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Abstract

We study the steady state structure and dynamics of a 2-d Ising interface placed in
an inhomogeneous external field with a sigmoidal profile which moves with velocity
ve. In the strong coupling limit the problem maps onto an assymmetric exclusion
process involving motion of particles in 1-d with position dependent right and left
jump probabilities. For small ve, the interface is stuck to the field profile. As ve

increases the profile detaches from the interface. At the transition point( and beyond
), the interfacial structure and dynamics is characterized by KPZ exponents. For
small ve, on the other hand, the interface is macroscopically smooth with a vanishing
roughness exponent α. The interfacial structure is periodic with a periodicity which
depends on the orientation of the interface. For a fixed orientation this periodic
structure “melts” as ve is increased. We determine the dynamical “phase - diagram”
of this system in the ve - orientation plane.

Key words: Interface Dynamics, Kinetic Ising model, Dynamical phase transition
PACS: 05.10Gg,64.60.Ht,68.35.Rh

1 Introduction

Consider a one-dimensional (1-d) Ising interface [1,2] between up and down
spins in two dimensions (2-d) obeying single-spin flip Glauber dynamics [3,4].
In the presence of a uniform driving field [5–10] the interface moves with a
velocity which depends on the magnitude (and sign) of the driving field. On
the other hand, a fixed external field profile which is positive in the region
of up spins and negative in the region of down spins, would stabilize a sta-
tionary, macroscopically flat interface. In this paper we study systematically
the structure and dynamics of this Ising interface as this field profile is moved
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Fig. 1. An Ising interface u(y, t) (bold curved line) between regions of positive
(marked +) and negative (marked −) magnetization in an external, inhomogeneous
field with a profile which is as shown(dashed line). The positions of the edge of the
field profile and that of the front are labelled Se and Sf respectively.

with an arbitrary velocity ve.
There are two reasons why we are interested in this problem : Firstly, there
are several important practical examples where inhomogeneous fields drive
interfaces. Some of them include zone purification of Si where the controlled
motion of a temperature field profile is used to preferentially segregate im-
purities[11], magnetization of a bar of iron with a permanent magnet, phase
transitions induced by a travelling heat (welding) or pressure (metamorphosis
of rocks) fronts etc. Secondly, we would like to extend this study, in the fu-
ture, to the dynamics of solid interfaces where interfacial degrees of freedom
are coupled to hydrodynamic modes of the bulk solid eg. phonons (acoustic
emmissions[11]) and defects[12]. A systematic study of how these modes are
excited in sequence as ve is increased is of great fundamental interest.
The object of our study here is the interface between up and down spin phases
(Fig. 1) in the limit h/J, T/J → 0, where J is the Ising exchange coupling,
T the temperature and the field h(x, t) here is inhomogeneous, h = hmax in
the region where the magnetization is positive and −hmax in region where it is
negative separated by a relatively sharp edge. The edge of the field (i.e. where
the field changes sign) lies at Se. The front or interface, u(y,t) (no overhangs
!) separates up and down spin phases. The interface is a bold curved line with
the average position Sf . To move the interface we move the edge with velocity
ve ; in response the front moves with velocity vf . Parts of the front which leads
(lags) the edge of the field experience a backward (forward) force pulling it
towards the edge. The driving force therefore varies in both space and time
and depends on the relative position of the front compared to that of the edge
of the dragging field. What is the behaviour of the front velocity vf as a func-
tion of ve? What is the structure of the interface in various regimes? These
are the questions we address in this paper.

Briefly, our results are as follows

(1) For any orientation of the interface, vf = ve for small ve the front moves
along with the field profile. We call this the “stuck” phase.

(2) At a velocity ve = v∗

e , the front detaches from the field profile. At higher
values of ve the front experiences an uniform magnetic field h = hmax

2



and the problem reduces to the growth of an Ising interface driven by a
uniform field [5–10]

(3) The structure of the “stuck” interface is flat with a roughness exponent
α = 0. Depending on the orientation of the interface, the height of the
interface u(y, t), as a function of y and time t, may show periodic oscil-
lations in y and/or t. The nature of these oscillations depends crucially
on the system size in a manner to be explained below.

In the next section we introduce a continuum description of the problem and
derive the relevant coarse grained equations of motion. In Section 3 we present
the mean field solution to these equations. In Section 4 we introduce fluctu-
ations through an exact mapping to an assymmetric exclusion (particle hop-
ping) model in 1-d and present, analyze and discuss our results obtained from
computer simulations of this model. In Section 5 we present our conclusions.

2 Continuum Description

Let the magnetization of the 2-d Ising system be given by, φ ≡ φ(x, y, t). We
assume that for h/J, T/J → 0 the magnetization is uniform everywhere except
near the interface which may be parametrized by a function u(y, t), where u
is the height of the interface perpendicular to y. Hence the magnetization
φ = φ(x − u(y, t)). The field profile is given by h = hmax tanh((x − vet)/χ)
where χ is the width of the profile. Model A dynamics[13] for φ then implies,

∂φ

∂t
=−Γ

δHT

δφ
+ ζ(r, t) (1)

where

HT =
∫

dr[a1φ
2 + a2φ

4 + a3(∇φ)2 − h(x, t)φ] (2)

is the Hamiltonian and ζ is a Gaussian white noise with zero mean and

< ζ(r, t)ζ(r′, t′) > =2kBTΓδ(r − r′)δ(t − t′) (3)

Using HT in Eq.1, taking x − u(y, t) = v and converting all derivatives to
derivatives over the profile u(y, t), we have,
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− φ′(v)
∂u

∂t
=−Γ[2a1φ(v) + 4a2φ

3(v) − 2a3φ
′′(v) + 2a3φ

′(v)
∂2u

∂y2

− 2a3φ
′′(v)(

∂u

∂t
)2 − h(x, t)] + ζ(r, t) (4)

We then choose a φ dependent mobility Γ contributing to the lowest order
in φ consistent with symmetry viz. Γ = Γ0 + Γ1(∇φ)2. Substituting for Γ
and integrating both sides of the equation with respect to x between limits
(u − χ/2) and (u + χ/2) i.e. over the interfacial region, remembering that φ
has a sigmoidal profile, we finally get an equation of motion for the profile u.

∂u

∂t
= λ1

∂2u

∂y2
− λ2

(∂u

∂y

)2
tanh

(u − vet

χ

)

− λ3 tanh
(u − vet

χ

)

+ ζ ′(u, t) (5)

where λ1,λ2 and λ3 are constants. This is different from the familiar KPZ
equation [10] in the fact that it lacks Galilean invariance ( u′ → u + ǫy, y′ →
y − λ2ǫt, t′ → t )

In general crystal field effects introduce a lattice periodic force [1] which may
be accounted for by including an additional term V0 sin(2πu/a) (a is the lattice
parameter) to the right side of the above equation of motion.

3 Mean Field Result

A mean field calculaton amounts to taking u ≡ u(t) i.e. neglecting spatial
fluctuations of the interface. Then

∂u

∂t
=−λ3 tanh

(u − vet

χ

)

+ ζ ′(u, t) (6)

For large times (t → ∞), u → vf t, where vf is the average velocity of the
front. Thus vf is obtained by solving the self-consistency equation,

vf =−λ3 tanh
((vf − ve)t

χ

)

(7)

In the t → ∞ limit the hyperbolic tangent is replaced by the simply the sign of
vf −ve and is equivalent to taking χ → 0 namely, an infinitely sharp field pro-
file. For small ve the only solution to the self-consistency equation is vf = ve
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as can easily be verified graphically. For large edge velocities ve > v∗

e , where
v∗

e = λ3 we get vf = λ3 = v∗

e . We thus have a sharp transition from a region
where the front follows the edge with the same velocity to one where it moves
with a constant velocity unable to follow it anymore. The interface velocity
relaxes to its steady state value ve as 1/t in the region of low ve. The region
where the front moves with a constant velocity is evidently the well studied
problem of driving an interface by a homogeneous field [6,9].
How is this result altered by including spatial fluctuations of u ? In order
to answer this question we have mapped this interface model to an assym-
metric exclusion process [14] and study the dynamics both analytically and
numerically using computer simulations.

4 Beyond Mean Field Theory

The mapping to the exclusion process follows [8] by considering Np parti-
cles distributed among Ns sites of a 1-d lattice. The particles are labelled
n = 1, 2, ......., Np sequentially at t = 0. Any configuration of the system is
specified by the set of integers {y(n)} where y(n) denotes the location of the
nth particle. In the interface picture n needs to be interpreted as a horizontal
coordinate (y in Fig. 1), and y(n) as a local height u(y, t). Each configura-
tion {y(n)} then defines a one-dimensional interface inclined to the horizontal
with mean slope 1/ρ where ρ = Np/Ns. The interface coordinates satisfy
y(n + 1) ≥ y(n) + 1, and periodic boundary conditions amount to setting
y(n + Np) = y(n) ± Ns. Motion of the interface under the influence of a
driving field corresponds to the hopping of particles. In each time step (Np

attempted hops), y(n) tends to increase (or decrease) by 1 with probability
p (or q); it actually increses (or decreases) if and only if y(n + 1) − y(n) > 1.
In our case the right and left jump probabilities p and q (p + q = 1) are
not constants but themselves depend on the relative position of the inter-
face y(n) and the edge of the field n/ρ + vet. Note that in calculating this
relative position we have to use the actual position of the interface without
periodic boundary conditions. In our calculations reported here we use a bias
∆ = p − q = ∆0sign(y(n) − n/ρ − vet) with ∆0 = 1 unless otherwise stated.
We are interested in the average vertical velocity of the interface vf defined as
the total number of particles moving right per time step. In addition to the
front velocity, we also examine the behaviour of the width of the interface:

σ2(t)= N−1
p

∑

n=1,Np

< (y(n, t) − y(n, 0) − vf t)
2 > (8)

as a function of time and system size Ns. The angular brackets denotes an
average over the realizations of the random noise.
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Fig. 2. The front velocity vf as a function of the velocity of the dragging edge ve

for Ns = 100(2), 1000(3), 10000(+) and ρ = 0.5. All the data (symbols,2,3,+)
collapse on the mean field solution (dashed line).

Note that the usual particle hole symmetry for an exclusion process [5] is
violated since exchanging particle and holes changes the relative position of
the interface compared to the edge of the field.

4.1 Monte Carlo simulations for the dynamical transition

We perform Monte Carlo simulations of the exclusion process using a ran-
dom sequential update [15] to understand the behavior of the interface in the
presence of the inhomogeneous field profile. We study the system for different
system sizes and densities and obtain the average velocity vf of the steady
state interface as a function of the velocity of the edge of the field profile ve.
The velocity vf is obtained by dividing the distance moved by the interface for
a certain (large) number of time steps by the total number of time steps after
discarding the first few thousand steps to remove transients. Fig. 2 shows a
sharp dynamical transition from an initially “stuck” interface with vf = ve to
a free, detached interface with vf = v∗

e = ∆0(1− ρ) the result for an assymet-
ric exclusion process with density ρ. Note that the mean field solution for the
front velocity and the dynamical transition is exact.

4.2 The Stuck phase (ve < v∞)

The stuck phase is characterized by vf = ve and σ bounded. To obtain the
ground state of the interface in the presence of a stationary (ve = 0) field
profile it is sufficient to minimize

∑

n(y(n) − n/ρ)2 which demands y(n) to
follow the edge n/ρ as closely as possible subject to the constraint that y(n)
be an integer. This ground state structure is always periodic for ρ < 1/2. For
ρ ≥ 1/2 this periodicity is destroyed for infinetisimal ve. For densities which
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are of the form 1/k where k is an integer, the result is particularly simple
viz. y(n) = k n. This corresponds to a particle-hole system where the particles
form a 1-d lattice with a lattice parameter of k. For an arbitrary density
(orientation) the ground state is still periodic over short distances but has long-
period (possibly incommensurate) modulations. We verify this by calculating
the pair distribution function g(l) = (1/Np(Np − 1))

∑

n,m δl,(y(m)−y(n)), where
n, m are particle indices and m > n. The Fourier transform of g(l) shows
prominent delta function peaks.
The dynamics of the interface for ve > 0 depends on whether or not the system
size is compatible with the lattice parameter k. If the system size Ns is an exact
multiple of k then the particles which are separated by intervening regions of
holes can move independently of each other in response to the local bias ∆.
Let Pi be the probability (

∑

∞

i=−∞
Pi = 1) of obtaining a particle (any particle)

in state i where i = 0 corresponds to a particle which has not moved from its
initial position and i = s (= −s) corresponds to one which has moved s integral
lattice spacings to the right (left) of its original position. Fluctuations of the
interface about the ground state correspond to these independent particle
motions which cost energy if vet is integral. Consider now that i < vet < i + 1
the form of the bias ∆ implies that the probabilities Pi satisfy the following
set of master equations,

Ṗj =−Pj + Pj+1 for j > i + 1 (9)

Ṗj = Pj−1 − Pj + Pj+1 for j = i, i + 1

Ṗj =−Pj + Pj−1 for j < i.

Noting that the average position S(t) = < N−1
p

∑

n(y(n, t) − y(n, 0) > of the
interface is given simply by S(t) =

∑

∞

i=−∞
i Pi(t) and σ2(t) =

∑

∞

i=−∞
(i2 −

i) Pi(t) we obtain the results shown in Fig. 3(a) and 3(b). It is clear that these
results match the corresponding ones obtained from Monte Carlo simulations
exactly. The interface therefore follows the profile in a jerky fashion and the
width of this interface oscillates between fixed bounds. Thus although the
structure of the moving interface corresponds more or less with the ground
state periodic structure for small ve, the velocity is oscillatory. If however ρ is
not the reciprocal of an integer and the system size does not accomodate an
integral number of spatial periods of the ground state then the corresponding
1-d lattice contains long wavelength modulations and the particle hoppings
are not independent anymore. For fixed edge velocities it is found that σ2 is a
constant in time independent of the size of the system, the constant, however,
depends on ve and ρ. The average position of the interface does not show any
oscillations and faithfully follows the field profile corresponding exactly to the
mean-field solution.

The Melting Transition
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Fig. 3. (a)Variation of σ2 with t for for ρ = 0.5, ve = 0.025 and p = 1.0 and (b)
variation of S(t) with t for ρ = 0.5, ve = 0.025 and p = 1.0. Lines denote analytical
results while points denote monte carlo data.

The Fourier transform of g(n), i.e. the structure factor g̃(q), indicates a “melt-
ing transition” of the periodic steady states with increasing ve for any density
(ρ < 1/2). We track this by plotting the intensity of the largest peak (smallest
q) of g̃(qmax) as a function of ve for a number of densities. This is shown in
Fig.4(a) . Also, the lattice paramater (a) obtained from 2π/qmax is used to
determine the Lindemann ratio L = σ2/a2. The increase of the Lindemann
ratio with the ve for different densities (Fig. 4(b)) is another proof of a melt-
ing transition. These results are summarized in the dynamical phase diagram
(Fig. 5) for the Ising interface in a moving field profile. It shows an detachment
transition along the line ve = (1 − ρ) (for ∆0 = 1) and a melting transition.
The exact position of this dynamical melting transition (unlike a thermody-
namic transition) depends on the parameter used to characterize it. If we use
g̃(qmax) then the melting transition occurs simultaneously with detachment
for ρ < 0.5 and at ve = 0+ for larger ρ. Using the Lindemann parameter,
however, one obtains a melting transition which preempts detachment.

5 Behavior at the transition point

We want to determine scaling form for σ(t) at the transition point viz. the
growth exponent β, the roughness exponent α and the dynamic exponent z.
In the detached phase we know from renormalization group analysis that the
exponents are in the Kardar-Parisi-Zhang (KPZ) universality class [1,10] viz.
β = 1/3, α = 1/2 and z = α/β = 3/2. To determine these exponents at the
transition point we make use of Family-Vicsek scaling relation [1]

σ(L, t) ∼ Nα
s f(t/Nz

s ) (10)

Fig. 6 shows the variation of t/Nz
s with σ(L, t)/Nα

s for different p and different

8



-0.100.10.20.30.40.50.60.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
~g(qmax)

ve

� = 0:16673333333333333333333333333333333333333333333333333333333333333333
3� = 0:2+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+� = 0:252222222222222222222222222222222222222222222222222222222222222222222
2� = 0:33

�������������������������������������������������������������������
�� = 0:5

4444444444444444444444444444444444444444444444444444444444444444444
4

00.020.040.060.080.10.120.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
�2=a2

ve

� = 0:1� = 0:2� = 0:3� = 0:4� = 0:5( a ) ( b )

Fig. 4. (a) The structure factor g̃(qmax) vs. ve for various ρ. Note that g̃(qmax)
vanishes as ve increases thereby implying a melting transition in the 1-d assymetric
exclusion process. (b) Variation of lindemann ratio L with edge velocity ve for
various densities. An increase of L again signifies melting.
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ve
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0
0.50.0 1.0ρ

Fig. 5. Phase diagram for Ising interface driven by an inhomogeneous magnetic field
showing periodic stuck (PS) steady states for ve < (1−ρ) and ρ < .5, uniform stuck
(US) steady states for ve < (1 − ρ) and ρ > .5 and detached (KPZ) steady states
for ve ≥ (1 − ρ).

system sizes Ns. The curves collapse onto one curve once an intrinsic width
σi, arising from finite-size and crossover effects [1], is substracted out. The
exponents were found to be KPZ.

To understand why this happens we go back to our modified KPZ equation
(Eq.5) and make the transformation u = u′ + vf t. We get

∂u′

∂t
+ vf = λ1

∂2u′

∂y2
− λ2

(∂u′

∂y

)2
tanh

((vf − ve)t + u′

χ

)

−λ3 tanh
((vf − ve)t + u′

χ

)

+ ζ ′(u, t) (11)
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Fig. 6. Monte Carlo data (σ − σi)/N
α
s vs t/N z

s for p = 1.0, p = 0.7 and with
Ns = 1000 [×,©] , 800 [2, ◦] , 400 [+, ⋆] , 200 [3,△]. All the curves collapse to a
single universal function showing KPZ scaling.

Now substituting the mean field result for vf (Eq.7), making use of the fact
that at the transition point vf = λ3 and simplifying one can show that the
above equation reduces to the familiar KPZ equation in u′.

6 Conclusion

In this paper we have studied the static and dynamical properties of an Ising
interface in 2-d subject to a non-uniform, time-dependent external magnetic
field. The system has a rich dynamical phase diagram with several dynami-
cal phases (steady states). The nature of these steady states depend on the
orientation of the interface and the velocity of the external field profile. The
detailed dynamics of the interface depends on whether or not the size of the
system is commensurate with the orientation. For a commensurate system,
the interface follows the field in a jerky fashion and the width of the inter-
face fluctuates between well defined bounds. For a general, incommensurate
interface the motion of the interface is steady and the width is constant. For
large velocities of the external field, the interface detaches from the profile and
coarsens over time with KPZ exponents
In future we would like to study in detail further dynamical aspects of this
system e.g. the hysteretic response of this system under time varying external
parameters (ve).
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