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Electrical transport in deformed nanostrips: electrical sig-

nature of reversible mechanical failure
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Abstract. – We calculate the electrical conductivity of a thin crystalline strip of atoms con-
fined within a quasi one dimensional channel of fixed width. The conductivity shows anomalous
behavior as the strip is deformed under tensile loading. Beyond a critical strain, the solid fails
by the nucleation of alternating bands of solid and smectic like phases accompanied by a jump
in the conductivity. Since the failure of the strip in this system is known to be reversible, the
conductivity anomaly may have practical use as a sensitive strain transducer.

Introduction: Deformation of nano meter sized wires and bars have been studied, using
theoretical analysis as well as experiments, extensively in recent times [1–3]. Such studies are
useful both for understanding deformation mechanisms in general and for their relevance in
the construction of nano devices [2]. Single crystal nano bars and strips have been shown
to fail on tensile loading conditions by the familiar necking mechanism [3] where an elastic
instability leads to a reduction of the cross section of bar. While necking in bulk samples [4]
occurs along with extensive plastic deformation caused by the motion of dislocations, in nano
strips and beams, dislocations cannot be nucleated because of much higher elastic energy
costs [5]. This leads to novel layering transitions where the solid thins down layer by layer [3]
and finally fractures after attaining the thickness of an atomic chain.

The situation is somewhat different if the nano sized solid is confined within a rigid channel [6]
so that the necking transition is prevented. In this case, with imposition of an external strain
parallel to the confining walls, the solid fails by a series of layer transitions where the number
of crystalline layers decreases by one, accompanied by the nucleation of bands of a fluid with
strong orientational order. The remarkable fact is that this transition is completely reversible,
such that a decrease of the tensile strain, immediately causes these failure bands to disappear
and the solid heals itself automatically. In this Letter, we look at the electrical conductivity
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of a nano solid undergoing such a transition. Our motivation is to explore the possibility of
a strong electrical signal at the reversible transition. We hope that such a signal, if it exists,
would be useful for designing nano electro-mechanical devices [2].

The model: Since our aim here is to explore general principles rather than evaluate the
properties of any particular system in any great detail, we have chosen a simple model system
in two dimensions. Our calculations may be directly relevant for a strip of atoms adsorbed on
a flat substrate and confined within a narrow straight channel (see Fig. 1 (a)), large enough to
accommodate only a few atomic layers. The system geometry is generated by assuming hard
disk “atoms” where particles i and j, interact with the effective interatomic potential Vij = 0
for |rij | > d and Vij = ∞ for |rij | ≤ d, where d is the hard disk diameter and rij = rj − ri

the relative position vector of the particles [7,8]. In three dimensions, the corresponding hard
sphere system has been used [9] in the past to model electrical properties of simple liquid
metals with some success. The pure hard disk free energy is entirely entropic in origin and the
only thermodynamically relevant variable for a system of N atoms in an area A is the number
density ρ = N/A or the packing fraction η = (π/4)ρd2. Accurate computer simulations [8] of
hard disks show that for η > ηf = .719 the system exists as a triangular lattice which melts
below ηm = .706. We consider a narrow channel in two dimensions of width Ly defined by
hard walls at y = 0 and Ly (Vwall(y) = 0 for d/2 < y < Ly − d/2 and = ∞ otherwise) and
length Lx with Lx ≫ Ly. Periodic boundary conditions are assumed in the x direction.

Once the system geometry is generated by means of Monte Carlo simulations of “hard disk”
atoms, we use the generated structure as the underlying atomic arrangement for which electri-
cal transmittance is computed. A similar treatment has been used also in Ref. [9] viz. using
structural information from the hard sphere system as inputs to a calculation of electrical
properties of liquid metals. For computation of electrical transmittance, a tight-binding form
of the electronic Hamiltonian

H =
∑

i

∑

j

tij |i〉〈j|

is assumed, with hopping interactions tij between atoms i and j. Two different forms of the
distribution (Fig. 2) have been considered, to study the influence of hopping strength distri-
bution on the transmittance. The considered distributions have a simple power-law behavior
of the form B

rα
where r is the distance between the atoms in the unit of the lattice constant of

the unstressed triangular lattice. α = 5 for set I and α = 7 for set II. B is taken as 2.0, so that
for r = 1.0, the nearest neighbor separation in the unstressed lattice, the hopping interaction
is set as 2.0 in some energy unit. The distribution is also assumed to have a cut-off range, so
that beyond the second nearest neighbor distance the hopping vanishes.

To compute the electrical transmittance of the system, we attach conducting, semi-infinite,
one-dimensional leads along the horizontal direction of the sample. A set of leads are attached
at regular intervals at both ends of the sample. The purpose of these leads is to bear the
incoming, reflected and transmitted waves into and away from the sample. The leads are
described by one-dimensional, tight-binding, nearest-neighbor Hamiltonian of the form

Hlead = VL

∑

i

(|i〉〈i+ 1| + |i+ 1〉〈i|)

Deformation behavior: The effect of strain on the hard disk triangular solid at fixed Ly

large enough to accommodate a small number of layers nl ∼ 9−25 has been studied in Ref. [6].
The stress [10], σ = σxx−σyy in units of kBT/d

2, versus strain, ǫ = (η0−η)/η, curve is shown
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Fig. 1 – (a) The system geometry defining the quantities Lx, Ly , hard disk diameter d and the lattice
parameter a. (b) The stress (σ) - strain (ǫ) curve as obtained from Monte Carlo simulations using
N = 60 × 10 hard disks [6]. The two sets of symbols + and × correspond to the stress measured
while the strain is increased and decreased respectively. The strain values ǫi, i = 1, 2 are marked. (c)
Superposition of particle positions showing a crystal (right) - smectic interface. The number of layers
in the crystalline region is larger by one. A smectic band is flanked by two such interfaces [6].

in Fig. 1(b). The packing fraction of the solid was taken to be η0 = 0.85, a value deep in the
solid phase. For η = η0 (ǫ = 0) the stress is purely hydrostatic with σxx = σyy as expected.
As the length, Lx, of the channel is increased keeping the width Ly fixed; initially, the stress

increases linearly (Fig. 1(b)), flattening out at the onset of plastic behavior at ǫ
<
∼ ǫ1. At ǫ1,

with the nucleation of smectic bands, σ decreases and eventually becomes negative. At ǫ2
the smectic phase spans the entire system and σ is minimum. On further increase in strain, σ
approaches zero from below (Fig. 1(b)) thus forming a Van der Waals loop. If the strain
is reversed by increasing η back to η0 the entire stress-strain curve is traced back with no
remnant stress at η = η0 showing that the plastic region is reversible. For ǫ1 < ǫ < ǫ2 we
observe that the smectic order appears within narrow bands (Fig. 1(c)). Inside these bands
the number of layers is less by one and the system in this range of ǫ is in a mixed phase. The
total size of such bands grows as ǫ is increased.

For every value of ǫ we store a number of hard disk configurations (∼ 1000) which represent
the instantaneous atomic positions. We use these configurations as structural information
which are inputs to the electrical transport calculations to be described below. All transport
quantities are averaged over these configurations so that our method closely corresponds to
that followed in Ref. [9]. We proceed to obtain, in this fashion, the signature of smectic band
formation on the conductivity of the strip.

Electrical transport: We compute the transmittance of the above described system by
means of the vector recursion technique [11]. The essence of the vector recursion technique
is the block tridiagonalization of the system Hamiltonian by changing to a new orthogonal
set of vector basis, with the restriction that the lead Hamiltonian remains unchanged. In this
last aspect, it differs from the standard Lancos method [12]. The numerical stability of this
method [13] has been established in studying problems related to Anderson localization and
quantum percolation model previously [14]. Below we describe the method briefly.

A representation of the original basis is column vectors, {|m〉} of length 2N , where N =
N/2. Let us consider for the sake of demonstration, we have two leads, one incoming and
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Fig. 2 – Two power-law distributions showing the variation of hopping-integral with distance

another outgoing connected to opposite ends of the sample at positions |1〉 and |2N〉. A
representation of the new vector basis is then matrices of size 2N× 2. The members of the
new basis are generated in the following way. The lead states are chosen to be,

|Φn} =

(

|n〉
|2N − n+ 1〉

)

with n = 0,−1,−2, . . . ,∞. The starting state within the system in chosen to be

|Φ1} =

(

|1〉
|2N〉

)

where |1〉 and |2N〉 are the positions where the incoming and outgoing leads are attached.
The subsequent members of the basis are generated from

B†
2|Φ2} = (H −A1)|Φ1}

B†
n+1|Φn+1} = (H −An)|Φn} −Bn|Φn−1} for n ≥ 2 (1)

The matrix inner product is defined as

{Φχ}µν =

M
∑

i=1

Φµ
i χ

ν
i and orthogonality as {Φ|χ} = I

It can easily be shown that the 2 × 2 matrices An and Bn are block-tridiagonal members
of the matrix representation of the Hamiltonian in the new basis:

An = {Φn|H |Φn} Bn = {Φn+1|H |Φn}

so that the transformed Hamiltonian matrix can be divided in 2 x 2 blocks, with only non-zero
diagonal and subdiagonal blocks.
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The wavefunction |Ψ} may be represented in this new basis by a set {ψn} so that |Ψ} =
∑

n ψn|Φn}. These wavefunction amplitudes ψn also satisfy an equation identical with (1).
The solution of the Schrödinger equation in the leads are traveling Bloch waves of the form

∑

m

Aexp(±imϑ)|m〉

As the wave travels in the leads, the phase of its wavefunction changes by ϑ, where

cosϑ = E/2VL

E being the energy of the incoming electron [15]. In the incoming lead there will be an incoming
wave of the form

∑

exp(+imϑ)|m〉 and a reflected wave of the form
∑

r(E)exp(−imϑ)|m〉.
In the output lead there will be a transmitted wave

∑

t(E)exp(−imϑ)|m〉 [16], where r(E)
and t(E) are the complex reflection and transmission coefficients. The boundary conditions
may then be imposed from the known solution in the leads:

ψ0 =

(

1 + r(E)
t(E)

)

ψ1 =

(

exp(iϑ) + r(E)exp(−iϑ)
t(E)exp(−iϑ)

)

The amplitude at the nth basis ψn may be written as

ψn = Xnψ0 + Ynψ1,

where Xn and Yn satisfy the same recurrence relation as (1) with EI replacing H and also
satisfy the boundary conditions X0 = I and X1 = 0, while Y0 = 0 and Y1 = I. Note that X
and Y are 2 × 2 matrices.

This new basis terminates after ν = N steps, as the rank of the space spanned by the
original tight-binding basis remains unchanged after the transformation. Hence the recursion
also terminates after ν steps. This gives an additional boundary condition

Xν+1ψ0 + Yν+1ψ1 = 02×2

If we now interchange the incoming and outgoing leads, we get a similar pair of equations for
r′ and t′, the transmission and reflection coefficients for wave incident from the second lead.
Time reversal symmetry demands that t must be same for waves of the same energy incident
from either lead so that t = t′. Solving these equations for the scattering S-matrix [17] for
the sample region one have,

S = −(XN+1 + YN+1exp(−iϑ))−1(XN+1 + YN+1exp(iϑ)) =

(

r t
t r′

)

Generalization of this methodology for the multi-lead case, as is the case for the present
study, with M number of incoming leads and M number of outgoing leads is now a trivial
task. The representation of new vector basis states formed out of repetitive application of
recurrence relation are now matrices of sizes 2N× 2M with the first member chosen as

|Φ1} = (|i1〉|i2〉 . . . |iM 〉, |o1〉|o2〉 . . . |om〉)

where |ik〉 and |ok〉 are the positions at which the incoming and outgoing leads attach to the
system.The 2M × 2M matrices An and Bn are the block tridiagonal representations of the
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Hamiltonian in the new basis. The termination of the new basis occur after ν = 2N/2M steps
with the scattering S-matrix given by,

S =





















r11 r12 . . . r1M t′2M,1 . . . t′2M,M

...
... . . .

...
... . . .

...
rM,1 rM,2 . . . rM,M t′M+1,1 . . . t′M+1,M

tM+1,1 tM+1,2 . . . tM+1,M r′M,1 . . . r′M,M

...
... . . .

...
... . . .

...
t2M,1 t2M,2 . . . t2M,M r′11 . . . r′1M





















where we denote the reflection coefficient of the wavelet coming in from the ith incoming lead
and reflected into the jth incoming lead by rij(E), and the transmission coefficient of the
same wavelet transmitted into the j′ outgoing lead as tij′ (E).

The transmittance of the wavelet coming from the ith incoming channel is given by

Ti(E) =
∑

j∈O

|tij(E)|2 and the total transmittance T =
∑

i∈I

Ti

Here I and O denote the sets of incoming and outgoing leads, respectively.
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Fig. 3 – Variation of electrical transmittance (T) along the channel length with the variation of
strain (ǫ) for two sets of hopping integrals (left panel: set I, right panel: set II). Inset shows the
change in transmittance subtracting the ∼ 1/ǫ behavior of the transmittance as a function of the
increasing strain. The solid and dashed lines correspond to choice of hopping integrals, set II and set
I respectively.

Discussion and conclusions: In Fig. 3, we show the transmittance of the system as a
function of externally imposed strain. We notice the rather non-monotonic nature of the
transmittance as the strain is increased. With imposed strain, the length of the system
along the horizontal direction Lx increases, keeping the width Ly fixed. This results in larger
separation between atoms lying along the horizontal direction and therefore smaller hopping
interaction giving rise to net reduction in the transmitted current. The transmittance going
roughly as ∼ 1/ǫ (Fig. 3). This reduction continues until one reaches the strain value of
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0.1 when the nucleation of smectic phase occurs. As explained above, within the smectic
phase the number of atomic layers is reduced by one compared to that in the solid. The
smectic phase with one less layer results in a decrease of the nearest neighbor distance within

the layers and therefore to increased hopping interactions between atoms belonging to same
layer and increased transmitted current along the horizontal direction as shown in the figure.
On increasing the strain further, the width of the smectic band increases, thereby increasing
the atomic separation along x- direction and decreasing the hopping interaction. Since this
change is reversible, the transmittance retraces the curve as the strain is decreased. The
change in transmittance is more obvious if one subtracts the overall ∼ 1/ǫ behavior from the
data. This may be achieved in real devices by measuring the differential conductance between
two similarly strained strips one of which does not undergo the layering transition. Since
the transition depends sensitively on the width of the strip [6] this can be easily arranged in
practice.

For practical applications one needs the change in transmittance at the nucleation of the smec-
tic phase to be as sharp as possible. Our study in this context indicates that sharpness of the
transmittance jump depends crucially on the distribution of the hopping interaction strength.
Changing the distribution from set-I to set-II, the value of the transmittance decreases in
general due to the reduced hopping interaction in most of the cases, but at the same time also
leads to more pronounced jump in the transmittance at the nucleation of the smectic phase.
This indicates the necessity of engineering of proper materials to exploit this phenomenon in
useful devices.

T. S. thanks DST for Swarnajayanti fellowship. S.S. acknowledges financial support from
DST grant SP/S2/M-20/2001. S.D. and D.C. thank CSIR for financial supports.
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