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We show, using molecular dynamics simulations, that a two-dimensional Lennard-Jones solid
exhibits droplet fluctuations characterized by non-affine deviations from local crystallinity. The
fraction of particles in these droplets increases as the mean density of the solid decreases and
approaches ≈ 20% of the total number in the vicinity of the fluid-solid phase boundary. We monitor
the geometry, local equation of state, density correlations and van Hove functions of these droplets.
We provide evidence that these non-affine heterogeneities should be interpreted as being droplet
fluctuations from nearby, metastable minima. The local excess pressure of the droplets plotted
against the local number density shows a van der Waal’s loop with distinct branches corresponding
to fluid-like compact, and string-like glassy droplets. The distinction between fluid-like and glassy
droplets disappears above a well defined temperature.

I. INTRODUCTION

Crystalline solids typically exhibit local non-affine de-
formations when driven by external stresses. In many
instances these non-affine deformations can be described
in terms of a density of dislocations, however such a de-
scription is problematic when the density of dislocations
is large enough that their cores overlap [1]. Since the
overlapping cores of the dislocations have the character
of a fluid, it has been suggested that these excitations
should be thought of as fluid-like droplets [2–5]. This
has proved a useful interpretation, especially since amor-
phous solids, for which dislocations are difficult to define,
also show such localized deformations under shear.

Just as dislocations in a solid can be thermally excited
in the absence of external drive, it is reasonable to ask
whether these fluid-like droplet fluctuations[6] can arise
in the absence of external perturbation, especially when
close to the fluid-solid phase boundary. Droplet fluctu-
ations have been studied in great detail for simple Ising
systems undergoing a first order transition where they are
known to influence the asymptotic behavior of dynamic
correlations and introduce subtle essential singularities
in the equilibrium free energy[7]. The nature and role of
droplet fluctuations in solids, on the other hand, has not
received similar attention. In this paper, using a molecu-
lar dynamics (MD) simulation of a two-dimensional (2D)
Lennard-Jones (LJ) solid, we show that, indeed, ther-
mally excited droplet fluctuations do exist close to melt-
ing. We characterize the local droplet fluctuations using
a non-affine order parameter [10], and further classify
them as being fluid-like or “glassy” (reflecting the whole
family of non-crystalline metastable configurations).

We report MD simulations of a 2D single-component
system with the atoms interacting via LJ potential, viz.

φ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
(1)

where ε and σ set the scale of energy and length whereas

τ0 = (mσ2/ε)1/2 sets the scale for time with m as the
mass of the particles. We use ε = σ = τ0 = 1 without
loss of generality. The phase diagram of this system as
obtained from an earlier Monte Carlo study[8] is shown
in Fig.1 in the scaled temperature T - number density ρ
plane. First order liquid-solid and gas-solid boundaries
are shown. In Fig.1 we have also shown the ρ and T
values at which we have obtained our results from equi-
librated configurations. All our state points lie in the
single phase region where one always obtains an equi-
librium, triangular solid. Data showing any evidence of
local melting of the solid is discarded.
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FIG. 1: Phase diagram of 2D Lennard-Jones solid as given
in [8]. The first order boundaries are shown by solid lines.
Open circles indicate the T and ρ values at which we have
performed MD simulations.

The main results of this paper are summarized below:

1. We show that there is a significant fraction of non-
affine droplets in a 2D solid as the density is re-
duced, the fraction of particles in droplets reaches
to about 20% at melting.

2. The droplets are characterized by a density and
excess pressure over the solid, with positive excess
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pressures associated with string-like droplets and
negative, with compact droplets.

3. The density fluctuations of the droplets obeys a dis-
tinct fluctuation-response relation associated with
the susceptibility of the droplet.

4. The excess pressure of a droplet of a given size, as
we move across the phase diagram, depends on the
shape of the droplets and is a non-monotonic func-
tion of the density at low temperatures. At high
temperatures, this increases monotonically with
density.

5. Finally, we show that the equal and unequal time
density correlations within the droplets are liquid-
like for the compact and glassy for the string-like
droplets.

Taken together, these results suggest that the non-affine
droplets should be viewed as fluctuations arising from
nearby metastable liquid and glassy minima.

The rest of the paper is organized as follows. In the
next section we give details of our MD simulations and
the data analysis scheme we use to identify non-affine
droplets. We next describe our results for the droplet
shape, local thermodynamics and density correlations.
Finally, we discuss the significance of our results and con-
clude.

II. SIMULATION AND DATA ANALYSIS

Our MD simulations are carried out both in the canon-
ical NVT and micro-canonical NVE ensembles using a
velocity Verlet algorithm[9] with a time-step of 10−4.
Starting from a system of 104 particles arranged in a reg-
ular triangular lattice at desired ρ = N/V , we have cho-
sen the initial velocity of each particle from a Maxwell-
Boltzmann distribution at temperature, T . We equili-
brate the system at T for an initial 2 × 105 MD time
steps. We then switch to a constant NV E ensemble and
collect data for another 105 MD time steps, storing con-
figurations at regular intervals. For our system, fluctua-
tions of T are of order 1 in 10−4. At a fixed T and ρ we
analyze configurations of particles using a local measure
for non-affineness (χ) defined as the residual deformation
of a region Ω surrounding a particle that is left over after
fitting the best affine strain measured with respect to the
ideal triangular lattice at T, ρ[10]. The neighborhood Ω,
defined using a cutoff distance Λ and consisting of n par-
ticles, centered around any tagged particle 0 at r in the
initial configuration is compared with that of the same
particle at time t. We obtain the local strain εij which
maps as nearly as possible all the n particles from the
initial to the instantaneous configuration at t. This is
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FIG. 2: (a) Probability distribution of the non-affine param-
eter χ for T = 0.4 at several densities. For these values of
ρ, the P (χ) are bimodal, the contribution to the first peak
is shown on the left and for the second peak on the right
(note change of scale) (b) Comparison of P (χ) with that of
a harmonic solid Pharm(χ). (Inset) Plot of Pdrop = P (χ) for
χ > χ0 and 0 otherwise.

done by minimizing the (positive) scalar quantity,

χΩ(r, t) =
∑
n∈Ω

∑
i

{rin(t)− ri0(t)−
∑
j

(δij + εij)

×(rjn(0)− rj0(0))}2 (2)

with respect to εij . Here the indices i and j = x, y and
rin(t) and rin(0) are the ith component of the position
vector of the nth particle in the initial and instanta-
neous configurations respectively. Any residual value of
χΩ(r, t), which has units of σ2, is a measure of non-
affineness. We have chosen Λ = 2.5 as our coarse grain-
ing length. We compute the probability distribution
P (χ) (Fig.2 (a) and (b)) of the coarse grained χ.

Explicit calculations show that χ is large near de-
fects such as vacancies and dislocations which result in
a change in local coordination. For ρ > 1.0, where the
solid is expected to be almost harmonic, P (χ) shows a
single peak for χ ≤ 1.0[11]. As density of the system is
decreased this peak becomes shorter and broader and a
second peak emerges for 2.5 ≤ χ ≤ 5.0. This second peak
becomes more prominent as the system approaches the
liquid-solid phase boundary. Inspection of the configu-
rations of the particles with large χ values contributing
to the second peak in P (χ) show that these typically
represent changes in the local topology where a pair of
particles from the next near neighbor shell becomes closer
than their nearest neighbors thereby increasing the local
density.



3

To identify the truly anharmonic droplet fluctuations
at given ρ and T , we need to subtract out contribu-
tions to χ coming from purely harmonic distortions.
In order to do this we note that for a harmonic solid,
P (χ) is unimodal and has a scaling form P (χ;T, ρ) =
P (χk/Λ2kBTρ) where k is the spring constant of the
harmonic solid. The spring constant of the reference har-
monic solid was chosen to match the probability distri-
bution of the lattice parameter in the LJ solid, obtained
from the curvature of the first peak in the (angle aver-
aged) pair distribution function g(r) of the solid. The
probability distribution of χ of the equivalent harmonic
solid Pharm(χ), was multiplied by a constant till the area
of the curve matched the area of the first peak of P (χ).
This procedure yields a threshold χ0 above which there
is no non-affineness in the reference harmonic solid and
therefore any non-affiness in the LJ solid above this value
must necessarily be attributed to anharmonic fluctua-
tions. This subtraction scheme results in the distribution
Pdrop(χ) of purely equilibrium droplet fluctuations in a
solid at constant ρ and T (Fig.2(b)(inset)).

III. RESULTS

We have used the above definition of non-affine par-
ticles to carry out the rest of our analysis. The frac-
tion of particles in droplets Nc/N is typically small but
increases with decreasing average density, reaching ap-
proximately 20% close to melting[2] (see Fig.3). This
might seem too large at first, however note that this is
consistent with typical dislocation densities in 2d solids
close to melting[15, 16]. We expect this droplet fraction
to be much lower in 3 dimensions.
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FIG. 3: Plot of the fraction Nc/N of particles in non-affine
droplets as a function of ρ. The open symbols corresponds
to all the non-affine particles based on the threshold criterion
described in Fig. 2(b) while the filled symbols correspond
only to particles with value of χ within the second peak in
Pdrop(χ).

A. Droplet size and shape

The droplets have a distribution of sizes, shapes, den-
sity and internal pressure; we compute these quanti-
ties using standard cluster counting techniques and lo-
cal Delaunay analysis[12]. The number of particles in
the droplets nc is exponentially distributed with a mean
which increases towards the liquid-solid phase boundary.

In Fig.4(a) we have shown a typical snapshot of the
LJ particles for ρ = 0.92 and T = 0.4. To eliminate
unimportant random fluctuations we show only droplets
with nc > 7. The snapshots show both compact and
string-like morphologies. The droplets are dynamic, they
coalesce and dissociate while continuously fluctuating in
shape and size.

 0

 15

 30

 45

 60

 75

 90

 0  15  30  45  60  75  90  105 80

 82

 84

 86

 88

 90

 92

 94

 40  45  50  55  60  65  70  75  80

’COMPKT-Clstr’

 8
0

 8
2

 8
4

 8
6

 8
8

 9
0

 9
2

 9
4

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

’S
T

R
IN

G
-C

ls
tr

’

y

x

(a) (b)

(c)

FIG. 4: (a) Snapshot of a typical particle configuration in
the LJ solid at T = 0.4 and ρ = 0.92. The black, filled, cir-
cles denote non-affine particles while the rest of the particles
are dots. A string-like and a compact droplet are pointed
out using red and blue arrows respectively. Close up of a
(b) string-like and (c) compact droplet showing triangulated
neighborhoods. While defining droplets, we also include the
nearest neighbor shell around every non-affine particle. This
spatial coarse-graining improves statistics.

To understand shape and size fluctuations of the
droplets we need to obtain local densities and pressure.
We do this by constructing a local Delaunay net[12] of
nearest neighbor particles(see Fig.4(b) and (c)). The area
of the droplet Ac is then the sum of the areas of the De-
launay triangles and the density ρc ≡ nc/Ac. To obtain
the internal pressure of the droplet, pc, we compute the
virial 〈Fij · rij〉 where Fij and rij are the nearest neigh-
bor forces and distances respectively for particles i and j
belonging to the droplet. The average 〈...〉 is over all the
particles nc in the droplet. The droplets are characterized
by a distribution of ρc and excess pressures, ∆pc ≡ pc−p,
where p is the mean pressure of the surrounding solid.
Figure 5(a) shows a scatter diagram of the excess pres-
sure versus the density in the cluster. We find that the
droplets with high ρc (hence large χ) and large (positive)
∆pc are string-like, whereas droplets with low ρc and
∆pc < 0 are compact (Fig.5(a)). To study the behaviour
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between these two extremes, we argue that these drops
resemble 2D lattice animals with excess pressure [13, 14].
This analogy suggests that the mean radius of gyration
Rg(nc,∆pc, T ) obeys a crossover relation,

R2
g = n2ν

c F (p̄n2ν
c ) , (3)

where p̄ = ∆pcσ
2/kBT . Note that our sign convention

for the pressure implies that p̄ > 0 corresponds to de-
flated droplets. Further note that in [13] the number of
boundary particles are kept fixed which is a different en-
sembles from ours where the total number of particles in
the droplets nc is fixed.

The crossover scaling function asymptotes to,
F (x→0) = const. and F (x → ±∞) = xθ± . Note that
the scaling form takes into account the natural scaling
p̄ ∼ A−1

c ∼ R−2 where Ac is the area of the droplet.
At p̄ = 0 we expect that the boundary of the droplet is
a self avoiding random walk and hence ν = 3/4. The
exponents θ± take values such that Rg ∼ nc for x → ∞
(string-like) and Rg ∼ n1/2

c for x→ −∞ (compact). Our
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FIG. 5: (color-online)(a)Excess pressure, ∆pc vs density ρc of
the clusters as a scatter plot at densities ρ = 0.88−1.0 shown
in different colors. Inspection of the individual droplets cor-
responding to each of the colored dots shows that for ∆pc > 0
droplets tend to be string-like while ∆pc < 0 gives rise to com-
pact droplets. (b) The radius of gyration Rg of the droplets
as a function of the number of particles in the droplets nc for
several T = 0.35 (open squares), 0.40 (filled squares), 0.45
(open circles) and 0.50 (filled circles). The data points for
T > 0.35 have been each shifted by 1 to make them visible.

Note that while Rg ∼ n
1/2
c for ∆pc < 0 (i) it is linear for

droplets with ∆pc > 0 (ii) (shown, in each case by red lines).

data (Fig.5(b)) is consistent with Eq.3, however since
the size of the clusters is not very large, it is difficult
to probe the asymptotic behaviour. To obtain better
statistics one needs to simulate yet larger systems for
much longer times.

B. Local thermodynamics of droplets

The scatter diagram in Fig.5(a), suggests that there
might be a thermodynamic interpretation of the local

density and pressure of the droplets. In a bulk solid, lo-
cal thermodynamic equilibrium demands that the local
variations in the density are related to the pressure com-
puted from the variation ∂F/∂ρ of the Helmholtz free
energy F with respect to the density via the equation of
state (EOS) of the solid at the ambient temperature. Fur-
ther, within linear response, the generalized susceptibil-
ity G obtained from the slope of the EOS is related to the
q = 0 component of the equal-time correlation function,
kBTG(q = 0) = C(q = 0, t = 0) =

∫
dr〈δρ(r + x)δρ(x)〉

where δρ is the deviation from the mean density[17]. We
check whether analogous thermodynamic relations hold
for the droplets taken as a subsystem in contact with the
rest of the solid. We want to see how far these ther-
modynamic considerations apply to our configurations of
droplets, with the caveat that these averages are over
a restricted ensemble and therefore does not affect the
equilibrium thermodynamics of the bulk solid.
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FIG. 6: (color-online)(a) Scatter plot of pc vs ρc of the
droplets at T = 0.40 (red dots, the same data as in Fig.5(a))
whose mean show shows a dependence similar to an “equa-
tion of state” (green curve). The equilibrium equation of state
of the solid is shown as a blue curve for comparison.(b) The
scaled excess pressure p̄ as a function of mean density ρ̄c for
nc = 20 particle clusters for T = 0.35−1.0 in different colors.
The data for T > 0.35 have each been shifted by 4 for an unit
increase in T to make them visible. Note the prominent loop
showing two distinct branches at low temperatures which dis-
appears as T increases. We have obtained similar data for
other values nc.

For a fixed ρ and T for the solid, the density ρc and
pressure pc of the droplets is shown as a scatter plot in
Fig.6(a). The averaged curve (green line in Fig.6(a)) has
a locus, p̄c vs ρ̄c which is distinct from the EOS of the
equilibrium solid (blue line in Fig.6(a)).

A plot of the scaled excess pressure p̄ with the mean
droplet density ρ̄c (Fig.6(b)) for fixed particle number
nc shows a prominent non-linear feature akin to a van
der Waals loop in the equilibrium pressure - density
curve at a typical first order transition, say between gas
and liquid. The two branches in the curves shown in
Fig.6(b) correspond to compact (liquid-like) and string-
like (glassy) droplets as discussed above. Integrating this
pressure - density curve at fixed nc, gives the work done
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FIG. 7: (color-online) Snapshots for T = 0.4 and ρ = 0.92 at
0, 100, 150, 200, 250, 300, 350, 360, and 370 MD steps ((i)-(ix))
of a portion of our simulation cell showing the dynamics of
two chosen droplets. The colors red and blue denotes +ve
and −ve excess pressures respectively. Note that string-like
droplets have ∆pc > 0 while relatively compact droplets have
∆pc < 0. Note also the dissociation of a (red) string-like
droplet into a (blue) compact and a smaller (red) string-like
droplet ( (iv) → (v)).

by thermal fluctuations in creating a droplet of size nc.
We find that at low temperatures, large excess pressure
tends to convert compact droplets to stringy ones and
vice versa (Fig.7) over a characteristic relaxation time.
Droplets are also seen to dissociate into distinct string-
like and compact fragments with appropriate values for
the excess pressure. Quite analogous to the familiar gas-
liquid transition, this metastable “van der Waals loop ”
vanishes at higher temperatures beyond a “critical point”
which exists somewhere in the range T = 0.9 − 1.0.
Above this temperature the distinction between com-
pact and string-like droplets disappears. We find that
the generalized susceptibility G obtained from the slope
of ∂p̄c/∂ρ̄c is proportional to fluctuations of the density
〈δρ2

c〉 = 〈(ρc − ρ̄c)2〉 where 〈· · · 〉 denotes a time average.
The fluctuation response ratio γ = 〈δρ2

c〉nc/
(
ρ2
c∂p̄c/∂ρ̄c

)
should be independent of nc, with an intercept which
should be proportional to the temperature T . This is
shown in Fig.8 where γ for the +ve and −ve p̄ branches in
Fig.6(b) are shown separately using filled and open circles
respectively. While γ is indeed a constant, the intercept
plotted versus T for all the droplets for the two branches
are approximately linear in T . This is the metastable
analogue of the equilibrium fluctuation-response relation
discussed above, suggesting that the droplets are fluctua-
tions from a metastable state describable by a free energy
functional.
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FIG. 8: The fluctuation -response ratio γ shown as a function
of nc for droplets with +ve (filled circles) and −ve excess pres-
sure, p̄ is independent of nc, with an intercept ∝ T . We verify
this by plotting the intercept versus T for all the droplets (in-
set) for T ≤ 0.5. The filled and unfilled squares correspond
to the + ve and − ve p̄ branches respectively.

C. Density correlations

We now study density correlations within each droplet
to further characterize compact and string-like droplets.
Note that these droplets have a finite lifetime τ(nc), a
plot of τ vs. nc for fixed ρ and T is shown in Fig.9. To
obtain τ , we have collected the times each constituent
particle continues to belong to a droplet. As the droplet
fluctuates, particles from the periphery continuously at-
tach to and detach from the droplet leaving a set of par-
ticles at the core intact. This is clear from the snapshots
shown in Fig.4. We define τ as the persistence time of
these core particles. Our analysis for different p̄ shows
that the dense stringy clusters live longer. To obtain
good statistics for the equal and unequal time density
correlators, we therefore need to look at large and long-
lived droplets. Fig.10 shows the equal time density cor-
relations, g(r) . First of all g(r) in both branches show
features associated with an amorphous structure with a
first peak value which is much reduced from that of the
full solid. Note that while the low density droplets are
more liquid-like with smoothened peaks, the high den-
sity droplets are glassy showing a prominent split sec-
ond peak. We have also computed the self part of the
van Hove correlation functions Gs(t) = 〈ρ(0, 0)ρ(0, t)〉.
This is shown in Fig.11. While Gs(t) relaxes exponen-
tially for the low density, liquid-like droplets, the high
density droplets show non-Debye relaxation. We show
that as the lifetime of the droplets increase, a prominent
β-relaxation type plateau begins to develop. This, how-
ever, gets cut-off by the finite lifetime of the droplets in
the solid.
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FIG. 9: Lifetime τ vs nc for droplets at ρ = 0.92 and T = 0.4.
Larger droplets survive longer. The error bars are obtained
from the width of the distribution of τ . The dashed straight
line is a guide to the eye.
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FIG. 10: Typical pair distribution function g(r) for particles
in non-affine droplets at ρ = 0.88 and T = 0.40, drawn sepa-
rately for ∆pc > 0 (solid line) and ∆pc < 0 (dashed line). The
g(r) for the high density droplet has been shifted by 0.5 to
make it visible. Both the g(r)’s show less crystalline structure
than the solid (inset).

IV. DISCUSSION AND CONCLUSIONS

We have shown in this paper that the excitations of
an equilibrium solid at high temperatures can be inter-
preted as arising from a distribution of non-affine droplets
whose mean size and lifetime increases as one approaches
the liquid-solid phase boundary. These droplets are char-
acterized by a density, internal pressure and shape. The
shape of the droplets crossover from being compact to
string-like as the density increases. The observed rela-
tionship between the local pressure and density of the
droplets in the form of an “equation of state” and the
fluctuation-response relation of the local density strongly
suggests that these non-affine droplets arise as fluctua-
tions from a metastable liquid or glass. Consistent with
this we find that the high density droplets have a g(r) and
van Hove function resembling that of glasses. Our main
concern in this paper has been to provide evidence that
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FIG. 11: (a) The self part of the van-Hove function Gs(t) as
a function of time for the same droplets whose g(r) is given
in Fig. 10. Note the prominent plateau for the high density
droplets which is cut off by the finite lifetime of the droplet.
(b) Development of the plateau in Gs(t) with the lifetime of
the droplets over which Gs(t) is averaged (lines with mean τ
from 50 (bottom) to 200 (top) ×10−3 LJ units).

droplet fluctuations of metastable liquid or glass exist in
a crystalline solid and to characterize their shape and
local thermodynamic parameters. How do these fluctua-
tions influence the properties of solids? We hope to sys-
tematically study and answer this question in the future.
Some of the specific areas where the impact of droplet
fluctuations may be observable are discussed below.

For example, we wonder whether our results hint at
the presence of a metastable liquid-glass critical point.
While Fig.6(b) is certainly suggestive, we must remember
that the size of the non-affine droplets are typically small
with nc ∼ 100 even for the largest droplets. A careful
finite size scaling analysis needs to be carried out in or-
der to determine whether this feature survives for larger
droplet sizes. The nature of the melting transition in the
two-dimensional LJ system remains unclear in spite of
being the subject of many investigations[8, 18–20] over
several decades. Early simulations obtained a first order
liquid-solid and gas-solid transitions with prominent co-
existence regions[8, 18]. While at low temperatures near
the triple point (T = 0.4), one obtains a first order melt-
ing transition[18], at higher temperatures (T ∼ 1) one
obtains a much reduced coexistence region[19] with some
characteristics of continuous[21] melting. At still higher
temperatures, the melting transition appears to be un-
equivocally driven by dislocation unbinding[20]. Exactly
how and at what temperature one obtains this change in
the nature of melting is, as yet, unknown. While we do
not address this question in the present paper, we specu-
late that droplet fluctuations may have a strong influence
on the dynamics of melting. The presence of metastable
critical points is known to crucially influence the dynam-
ics of first order transitions, for eg. the important prob-
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lem of protein crystallization[22, 23].
We expect these non-affine droplets to also play an

important role in the rheology of solids under applied
stresses; our preliminary work in this direction is consis-
tent with this expectation. We would also like to enquire
whether it is possible to observe these droplet excitations
in a real experimental situation in two and three dimen-
sions. Such excitations, if they exist, may be difficult to
disentangle from the contributions coming from a den-
sity of dislocations and grain boundaries. Perhaps direct
visualization of droplet fluctuations in colloidal crystals
is the best way to study these effects[24].
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