasundar and S Ramesh

3.2f Ready traces: The equivalence can be further refined by considering the ready
sets at all the intermediate points. Ready traces (denoted RT) are defined by,

RT(P)={(ay, %1 /@2, % 2) - (ay, Z)|3p
= Po>» "‘Psz“'*aiPH1,Pi“"a°aeg[i}-

Then the equivalence is defined by,

P ~rTq<>RT(p) =RT(9).

Consider the processes p and g as shown in figure 4. It can be easily seen that
p~R®q and p £RTq. The latter follows by looking at all the ready sets at the various
points of the process graphs. Now, consider the processes shown in figure 5a from
the point of view of ready and failure traces.

o FT(p)= clos{(a, {b,c})(b, {c})(a, {b, c})(c, (B}
FT(g) = clos{(a, {b,c})(b, {c}),(a, {b, c})(c, {b})}; hence, FT(p)=FT(q), where clos
gives the prefix-closure of the set with respect to the first element and any subset
of the failure sets of the elements of the sequence. :
o However, RT(p) # RT(g), since
(a, {a})(b, {b, c})eRT(g)
ERT(p).

3.2g Simulation and bisimulation: In a sense, all the above equivalences are some
refinements of traces or execution sequences. In the following, we define some notions
that are based on the notions of the execution trees induced by the processes.

A natural notion of process equivalence can be obtained by formally interpreting
a labelled directed graph as a process; we refer to such graphs as process graphs.

A simulation of process graph G, (say, {V;,E;)) by process graph* G, (say,
(V,,E,))isabinary relation, # between their nodes satisfying the following condition
(- can be treated as a reachability relation):

(i) V; < Dom(%R).
(i) (p.q)eZ >Va,p—"p in Gy oq—=q" in G, AN(p',q')eR.

Two graphs are simulation equivalent (denoted ~%)if there exists simulations in both
directions.

It may be noted that R™! need not necessarily be a simulation. If R~ is also a
simulation then one gets bisimulation equivalence. This is the finest reasonable
equivalence which is not based on the traces or execution sequences. This is formalized
below. ‘

In a sense, bisimulation is the finest reasonable equivalence (could be considered
as single step true concurrency) based on the notions due to D Park and R Milner.
Intuitively, the equivalence corresponds to comparing states for equivalence recursively
by the condition that every action of P has a matching action of g leading to an
equivalence state and vice versa. Formally, it can be defined as follows,

p~PqeValvVp,p—p'=3q,q-°¢ Ap ~q
v /\Vq/’q_)aq/aap/’p_)ap//\prNBq;].
In other words, bisimulation identifies processes just when they unfold into the same
(unordered) labelled trees. ‘

“Here, V, and E, respectively denote the set bf nodes and edges of G,.

Modelling real-time systems: Issues and challenges 11

c d B c g Figure 6. Bisimulation and ready
trace equivalence.

Example. a(b+ c)+%ab+ ac since b +c+£5b and b + ¢ £ 2c.
The concept of bisimulation can also be captured in terms of equations over sets
as follows. :

Define Bis(p) = {<a, Bis(q) >|p ~“q},

Such a solution always exists if one assumes Aczel’s anti-foundation axiom. That is,
Bis(p) may become a non well-founded set. The distinguishability of processes
discussed above can be captured in terms of the following sets:

<a, {<b, {<c, >} >,<b,{{c, 4>} >} > e Bis(p)
" ¢ Bis(q).

The example shown in figure 6 illustrates that bisimulation refines ready traces.

A further refinement of equivalences lying between simulation and bisimulation
can be obtained by refining the simulation equivalence. Two of such refinements are
defined below.

A 2-nested simulation is a simulation with the property that related nodes are
simulation equivalent. In other words, there also exists a simulation in the reverse
direction between the subgraphs that are rooted by related nodes.

Two graphs are 2-nested simulation (denoted ~21=5) equivalent if there exists
2-nested simulation in both directions.

For the processes shown in figure 2, we have p ~%q and p £MTq. From this and
the fact that trace equivalence is contained in simulation and maximal trace
equivalences, we can conclude the incompatibility of the two. The incompatibility of
the ready trace and simulation follows from the example shown in figure 7a.

A ready simulation is a simulation such that related nodes have the same set of
initial actions. The underlying equivalence 1s referred to as ready equivalent and
denoted by ~ S,

The examples shown in figures 7b and c differentiate the cqulvalences due to
simulation, 2-nested simulation and bisimulation.

3.3 Comparison of the various equivalences

The following theorém (cf. Baeten & Weijland 1990 for proof) shows the implications
of the various equivalences discussed above. ;

Theorem 1. Let g and h be any two process expressions. Then,

() if g~htheng ~®h; (2)if g ~Rhthen g ~Th; (3)if g~Fhtheng~Th; (4)if g ~Bh
then g ~RTh; (5) if g ~RTh then g ~T7h; 6) if gNRTh then g~Rh 7 @f g~TTh then
g~"h.

Note. It may be noted that traces take account of the intermediate state in a very
weak way whereas bisimulation does so in a very strong way. '

12 R K Shyamasundar and S Ramesh

(C)

Figure 7. (a) Ready trace and simulation equivalence. (b) Bisimulation and
2-nested simulation. (¢) Ready simulation and 2-nested simulation equivalence.

“The results of the above theorem and the various incompatibility relations among
the various equivalence notions illustrated earlier is nicely captured in the semantic
lattice shown in figure 8.

We can summarize the various observational characteristics that make the various
equivalences finer than the other equivalences as follows:

e observability of inaction refines maximal traces over that of traces;

e observability of blocking refines failure sets over that of maximal traces;

o if the observability of blocking is made dynamic then we get the failure traces:

e observability of the actions that a process can make gives the power to ready sets;
the dynamisation of the ready actions leads to ready traces;

e on the other hand, giving the power of copying leads to simulation and the power
of global testing leads to bisimulation equivalence..

3.4 Observational and bisimulation equivalence

'Now that we know that bisimulation is strong and very nice from the point of view

of equivalences, let us look at bisimulation from a computational point of view. An
immediate question that arises is:

Is bisimulation based on a reasonable notxon of observable behaviour? or is it too
fine?

Modelling real-time systems: Issues and challenges 13

bisimulation

o2 nested simulation

ready simulation

ready
sets

failure

simulati
traces mulation

failure
sets

maximal
traces

traces
Figure 8. Relationship among various equivalences.

In other words, is there any way one could observe all the distinctions it makes by
performing experiments? For example, consider the processes shown in figure 9.

Obviously, p +24. However, by performing experiments on the observable actlons
there is no way the two can be distinguished.

The question of looking at bisimulation from the point of view of the underlying
traces has been addressed in Bloom et al (1988, pp. 229-239), They argue that the
notion of trace congruence cannot be captured as a trace congruence of any
“reasonable” process constructions. Larsen & Skou (1989) have defined the notion
of probabilistic bisimulation to tackle the argument against bisimulation given in
Bloom et al (1988, pp. 229-239). Groote & Vaandrager (1989, pp. 423-438) have
studied the relation between bisimulation and structured operational semantics as
well as the property of full abstractness. An attempt towards an unification of the
frameworks has been envisaged in Abramsky & Vickers (1991). ‘

3.5 Other factors related to models of concurkency

3.5a Treatment of silent actions. In the transition system given above, we have not
said anything about the type of communication. A model of the simple synchronous

Figure 9. Bisimulation and obser-
vational equivalence.

¢

14 R K Shyamasundar and S Ramesh

?

o

Figure 10. Effect of 7 actions on
equivalences.

communication can be obtained by adding the following axiom for our earlier transition
system.

p-p.q-"q=plq->"plq
Here, 7 is referred to as the silent or the perfect action (Milner 1988). In a sense, we
can now ask the question: to what extent are the silent steps observable? From the
point of view of observation, one can ask questions like: can one observe silent actions
before or after an observable event? For example, depending upon the choice of

equivalence or inequivalence of the processes shown in figure 10, one gets different
models. -

3.5b Linear time vs branching time: In the previous sections, we have essentially
considered two classes of equivalences:

e pure traces or refinements of traces;
e bisimulation.

The first class can be termed linear time equivalences in that a process is determined
by its possible executions. The second class, that is bisimulation can be termed
branching time equivalence which not only preserves the traces but also the branching

structure of processes. One of the most popular arguments in favour of the branching

time semantics was the fact that it allows a proper modelling of deadlock behaviour
whereas the linear time does not. However, it can be seen from the various equivalences
discussed that even though this is true for the case considering pure traces, the same
comment does not hold in the context of ready or failure sets. In fact, an additional
advantage of the linear time equivalences discussed above is that one also gets the
notion of testing or observation for distinguishing processes. The main criticism of
branching time structure is that distinction between processes are made that cannot
be observed or tested, unless observers are equipped with extraordinary abilities like
copying or global testing (cf. Abramsky 1987).

Even though bisimulation preserves the branching structure of the processes, an -
anomaly arises in the context of Milner’s observational equivalence as illustrated
(from Van Glabbeek & Weijland 1989) in figure 11.

It may be noted that in figure 11 (A), we have a path atbrc with outgoing edges
dy,...,d,, and it follows easily that all the three graphs are observation equivalent.
It may be noted that b-edges (shown in broken lines) may be added without disturbing

Modelling real-time systems: Issues and challenges 15

Figure 11. Observation equiva-
lence in branching time.

the equivalence. However, in both (B) and (C), a new computation path is introduced
in which an outgoing edge d, (or d, respectively) is missing; in fact such a path did
not occur in (A). In other words, in the path introduced in (B) the options d, and d,
are discarded simultaneously, whereas in (A) it corresponds to a path containing a
state where the option d, is already discarded but d, is still possible. Further, in the
path introduced in (C) the choice not to perform dj, is already made with the execution
of b-step, whereas in (A) it corresponds to a path in which this choice is made only
after the b-step. From this it follows that observation equivalence does not preserve
the branching structure of processes and hence lacks one of the main characteristics
of bisimulation semantics.

3.5¢c Interleaving vs true concurrency:. Two extreme ways of modelling concurrency
are:

e concurrency is nothing but nondeterministic interleaving of concurrent events;
e concurrency is a phenomenon quite independent from nondeterminism.

Consider the process a.nil|b.nil, which is specified to do the actions a and b
concurrently. In the first view, the trace semantics of this process is given by

{c,a.b,b.a}.

16 R K Shyamasundar and S Ramesh

R

b a ‘ Figure 12. Interleaving vs. true con-
© currency.

‘Thus, in this model, this process is identified with another process a.b.nil + b.a.nil,
which does actions a and b one after another but nondeterministically in either order.
A typical model, that distinguishes concurrency from nondeterminism, is the partial
order model..In this model, the above process is given by the poset {{a, b}, <), where
the events @ and b are unrelated by the relation <;in this model for actions x, y,x <y
means that x occurs before y and if two actions are unrelated, then it is not known
in which order these actions take place.

The first model reduces concurrency to nondeterminism. As a consequence, any
particular action in a process may be arbitrarily delayed. If other component
process(es) inveolves an infinite number of actions then there is no upper bound on
the time within which any action will be executed. In the worst case, an action may
ever be delayed. In the second techniques, we have an extra “simultaneous” operator
and two events will be related with each other if they are causal with reference to
each other. The following trivial example shown in figure 12 illustrates the difference
between the two informally. ‘

3.5d Treatment of divergence: Another crucial point lies in the way infinite sequences
of 7-steps in a process are treated. In the failure semantics proposed by Brookes et al
(1984), all processes having -an infinite t-sequence from the root are set equal (to
process CITAOS). For example, one can generalize such notions as by equating the following
two processes as shown in figure 13.

The notion of bisimulation is more discriminating. The advantage is that process
models obtained by bisimulation equivalence satisfy useful abstraction principles
based on fairness. For example, Koomen’s fair abstraction rule gives a way of
simplifying processes by elimination of (some) infinite t-sequences. This elimination
can be understood as fairness of (visible) actions over silent 7-steps.

3.6 Concurrency and real-time

From the survey on concurrency, it must be apparent that the concurrency theory
can be seen as an abstraction of observation. In a sense, for a natural and a formal
abstraction of distributed systems it is necessary that theories must take into account
the physical laws that distributed systems must obey. One of the prime factors that
must necessarily be tackled is the relation between logical time and physical time for

b c

Figure 13. Effect of divergence on equivalence.

Modelling real-time systems: Issues and challenges 17

the understanding of real-time distributed systems. It is a standard paradigm of physics
to understand the notion of atomicity of a thing or explore the internal structure of
aspects previously considered as atomic. Thus, an observation in the context of
concurrency in the presence of 1eal-time necessitates the understanding of an event
and atomicity. In the following sections, we provide a background on the notion of
an event and the notion of atomicity and discuss the various time domains that have
been used in the specification of real-time distributed systems. With such a background,
we discuss the possible choice of the various concurrency models in the context of
time as an observable entity. '

3.6a Events and time domains: One of the fundamental notions that needs a careful
examination is the notion of an event. In fact, it is from such an analysis one can
capture the notion of observational behaviour for real-time reactive systems. This
problem has been nicely dealt with in Lelann (1983) with respect to the Newtonian
and relativistic notions of observation. ‘

Based on the notions of observability one of the immediate questions that arises
is: I's an event atomic? If we consider an event as being something instantaneous that
exists or not, then the question does not arise. Obviously, an invariant universe would
not define time, and would not need it. It is only because states change that time
acquires meaning. Thus, there is a need to consider some physical universe, %, which
includes elementary entities. Every entity will be associated with a set of states. An
entity can only be in one state at a time.

Without loss of generality, we need only two states, say true and Jalse. We will be
interested only in the changes that bring an entity from state Jalse to state true.
Reaching state true is what constitutes an instantiated event in universe %. By
definition of an event, entities cannot be observed while states are being changed.
Consequently, an elementary entity state change [false — true] is the smallest atomic
operation one can conceive in % (symbol — reads precedes). Two successive state
changes [false —true] for a given entity in % correspond to two infinitesimally close
points in %’s spacetime. Now, time can only be defined and instantiated as a change
of state occurring at some location, e.g., raise of a pulse on a wire, or a division on
a clock face etc.

In trying to define time for an instantiated event, we find ourselves back in
considering timeless events. We are then forced to admit that definition of an event
- in some real universe is meaningful only if we assume that it is possible to observe
concurrent phenomena unambiguously in this universe, or, in other words, that the
ordering of the termination operations is an invariant in this universe. One of these
two operations is instantiated as a physical clock state change denoted t—t next.
Assume that the physical clock is in location k. Assume the other operation takes
place in some other location . _

A change [false(£) — true(£)] is said to be an event (Z,t) if

{false(£); t(K)} — true(t) ¢ next(k).

The relative ordering of false(£) and t(k) does not matter. For such an event to be
observed unambiguously in universe, %, it is necessary to assume that every change
of t(k) is communicated instantaneously to all entities in %. In practice, this entails
the following two requirements:

'l\

e t(k) is communicated with a delay that is negligible compared with the interval
separating two consecutive state changes;

18 R K Shyamasundar and S Ramesh

e t(k)is communicated almost simultaneously to all entities, the time dispersion for
any two entities being negligible compared with the interval separating two
consecutive state changes.

Whether such requirements can be satisfied depends entirely on #%’s spacetime
topological properties. When we do not know how to achieve appropriately timed
broadcasting of a unique signal on different physical paths, we are left with the
problem of dealing with propagation delays that are not negligible compared with
clock periods and that may vary at different instants over some given physical path.
These are the conditions for adopting a relativistic view of time.

Two approaches are possible, depending on %’s spacetime topological properties:

e Approximate some unique time dimension throughout # via the definition of a
spacetime-independent transformation F; under specific timeless assumptions
(e.g., existence of finite lower and upper bounds for propagation delays), one can
devise algorithms for which proofs establish that the relative drift® of any two
clocks will never exceed some “acceptable” value. We are then dealing with
Newtonian Physics. Most real time distributed computing systems of limited scale
fall into this category.

o Correlate different time dimensions with each other throughout % via the definition
of a spacetime-dependent transformation F (e.g. Lorentzian transformation), when
specific timeless assumptions cannot be made. For example, the situation created
by a clock signal that travels faster (respectively slower) than expected can be
equated with a situation where the receiver of the signal (respectively the sender)
is being accelerated relative to the sender (respectively the receiver). The same
situation arises when the relative motion of the clocks or gravitational effects are
not negligible, as exemplified by the Global Positioning System (Navstar). We are
then dealing with Relativistic Physics. :

Clearly, the problems that are derived from the presentation above cannot be
avoided by utilizing extremely accurate clocks, as is sometimes believed. Caesium
clocks which hdve a timekeeping capability of 0-1 us/day would be useful for very
closely approximating the implicit statement that all clocks behave identically in
identical circumstances. But even such good clocks cannot influence properties of
signal propagation delays. .

We have assumed so far that a state change [false — true] is the smallest atomic
operation one can think of. But how is atomicity effectively obtained? One could
imagine that specific elementary physical devices could be built that would implement,
say at the bit level, these atomic state changes. Unfortunately, there are a few problems
which prohibit us from assuming that such is the case. For example, as the levels of
energy and speed of signals are never infinite in computing systems, state changes
are not instantaneous. While a state is being changed (Write) many observations
(Reads) can take place. These operations are not mutually exclusive. Reads which
observe internal states violate atomicity requirement that states internal to an
operation must be kept visible to other concurrently executing operations. One could
let each Read choose more or less randomly which final good state has been supposedly
observed (“0” or “1” for example). It seems that we have a solution. However, we see
that if we want to state properties about schedules or Reads which are concurrent

5Some of these aspects have been discussed in Koymans et al (1988).

Modelling real-time systems: Issues and challenges 19

with one single Write, we must assume that some final good state is eventually reached
(that is atomicity requirement A1) and that an algorithm exists whereby Reads which
have been truly concurrent with the Write are viewed as being uniquely ordered.
Such algorithms are available in the literature. We are left with the problem of deciding
how to guarantee that a final good state is eventually reached. Hardware designers
of conventional circuits have faced this problem for many years. Oscillatory and
metastable states can be entered for undetermined times by such simple devices as
flip-flops. Identical problems are encountered by VLSI circuit designers.

All proposals which have been made to circumvent the problem consist of enforcing
the existence of an upper bound for state change durations or observations. A similar
requirement is necessary for the algorithms given towards synchronization of clocks.
Can we say that such proposals do not assume a lower-level physical solution to the
initial problem? No, in the sense that specific timing properties must be assumed for
the basic operations or state changes.

Again, time underlies the concept of atomicity. Problems of time are dealt with
explicitly by hardware designers and designers of real-time systems. These problems
are in fact very general and should be carefully addressed in every system design.
Many of such assumptions can be seen in the spectrum of real-time languages surveyed

_in Shyamasundar (1991a,b).

In the following section, we consider time domams used in the modelling of real-time

systems.

Time domains - In the linear time and branching time® models (and other models)
even though the term time is used, a very restricted notion of time is used, which is
not satisfactory for real-time systems. In these models one can only say that whether
two events took place at different points of time or not. But for modelling real-time
systems, we need to know the exact times at which various events take place. A
straightforward way of incorporating a notion of time is to associate with each event,
the time at which that event takes place. An immediate question that arises is: what
are the values time should take? There are a number of proposals:

o the time values are integers;
e time ranges over real values;
e time ranges over a total order in which a distance metric can be defined.

Proponents of integer time argue that the systems being modelled are discrete systems
and hence we need to consider only discrete integer values. Though this is a good
assumption for synchronous models, the claim does not hold in asynchronous systems
in which different events can take place at points that are arbitrarily close to each
other. In such systems, the right time values one should use are real values or at least
values from an Archemedian field.

Concurrency complicates modelling real-time systems: should one use same or
different clocks for events happening in distinct sub-components? Most of the models
make the simplifying assumption that there is a global clock according to which
different events happen. This assumption is not very different from the one in which
each concurrent subsystem has its own clock but with a definite relationship between

61n fact, if we consider real-time events the same actions on different branches may not be
the same; this would have to be integrated with real-time aspects of the models.

20 R K Shyamasundar and S Ramesh

the time shown by different systems. In some highly distributed systems involving
autonomous components, the latter assumption is not valid. But one can not do
reasonable real-time computing without assuming any relationship between the clocks
of different subsystems. A logic of concrete time intervals has been developed il Lewis
(1990, pp. 380-389) wherein time delays between the scheduling and occurrence of
the events that cause state changes are constrained to fall between fixed numerical
upper and lower time bounds. Such an abstraction is shown to be useful in the
modelling of asynchronous systems. '

3.6b Choice of concurrency model: Based upon the various parameters of concurrency
discussed above, one can get a spectrum of semantic models. Broadly, the various
models can be categorized into two distinct classes:

(1) interleaving;
{(2) true concurrency.

The interleaving model is simpler as it reduces concurrency to nondeterminism.
Also this allows uniprocessor implementation of concurrency. In contrast, the second
view adds an extra parameter to modelling reactive systems and hence is less simple.
Butitis claimed that it is the right view in decentralized systems involving autonomous
components as there is no notion of a global ordering of events.

. Both these views are unsatisfactory for real-time reactive systems: in the first view,
an event in a process may be indefinitely delayed while in the second view it is not
known whether two concurrent events are executed simultaneously or at different
times; it is not even clear whether one can relate the times of occurrences of two
concurrent events. In fact, many of the models based on true concurrency suffer from
the drawback that it either enforces complete synchronicity in executions or does not
exclude interleaving. For real-time systems, we need a model that does not allow
arbitrary delaying of event occurrences and that describes whether two events are
executed simultaneously or not. One such notion is the maximal parallelism (Salwicki &
Muldner 1981). Based on such a notion, a compositional model for real-time has
been advocated in Koymans et al (1988). Such a model is realistic in the sense that
concurrent actions can and will overlap in time unless prohibited by synchronization
constraints; in other words, no unrealistic waiting of processors is modelled. The
following examples illustrate the intuitive ideas behind this model.

Simple shared variable model — Consider the following program:
[Pruxi=1||Pyux:=3]|Pyuy:=2].

Let us assume that multiple accesses to a single (shared) variable are mutually exclusive.
Then in the above program, either P, and P, or P, and P, will execute their first
move simultaneously, but not P, and P,.

Distributed program(csp-R): Consider the following program”:
(PyuPyyuPyl0)|(Pyp:Pya! 1| PyyuPy, % Pylx).

"Here, P, ?x in P, denotes the waiting of P, for receiving a communication from P, ; similarly,
P,le in P, denotes that the process is waiting for sending a-value e to process P,; on
handshaking, P;!10(P,?x results in x being assigned e.

Modelling real-time systems: Issues and challenges 21

According to the interleaving semantics the following two scenarios are possible:

(1) P,; communicates with P, while P,, communicates with P,;; after that P,
communicates with P,.

(2) Py, first communicates with P, followed by P, ; with P,; finally P, communicates
with P,.

According to the maximal parallelism semantics, only (1) is possible since Py, and P,
can immediately become involved in a handshake and hence do not wait for Py, and
Py3. I other words, in the distributed computing the maximal parallelism can be
interpreted to mean first-come-first-served.

Now, let us see how we can describe the maximal parallelism semantics for our
simple language described earlier. Let us assume that the execution of all basic actions
takes the same amount of time.

pHp. gy
plg—>"="p'llg

p&p.q4
pla~"¥p'lq

pF.qtq
plg-%p|q

In other words, a process cannot wait unnecessarily. Since, enablement implies that
there must be a processor for every process, one can see that the basic maximal
parallelism model assumes that there are as many processors (machines) as there are
parallel components in the system. This assumption can however be relaxed by
relaxing the requirement that event should occur not immediately but with bounded
delay. These aspects have been addressed in Koymans et al (1988). In fact, it is also
possible to relax the requirement of one processor for every process by modelling
scheduling (in a restricted manner these have been addressed in Liu (1989) and Liu &
Shyamasundar (1990, pp. 21-26)).

Now, let us analyse the question: Does maximal parallelism provide a good model
for real-time systems? Though the model is realistic in a sense it suffers from some
conceptual problems. This is illustrated by the following example illustrated in
figure 14(A).

Consider a network with distributed control, and two processes A and B in different
nodes that want to communicate with a process C in a third node. If A wants to

| |

communication medium

|

(A) - (B)

Figure 14. Effect of topology and communication medium.

22 R K Shyamasundar and S Ramesh

communicate at an earlier time than B, relative to some global time scale, then
according to the first-come-first-served (fc f3) principle, indeed, A should communicate
first. Whether A’s message arrives in C before B’s message or not, depends on the
topology of the network. So, imposing an fcfs principle upon the order of
communications induces non-trivial requirements upon an underlying communication
layer requirement that we would like not to make. Similar problems occur if
processors communicate, for example, via a common bus where assumptions about
bus-arbitration have to be taken into account. The lesson that should be drawn from
this example is that, whereas the maximal parallelism model applies the fcfs-principle
to the order of initiation of requests, the principle should rather be applied to the
order in which a process becomes aware of requests. In doing so, we create the freedom
to relax the stringent impositions of the original model on the behaviour of a
communication layer. Specifically, in this way it becomes possible to vary the time-gap
(0 in the original model) between the initiation and receipt of a communication request,
which reflects the uncertainties about the communication layer. This variation of the
time gap is the essential feature of the M.AX (9,) model of distributed concurrency.
The parameters § and ¢ function as lower and upper bounds on the above time gaps
which are allowed to take on any value in between these bounds. As a consequence,
communications that are initiated too close in time (relative to the global clock)
cannot be temporally ordered anymore. These time bounds may be interpreted as an
abstraction of the propagation delays within some communication layer. The third
parameter, 7, of the model is used to extend communications in time and denotes the
number of time units it takes.

In the MAX, (6, ¢) (see figure 14B), it is assumed that there is no unnecessary waiting
between the execution of actions. Communication between processes is served on a
first-come-first served basis. Additionally, the following model pertains to process-
communication:

e processes communicate via a medium.

e it takes between & and ¢ time units (¢ not included) for the medium to become
aware of a process expressing its willingness to communicate or withdrawing its
willingness (time-out).

e communication between two processes only occurs after the medium has become
aware of both processes’ willingness.

e a communication takes an additional y time units during which period the processes
remain synchronized.

e a communication that is in progress at a time when the medium receives a time-out
from one of the participating processes, will be completed; a communication that
might be started at such a time, will not be executed.

The formal details of these models are discussed in Koymans et al (1988).

There is another model of reactive systems referred to as the strong synchronous
model that is useful when there is no need of explicit clock. According to strong
synchrony hypothesis, any event, be it a communication event between two distant-
machines or a local event occurring within a single machine, takes place instan-
taneously. Obviously, this hypothesis is not valid for large systems extended in space.
However, this is a very useful simplifying assumption for embedded systems occupying
small space. '

Having chosen a concurrency model, the other important aspect that needs to be
looked into is: To what extent should the real-time aspects be incorporated in the
given concurrency model. An important question that arises is:

Modelling real-time systems: Issues and challenges 23

Is there need for a special status of time or is it another parameter of the state?
In fact, such a question has already been studied in the modelling of dynamic systems
where a special status is accorded to time (based on which, one gets various classes
of equations). In the same way, even in the context of programming, it appears
necessary to accord a special status to the “time” parameter in order to specify various
real-time properties. It may be noted that the parameter “time” is already distinguished
by the fact that it is continuous, monotonic and divergent.

On the whole, a real-time model for concurrency depends upon:

(1) what can be specified/proved in the given model of time?
(2) what is the complexity of the decision procedures?
(3) what is the relation of the established property to the physical system property?

4. Challenges in the design of real-time systems

The challenges that underlie the design of real-time systems can be broadly categorized
into:

specification and verification of real-time programs;
real-time programming languages;

systematic development of real-time programs;
‘real-time scheduling;

tools for the design of communication protocols.

In the following, we discuss these aspects in detail.
4.1 Specification and verification of real-time programs

Specification formalisms are central to the problem of developing safe reliable real-time
distributed systems. Handling real-time will not only require the development of
specification and development frameworks but might also require a revision of the
basic models that have been used so far in dealing with concurrency. One of the main
goals of any specification formalism would be to bridge (or narrow) the gap between
specification and implementation. The next question is: What are the general
properties for any candidate formalism? Obviously, the formalism should support
compositional verification. That is, it should be possible to verify the specification of
a program based entirely on the specification of its constituent components without
looking into the interior structure of the components. In fact, it is preferable to support
the stronger notion of modularity (cf. Zwiers 1988)%. Of course, any automated (even -
partial) support environment would be a welcome feature of any method for the
design of a complex system. Generally speaking one should address the following
questions:

o Given a model, find the most suitable formalism in which to express a given
property.

8For compositionality, one requires that from a given complete program specification it is
necessary to establish the existence of specifications of the components from which the complete
specification can be deduced. However, for modularity, one has to establish that a deduction
of the complete program (or specification) is possible from a given a priori specification of the
components. Needless to say, the lattcr goes naturally with the philosophy for the design of
large programs.

24 R K Shyamasundar and S Ramesh

e For deriving manageable verification techniques, it is necessary to build a tradeoff
among ease of expression, generality and amenability. It may be observed that the
more general the specification the easier it is to specify; however, the associated
verification method will become harder. As in any area, researchers have considered
subsets of the general problem and devised nice techniques (for a survey, see
Shyamasundar 1991a,b). We have already seen the various issues of modelling
real-time systems in the earlier sections.

Most of the existing works make the simplifying assumption that there is a global
clock according to which different events happen. This assumption is not very different
from the one in which each concurrent subsystem has its own clock but with a definite
relationship between the time shown by different systems. In some highly distributed
systems involving autonomous components, the latter assumption is not valid. But
one can not do reasonable real-time computing without assuming any relationship
between the clocks of different subsystems. Coming to modelling, the approach of
modelling concurrency via nondeterminism can be immediately ruled out from
considerations of predictability. However, it is necessary to model the nondeterministic
environment. The work on real-time systems can be broadly divided into the following
two streams: : -

(i) Strongly synchronous systems — Here, interaction between the components of the
systems as well as the environment is synchronous and instantaneous, control or
communication does not take any time, and further, there is explicit notion of clock.
Further, nondeterminism is completely ruled out. In a sense, the focus here is on ideal
system behaviour as in some parts of engineering and mathematics.

(ii) Asynchronous distributed systems — Here, the interactions are asynchronous and
take arbitrary but bounded (it can vary between some limits) time.

But in practice, systems are neither purely synchronous nor purely distributed.
Some layers (parts) of the systems will be synchronous while certain other layers
(parts) will be asynchronous. A robot is a typical abstraction of such a system. A
robot consists of a number of sensor/actuator components — one for each of its hands
and legs, a sensor to see, a sensor to hear and so on. Each of these sensors is localized
and, hence, a strong assumption about synchronicity is viable. In order for the robot
to do globally meaningful tasks (like moving around space avoiding obstacles, moving
objects from one place to another) all the sensors in its body will have to interact
with each other. Since these sensors are distributed over the entire body of the robot
the communication delay between them will be appreciable and cannot be ignored.
Hence the interaction between the sensors will have to be modelled by asynchronous
communication. Further, in the modelling of real-time systems it becomes necessary
to model nondeterminism due to the environment; note that it should also be possible
to capture-the predictable (does not necessarily mean deterministic) requirements of
the real-time systems. In short, a unified integrated approach of strongly synchronous
and asynchronous/synchronous will provide a nice formalism for the specification of
real-time distributed systems. Such an approach will also throw light on unification
of the various theories of concurrency. It may be noted that the unification also
requires refinements of the semantics/the proof theory of the strongly synchronous
and asynchronous distributed systems.

Td
AL

Maodelling real-time systems: Issues and challenges
A2 Real-time programming languages

One of the man goals of 4 programming language is to provide i natural vehicle for
expressing good adeas elegantly. However, if we look at a large spectrum of real-time
Fanguages, the languages do not reflect any evolution with respect to assembly
languages. However, the scene s changing rapidly and low-level programming
techmgues will not remain acceptuble for lurge safety-critical systems (¢f. Berry 1989),
Real-time programming will follow the modern tendency to make systems hardwire
independent: software has a longer lifetime than hardware. Some of the main issues of
reseirch are:

HH expressibility of uming requirements;

(21 esception handling mechanisms,

(3 ethaeney;

(41 formal semantios and verifiabality - it is important to consider realistic maodels of

communication, coneurrency and time. Further, the semantics must aceount for
resouree himtations in a natural way;

(5) un mtegrated environment for the development of real-time programs - from the
pennt of view of reliability and robustness, 1015 very essential 1o provide analysis
tonls for tmimg and functional analvsis of the components. In fuct, mechameul
supportiwith possibly graphical support) is very necessiry for the wide acceptunce
of any Linguage for programming large systems;

{63 rebabality und Lt tolerance of programs it is important to obtain a proper
tradeofl between hardware and software to cater to a variety of applications;

171 obect-onented paradigm as discussed already, flexibiity s one of the most
mnportant factorsin the design of real-time systems, Object-oriented programming
perhips would provide # good insight into these aspects. Broadly, an object-oriented
program consists of abjects and methods. An object may ask for methods defined
it or m other objects. In other words, one can define methods based on various
eriteriy {perhaps including performance criteria) and the system can call the
appropriate methods hased on the need. Such u design will go a long way in
proveding a basis for portability satisfying timing constraints and would support
even hottom-up techniques of building systems, Shyamasundar et al {1991)
have shown formally that object-oriented programming is viable for real-time.

43 Systematic development of real-time programs

A sound methodology should enable one to arrive at a correct real-time program
from their high level specifications. It must however be noted that from the point of
view ol deriving correct implementations from a specification it is just not sufficient
to concentrate solely on functional or the temporal requirements. The possible
implementations of o real-time system are quite often restricted by the configuration
and resources of the execution mechanism that will be used to run the system. Thus,
in order to judge the feasibility of the implementation derived from the specification
it 18 necessary to formalize the properties of the execution mechanisms that will be
used to run the system. Hence, apart from temporal requirements, paradigms of
real-time systems also have to express implementation specific characteristics such as:

26 R K Shyamasundar and S Ramesh

(i) multiprocessor/microprocessor/sequential, (ii) scheduling policies such as fixed
priority, dynamic priority, round robin, time slicing etc. and (iii) the mechanism for
the interaction with the environment such as interrupts or polling. That is, the high
level specifications will state the timing properties and other implementation
characteristics or properties of the programs being developed, while the final programs
derived using the methodology will be the ones satisfying these constraints. In fact,
transformational methodology would have all the advantages of the traditional
stepwise refinement methodology. To find the right level of abstraction for describing
the implementation-specific characteristics, it is essential for deriving implementations
from specifications. This is a major research problem.

44 Real-time scheduling

One can view a real-time system as a set of tasks or as a set of periodic and sporadic
processes. Thus, it is very essential to use efficient scheduling strategies for meeting
the resource and timing constraints. Most of the scheduling algorithms have the
following drawbacks:

(1) most of them are intractable, or
(2) most of the algorithms require that the component characteristics be known a
priori and limit themselves to uniprocessor/multiprocessor configurations.

However, a large spectrum of process control tasks are inherently distributed with
several hard real-time constraints. Thus, it looks imperative to look for scheduling
algorithms (cf. Stankovic 1988) with good heuristics to derive efficient scheduling
algorithms in the context of parameters such as (i) static vs dynamic scheduling,
(ii) centralized vs distributed systems, (iii} hard vs soft deadlines, (iv) preemptable vs
non-preemptable tasks, (v) fault tolerance etc.

4.5 Tools for communication protocols

Typically, real-life protocols can be considered to be a coordinated set of simple
programs that are often time-dependent. There have been nice formalisms such as
LoTos for specifying protocols and workbenches for verifying them. However, the
formalisms lack the power to

(1) express timing constraints such as minimal, maximal, durational etc;
(2) specify interrupts and priorities.

These features are very essential since predictability is an important aspect of protocols.
These features can be seen in the language RT-CDL (Liu & Shyamasundar 1989,
pp. 21-26) designed from the point of view of modelling general real-time reactive
systems. With the ever-increasing use of protocols in various walks of life, it is
important to arrive at formalisms that enable the overcoming of the above drawbacks.
In fact, any formalism for protocols should be supported by a nice set of tools that
enable the users to formally derive and verify them. It may be noted that the protocols
are not necessarily finite state. However, a large class of them are finite state. Thus,
in developing automated tools, it is necessary to look into aspects of how much. of
the non-finite state systems can also be handled.

Modelling real-time systems: Issues and challenges 27

5. Conclusions

In the previous sections, we have articulated real-time systems as systems that maintain
a temporal relationship with an uncooperative environment. We have discussed the
various issues of modelling concurrency, time and communication together and shown
the various possible process equivalences. The choice depends on the observable
entities and also on the application.

Further, we have argued that real-time systems have posed a wide spectrum of
challenges to the computing community and highlighted the challenges in building
real-time systems. To meet the challenge it is very essential to crystallize the
behavioural model of real-time systems using realistic models. To sum up, one of the
most immediate needs is the discovery of specification formalisms that can be
embedded in an hierarchical method of refinement. Of course, for the success of a
sound methodology it is very essential to arrive at a proper tradeoff among the
notions of time, engineering limitations and physical abstractions. From an engineering
point of view, there is a need to strike a nice balance between an ideal system and
an actual system to derive a nice methodology for designing real-time systems.

Many ideas presented owe their origin to a large number of people. Many ideas have
become clear during discussions by the authors with various people and are too
numerous to mention. The authors thank all of them. The authors would also like
to thank K Narayana Kumar for a careful reading of the manuscript. v

Partial support by the Indo-French Centre for the Promotion of Advanced
Research/ Centre Franco-Indien Pour la Promotion de la Recherche Avancee as part
of the project “Formal Specification and Development of Real-Time Reactive
Programs” is gratefuily acknowledged.

References

Abramsky S 1987 Observation equivalence as a testing equivalence. Theor. Comput. Sci. 53:
225-241

Abramsky S 1989 Tutorial on concurrency, Unpublished lectures at the Principles of
Programming Languages

Abramsky S, Vickers S 1991 Observational logics and process semantics (forthcoming)

Baeten J C M, Weijland W P 1990 Process algebra (Cambridge: University Press)
Bloom §, Istrail S, Meyer A R 1988 Bisimulation can‘t be traced: Preliminary Report, 15th ACM
Annual Symposium on Principles of Programming Languages, San Diego, pp. 229-239
Berry G 1989 Real-time programming: Special purpose or general purpose languages.
- Information Processing’89 (ed.) G X Ritter (IFIP, North-Holland Publishing Co.) pp. 11-17
Brookes S D, Hoare C A R, Roscoe A W 1984 A theory of communicating processes. J. Assoc.
Comput. Mach. 31; 560-599

Fitzwater D R, Zave P 1977 The use of formal asynchronous process specifications in a system
development process. Proc. 6th Texas Conf. Computer Systems, University of Texas at
Austin, 2B-21:2B-30

Van Glabbeek R J, Weijland W P 1989 Branching time and abstraction in bisimulation
semantics. Int. Fed. Inf. Process. Congress’ 89 pp. 613-618

|
|
.

28 R K Shyamasundar and S Ramesh

Groote J F 1988 Tutorial on ACP, Unpublished lectures at the Workshop on Logic and
Models of Concurrency, Bangalore

Groote J F, Vaandrager F 1989 Structured operational semantics and bisimulation as
congruence. ICALP’89 Lecture Notes in Computer Science. Vol. 352 (Berlin: Springer Verlag)
pp. 423-438

Harel D, Pnueli A 1985 On the development of reactive systems. In Logic and models of
concurrent systems (ed.) K R Apt, Nato ASI Series (Berlin: Springer-Verlag)

Hoare C A R 1988 Communicating sequential processes. Commun. ACM 21: 666-677

Koymans R, Shyamasundar R K, de Roever W P, Gerth R, Arun-Kumar S 1988 Compositional
semantics for real-time-distributed computing. Inf. Comput. 79: 210-256

Larsen K G, Skou A 1989 Bisimulation through probabilistic testing. ACM Symposium on
Principles of Programming Languages, Austin (New York: ACM Press) pp. 344-353

Lelann G 1983 On real-time distributed computing. Int. Fed. Inf. Process '83 pp. 741-753

Lewis H R 1990 A logic of concrete time intervals. LICS Vol. 90 pp. 380-389

Liu L Y 1989 Paradigms for the specification, design and verification of real-time distributed
systems, Ph D thesis, Pennsylvania State University

Liu L Y, Shyamasundar R K 1989 RT-CDL: A real-time design language and its semantics.
Int. Fed. Inf. Process '89 pp. 21-26

Liu L Y, Shyamasundar R K 1990 Static analysis of real-time distributed systems. [EEE Trans.
Software Eng. SE-16: 373-388

Milner R 1980.4 calculus of communicating systems. Lecture Notes in Computer Science. Vol. 92
{Berlin: Springer Verlag) _

Milner R 1988 Communication and concurrency (New York: Prentice Hall International)

Salwicki A, Muldner T 1981 On the algorithmic properties of concurrent programs. Lecture
Notes in Computer Science. Vol. 125 (Berlin: Springer Verlag)

Stankovic A 1988 Real-time computing systems: The next generation, COINS TR, University of

. Massachussetts

Shyamasundar R K 1991a Real-time programming languages: A survey, Lecture Notes,
Workshop on Real-Time Embedded Computing Systems, Bangalore

Shyamasundar R K 1991b Specification and verification of real-time systems, Lecture Notes,
Workshop on Real-Time Embedded Computing Systems, Bangalore

Shyamasundar R K, Narayana K T, Pitssi T 1987 Semantics of nondeterministic asynchronous
broadcast networks, ICALP'§7

Shyamasundar R K, Patterson A, Agha G 1991 An actor-based framework for concurrent
object oriented programming, Proceedings of Baastad Workshop on Concurrency, Sweden

Wirth N 1977 Towards a discipline of real-time programming. Commun. ACM 20: 577-583

Zwiers J 1988 Compositionality, concurrency and partial correctness: Proof theories of processes
and their connection, Ph D thesis, Eindhoven University of Technology, Eindhoven

,.('L‘: 2
£

