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Abstract

The steady state structure of an interface in an Ising system on a square lattice placed

in a non-uniform external field, shows a commensurate -incommensurate transition driven

by the velocity of the interface. The non-uniform field has a profile with a fixed shape

which is designed to stabilize a flat interface, and is translated with velocity ve. For small

velocities the interface is stuck to the profile and is rippled with a periodicity which may

be either commensurate or incommensurate with the lattice parameter of the square lattice.

For a general orientation of the profile, the local slope of the interface locks in to one of

infinitely many rational directions producing a devil’s staircase structure. These “lock-in” or

commensurate structures dissappear as ve increases through a kinetics driven commensurate

- incommensurate transition. For large ve the interface becomes detached from the field

profile and coarsens with Kardar-Parisi-Zang exponents. The complete phase -diagram and

the multifractal spectrum corresponding to these structures have been obtained numerically

together with several analytic results concerning the dynamics of the rippled phases. Our

work has technological implications in crystal growth and the production of surfaces with

various desired surface morphologies.
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I. INTRODUCTION

Commensurate-in -commensurate (C-I) transitions[1] have been extensively studied over

almost half a century following early experiments on noble gases adsorbed on a crystalline

substrate[2] eg. Kr on graphite. Depending on coverage and temperature, adsorbates may

show high density periodic structures the reciprocal lattice vectors (RLVs) of which are

either a rational (commensurate) or irrational (in -commensurate) multiple of a substrate

RLV. By changing external parameters (eg. temperature) one may induce phase-transitions

between these structures. Recently, the upsurge of interest in the fabrication of nano-

devices have meant a renewed interest in this field following a large number of experimental

observations on “self-assembled” domain patterns (stripes or droplets) on epitaxially grown

thin films for eg. Ag films on Ru(0001) or Cu-Pb films on Cu(111)[3] etc. The alloy films

often show composition modulations in the lateral direction forming patterned superlattices.

These self-assembled surface patterns may have potential applications in the field of opto-

electronics, hence the interest. In general, the whole area of surface structure modification

has tremendous technological implications including, for example, the recording industry

where magnetic properties are intimately connected[4] to surface structure.

Almost universally, C-I transitions may be understood using some version of the sim-

ple Frenkel -Kontorova[5](FK) model, which models them as arising from a competition

between the elastic energy associated with the distortion of the adsorbate lattice and sub-

strate -adsorbate interactions. A complicated phase diagram involving an infinity of phases

corresponding to various possible commensuration ratios (rational fractions) is obtained as a

function of the two energy scales. In-between two commensurate structures one obtains re-

gions where the periodicity of the adsorbate lattice is in -commensurate. All C-I transitions

are equilibrium transitions in the sense that at any value of the relevant parameters, the

structures observed optimize a free -energy. Indeed, despite its importance, the dynamical

aspect of C-I transitions is a relatively unexplored domain.

In this paper, on the other hand, we discuss a C-I transition entirely driven by kinetics.

We show that (1) a simple Ising interface in a square lattice, held in place by a non-uniform

external magnetic field, can have a variety of commensurate “phases” characterized by the

local slope expressed in terms of the unit vectors of the underlying lattice and (2) it is possible

to induce transitions in-between these phases by externally driving the interface with the
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help of the field. The independent variables are therefore the average slope of the interface

and its velocity both of which, as we show, can be externally controlled. Preliminary results

from this work has been published elsewhere[6, 7].

The dynamics of a 2-d Ising interface between the “up” and “down” spin phases at

low temperature T, in a (square) lattice driven by uniform external fields is a rather well

studied[8, 9] subject. The interface moves with a constant velocity, v∞, which depends on

the applied field, h and the orientation θ measured with respect to the underlying lattice.

The interface is rough and coarsens with KPZ[8] exponents α = 1/2 and β = 1/3 where α

and β are the roughness and dynamical exponents respectively. We explore the possibility of

driving such an interface with a pre-determined velocity vf using an external non-uniform

field which changes sign following a sharp sigmoidal profile forcibly stabilizing a stationary,

macroscopically flat interface at the region where the field crosses zero. We study systemat-

ically the structure and dynamics of this “forced” Ising interface as the field profile is moved

without change of shape at an externally controlable velocity ve. We show that for low

driving velocities ve, the interface velocity vf = ve and the interface is stuck to the profile

— the “stuck” phase. For larger ve > v∞, the interface detaches. In the stuck phase the

interface, though macroscopically flat (i.e. α = β = 0) is patterned on the scale of the lattice

spacing. It is these patterns which we show, undergo a series of C-I transitions determined

by the ve and the geometry characterized by the average slope of the interface in terms of

the lattice vectors of the underlying square lattice.

In the next section we introduce the model and briefly sketch the main results from a

mean field treatment. In section III we map our interface dynamics to the dynamics of a

one dimensional “exclusion process” – a system of hard core particles on a line. In section

III-A and B we present our results for the ground state structure and the dynamics within

this model. Finally, in section IV we conclude.

II. THE MODEL AND MEAN FIELD THEORY

We consider here (see Fig.1) a one-dimensional interface Y (x, t) between phases with

magnetization, φ(x, y, t) > 0 and φ(x, y, t) < 0, in a 2-d square lattice obeying single-spin

flip Glauber dynamics [10] in the limit h/J, T/J → 0. Here J is the Ising exchange coupling

and T the temperature. An external non-uniform field is applied such that h = hmax in
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FIG. 1: (a) An Ising interface Y (x, t) (bold curved line) between regions of positive (marked +)

and negative (marked −) magnetization in an external, inhomogeneous field with a profile which

is as shown(dashed line). The positions of the edge of the field profile and that of the interface

are labelled Se and Sf respectively. (b) A portion of the interface in a square lattice showing

a corner. (c) The interface velocity vf as a function of the velocity of the dragging edge ve for

Ns = 100(2), 1000(3), 10000(+) and ρ = 0.5. All the data (2,3,+) collapse on the mean field

solution (dashed line). Inset shows the graphical solution (circled) of the self-consistency equation

for vf ; dashed line represents vf = vf .

the +ve and −hmax in the -ve φ regions separated by a sharp edge. The edge of the field

(i.e. where the field changes sign) lies at Se. The front or interface, Y (x, t), separates

up and down spin phases. The interface is the bold curved line (Fig.1) with the average

position Sf . When the edge is displaced with velocity ve ; the front,in response, travels with

velocity vf . Parts of the front which leads (lags) the edge of the field experience a backward

(forward) force pulling it towards the edge. The driving force therefore varies in both space

and time and depends on the relative position of the front compared to that of the edge of

the dragging field. In the low temperature limit the interface moves solely by random corner

flips[8] (Fig. 1(b)), the fluctuations necessary for nucleating islands of the minority phase in
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any region being absent. We study the behaviour of the front velocity vf and the structure

of the interface as a function of ve and orientation.

Naively, one would expect fluctuations of the interfacial coordinate Y (x, t) to be com-

pletely suppressed in the presence of a field profile. This expectation, as depicted by our

main results (Fig.1, Fig.3 and Fig.5) is only partially true. While, as we show below, a mean

field theory gives the exact behaviour of the front velocity vf as a function of ve (Fig.1);

small interfacial fluctuations produce a dynamical phase diagram showing infinitely many

dynamical phases (Fig 3) and dynamic phase transitions (Fig. 5). For ve < v∞ the interface

is stuck to the profile vf = ve. The stuck phase has a rich structure showing microscopic,

“lock-in”, commensurate ripples. These dissappear at high velocities through a dynamical

commensurate- incommensurate (C-I) transition.

Consider, first, a continuum coarse-grained description of the model shown in Fig. 1 .

We assume that for h/J, T/J → 0 the magnetization is uniform everywhere except near the

interface, Y (x, t) so that the magenetisation φ = φ(y − Y (x, t)). The field profile is given

by h(y, t) = hmaxf(y, t) where f(y, t) = tanh((y − vet)/χ) and χ is the width of the profile

(see Fig 1(a)). Using Model A dynamics[1] for φ and integrating out all degrees of freedom

except those corresponding to the interfacial position, we obtain the effective dynamical

equation satisfied by the interface,

∂Y

∂t
= λ1

∂2Y

∂x2
− λ2

(∂Y

∂x

)2

f(Y, t) − λ3f(Y, t) + ζ(x, t) (2.1)

where λ1,λ2 and λ3 are parameters. Note that Eq. (2.1) lacks Galilean invariance[11] Y ′ →

Y + ǫx, x′ → x − λ2ǫt, t′ → t. A mean field calculation amounts to taking Y ≡ Y (t) i.e.

neglecting spatial fluctuations of the interface and noise. For large times (t → ∞), Y → vf t,

where vf is obtained by solving the self-consistency equation;

vf = lim
t→∞

−λ3 tanh
((vf − ve)t

χ

)

= −λ3 sign(vf − ve) (2.2)

For small ve the only solution to Eq. (2.2) is vf = ve and for ve > v∞, where v∞ = λ3

we get vf = λ3 = v∞. We thus have a sharp transition (Fig. 1(c)) from a region where the

interface is stuck to the edge to one where it moves with a constant velocity. How is this

result altered by including spatial fluctuations of Y ? This question is best answered by
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mapping the interface problem to an assymmetric exclusion process[8, 12] and studying the

dynamics both analytically and numerically using computer simulations.

III. FLUCTUATIONS: THE EXCLUSION PROCESS

The mapping to the exclusion process follows[9, 12] by distributing Np particles among

Ns sites of a 1-d lattice. The particles are labelled i = 1, 2, ......., Np sequentially at t = 0.

Any configuration of the system is specified by the set of integers {yi} where yi denotes the

location of the ith particle. In the interface picture i maps onto a horizontal coordinate (x in

Fig. 1), and yi as the local height Y (x). Each configuration {yi} defines a one-dimensional

interface inclined to the horizontal with mean slope tan θf = 1/ρ where ρ = Np/Ns. The

yi satisfy the hard core constraint yi+1 ≥ yi + 1. The local slope near particle i is given

by yi+1 − yi and is equal to the inverse local density ρi measured in a region around the ith

particle. Alternatively, one associates a vertical bond with a particle and a horizontal bond

with a hole[9], in which case, again, we obtain an interface with a slope tan θ′f = ρ/(1 − ρ).

The two mappings are distinct but equivalent. Periodic boundary conditions amount to

setting yi+Np
= yi ±Ns. Motion of the interface, by corner flips corresponds to the hopping

of particles. In each time step (Np attempted hops with particles chosen randomly and

sequentially[12]), yi tends to increase (or decrease) by 1 with probability p (or q); it actually

increses (or decreases) if and only if yi+1 − yi > 1. The dynamics involving random sequential

updates is known to indroduce the least amount of correlations among yi which enables

one to derive exact analytic expressions for dynamical quantities using simple mean field

arguments[12]. The right and left jump probabilities p and q (p + q = 1) themselves depend

on the relative position of the interface yi and the edge of the field profile i/ρ + vet. Note

that this relative position is defined in a moving reference frame with velocity vf (t), the

instantaneous average particle velocity defined as the total number of particles moving right

per time step. We use a bias ∆i(t) = p − q = ∆ sign(yi − i/ρ − vet) with ∆ = 1 unless

otherwise stated. In addition to the front velocity vf , we also examine the behaviour of the

average position,

< y(t) >= N−1
p

∑

i=1,Np

yi(t) (3.1)
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FIG. 2: Variation of < y(t) > with t for ve = 0.025 and p = 1.0. Lines denote analytic results

while points denote Monte Carlo data for ρ = 1/5 (uppermost curve), 2/5 and an incommensurate

ρ near 1/3. Inset (a)-(c) shows the corresponding ground state interfaces (yi − i/ρ). The arrows

in (c) mark the positions of two discommensurations.

and the width of the interface:

σ2(t) = N−1
p

∑

i=1,Np

< (yi(t)− < yi(t) >)2 > (3.2)

as a function of time and system size Ns. Here, < yi(t) >= i/ρ + vet. Angular brackets

denotes an average over the realizations of the random noise. Note that the usual particle

hole symmetry for an exclusion process[8, 12] is violated since exchanging particles and holes

changes the relative position of the interface compared to the edge.

We perform numerical simulations of the above model for Ns upto 104 to obtain vf for

the steady state interface as a function of ve as shown in Fig. 1(c). A sharp dynamical

transition from an initially stuck interface with vf = ve to a free, detached interface with

vf = v∞ = ∆(1 − ρ) is clearly evident as predicted by mean field theory. The detached

interface coarsens with KPZ exponents[6]. Note that, even though the mean field solution

for vf(ve) neglects the fluctuations present in our simulation, it is exact. The detailed

nature of the stuck phase (vf = ve and σ bounded) is, on the other hand, considerably more

complicated than the mean field assumption Y (x, t) = Y (t).
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A. Ground state structure and the Devil’s staircase

The ground state of the interface in the presence of a stationary (ve = 0) field profile

is obtained by minimizing E =
∑

i(yi − i/ρ − c)2 with respect to the set {yi} and c. This

maybe shown from Eq.(2.1) by neglecting the terms non-linear in ∂Y/∂x; the resulting

equation of motion, for small deviations of Y from the edge may be derived from the effective

Hamiltonian E. The form of E leads to an infinite range, non-local, repulsive, interaction

between particles in addition to hard core repulsion and the minimization is subject to the

constraint that yi be an integer. For our system, the result for the energy may be obtained

exactly for density ρ = m/n, an arbitrary rational fraction. For even m we have the following

expression.

E =
1

m

∑

j=1,m/2

[(
j

m
+ c)2 + (

j

m
− c)2] +

(
1

2
− c)2 + c2

=
1

6
(
1

2
−

1

m
)(1 −

1

m
) +

1

4m
−

1

4m2
(3.3)

Where in the last equation we have minimized the expression with respect to c.

Similarly for odd m we have the following expression for energy,

E =
1

m

∑

j=1,m/2−1

[(
j

m
+ c)2 + (

j

m
− c)2] + c2

=
1

12
(1 −

1

m2
) (3.4)

The resulting ground state profiles are shown in Fig. 2(insets). The lower bound for

E(ρ) is zero which is the energy for all ρ = 1/n. For irrational ρ the energy is given by

limm→∞ E(m/n) = 1/12 which constitutes an upper bound. For an arbitrary 0 < ρ < 1

the system ({yi}) therefore prefers to distort, conforming within local regions, to the nearest

low-lying rational slope 1/ρ̃ interspersed with “discommensurations” of density ρd = |ρ− ρ̃|

and sign +ve (-ve) if these regions are shifted towards (away) from each other by 1. A plot

of ρ̃(ρ) shows a “Devil’s staircase” structure[1]. In order to observe this in our simulation

we analyze the instantaneous distribution of the local density of the particle -hole system to

obtain weights for various simple rational fractions. A time average of these weights then
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give us the most probable density ρ̃ — distinct from the average ρ which is constrained to

be the inverse slope of the profile. Increasing the width χ of the external field profile away

from zero gradually washes out this Devil’s staircase structure (Fig. 3).

FIG. 3: Devil’s staircase structure in a plot of ρ̃ Vs ρ for small velocities (ve = 0.05) and

χ = 0.01, 1, 5.

As the velocity ve is increased, steps corresponding to ρ̃ = m/n (rational fractions)

dissappear sequentially for ve > 1/m so that for ve > 1/2 only fractions of the form 1/n

remain which persist upto ve = v∞. The locus of the discontinuities in the ρ̃(ρ) curve for

various velocities ve gives the phase diagram (Fig. 4) in the ve−ρ plane. Note that the phase

diagram for this C-I transition as given in an earlier publication[7] contained inaccuracies

which have been now corrected.
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ve

ρ

FIG. 4: The dynamical phase diagram in ve and ρ plane. The numbers on the ρ axis mark the

fractions ρ̃, which determines the orientation of the lock-in phase. The three regions white, black

and grey correspond to the rippled, the disordered and the detached phases respectively.

B. Dynamics of the forced Interface

For low velocities and density where correlation effects due to the hard core constraint are

negligible, the dynamics of the interface may be obtained exactly. Under these circumstances

the Np particle probability distribution for the yi’s, P (y1, y2, · · · , yNp
) factorizes into single

particle terms P (yi). Knowing the time development of P (yi) and the ground state structure

the motion of the interface at subsequent times may be trivially computed as a sum of single

particle motions. A single particle (with say index i) moves with the bias ∆i(ve t) which, in

general, may change sign at y < i/ρ + ve t < y + 1. Then P (yi) satisfies the following set of

10



master equations,

Ṗ (yi) = −P (yi) + P (yi + 1) for yi > y + 1

Ṗ (yi) = P (yi − 1) − P (yi) + P (yi + 1) for yi = y, y + 1

Ṗ (yi) = −P (yi) + P (yi − 1) for yi < y. (3.5)

The average position of the particle is given by < yi(t) >=
∑

∞

yi=−∞
yi P (yi) and the

spread by σ2(t) =
∑

∞

yi=−∞
(yi− < yi(t) >)2 P (yi). Solving the appropriate set of master

equations we obtain, for ve << 1 the rather obvious steady state solution P (yi) = 1/2(δyi,y +

δyi,y+1) and the particle oscillates between y and y+1. Subsequently, when i/ρ+ve t ≥ y+1,

the particle jumps to the next position and P (yi) relaxes exponentially with a time constant

τ = 1 to it’s new value with y → y + 1. For ρ = 1/n the entire interface moves as a

single particle and the average position advances in steps with a periodicity of 1/ve (see

Fig. 2) In general, for rational ρ = m/n, the motion of the interface is composed of the

independent motions of m particles each separated by a time lag of τL = 1/m ve. The result

of the analytic calculation for small ve and ρ has been compared to those from simulations

in Fig. 2 for ρ = 1/5 and 2/5. For a general irrational ρ < 1/2, m → ∞ consequently,

τL → 0.

The forward motion of an irrational interface is accompanied by the motion of discom-

mensurations along the interface with velocity ve which constitutes a kinematic wave[8, 9]

parallel to the interface.

C. The C-I transition

As the velocity ve is increased the system finds it increasingly difficult to maintain its

ground state structure and for τ ≥ τL the instantaneous value of ρ̃ begins to make excursions

to other nearby low-lying fractions and eventually becomes free. Steps corresponding to

ρ̃ = m/n dissappear (i.e. ρ̃ → ρ) sequentially in order of decreasing m and the interface

loses the ripples. The transition, as in the case of the FK model[5] is characterized by well

defined exponents. This may be seen by computing the spectrum of singularities

f(α) = q
d

dq
[(q − 1)Dq] − (q − 1)Dq (3.6)
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FIG. 5: The function ρ̃(ρ) for two different velocities ve/(1− ρ) = 0.1 and 0.5. Note that the steps

corresponding to higher rational fractions tend to disappear with increasing ve. Inset shows the

corresponding multifractal spectrum f(α). Note that with increasing velocity, αmin → 0 (see text).

with α(q) = (d/dq)((q−1)Dq) and q = f
′

(α(q))[13] corresponding to the Devil’s staircase in

ρ̃(ρ). D0 is the Hausdorff dimension and Dq the generalized dimensions. Dq’s are obtained

by solving for

∑

i

(pq
i /l

(q−1)Dq

i ) = 1. (3.7)

The changes in ρ determined the scales li of the partition (defined following the Farey

construction) whereas the changes in ρ̃ were defined to be the measures pi. The high -order

gaps in the vicinity of primary steps (the 1/n fractions) scale like[13] pi ∼ lαmin

i where

αmin = D∞. Near these steps ρ̃ ∼ (ρ − ρmax)
ξ where ρmax is the maximum value of ρ for a

step. This universal critical exponent[14] ξ = αmin has been determined to be 0.71 ± .001

from our data at ve/(1 − ρ) = 0.1. The exponent ξ determines the stability of the rippled

pattern to small changes in the orientation of the external field (ρ). As ve increases, ξ → 0

(Fig. 5).

It is important to realize that the C-I transition seen in our system is driven by fluc-

tuations of the local slope and therefore different from the C-I transition in a mechanistic

Frenkel -Kontorova[1] model appropriate for domain structures arising from atomic misfits.

The non-local energy E(ρ) and the non-linear constraint yi = integer makes it extremely

difficult to devise a natural mapping of this problem onto an effective F-K model. However,

an approach based on the Langevin dynamics of particle of a single particle with coordinate
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ρ′ diffusing on a energy surface given by, F (ρ′) = E(ρ′) + κ (ρ′ − ρ)2 can obtain the main

qualitative results of this section[7]. Here, κ is an arbitrary constant which ensures that the

long time limit of ρ′ = ρ.

IV. CONCLUSION

In this paper, we have studied the static and dynamic properties of an Ising interface in

2-d subject to a non-uniform, time-dependent external magnetic field. The system has a rich

dynamical structure with infinitely many steady states. The nature of these steady states

and their detailed dynamics depend on the orientation of the interface and the velocity of

the external field profile. In future we would like to study the statics and dynamics of such

forced interfaces in more realistic systems eg. a liquid-solid interface produced by coupling

to a patterned substrate[15]. The authors wish to thank S. S. Manna for discussions. A.C.
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