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Network properties of protein structures
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Protein structures can be studied as complex networks of interacting amino acids. We study pro-
teins of different structural classes from the network perspective. Our results indicate that proteins,
regardless of their structural class, show small-world network property. Various network parameters
offer insight into the structural organisation of proteins and provide indications of modularity in
protein networks.

PACS numbers: 89.75.-k, 87.14.Ee, 05.65.+b

Keywords: protein, network, amino acid, graph theory

I. INTRODUCTION

Biological systems have been studied as networks at
different levels: protein-protein interaction network [1],
metabolic pathways network [2, 3], gene regulatory net-
work [4], and protein as a network of amino acids [5, 6, 7,
8]. Proteins are biological macromolecules made up of a
linear chain of amino acids and are organised into three-
dimensional structure comprising of different secondary
structural elements. They perform diverse biochemical
functions and also provide structural basis in living cells.
It is important to understand how proteins consistently
fold into their native-state structures and the relevance of
structure to their function. Network analysis of protein
structures is one such attempt to understand possible
relevance of various network parameters.

There have been several efforts to study proteins as
networks. Aszódi and Taylor [5] compared the linear
chain of amino acids in a protein and its three dimen-
sional structure with the help of two topological indices –
connectedness and effective chain length – related to path
length and degree of foldedness of the chain. Kannan and
Vishveshwara [9] have used the graph spectral method to
detect side-chain clusters in three-dimensional structures
of proteins. In recent years, with the elaboration of net-
work properties in a variety of real networks, Vendruscolo
et al. [6] showed that protein structures have small-world
topology. They also studied transition state ensemble
(TSE) structures to identify the key residues that play a
key role of “hubs” in the network of interactions to sta-
bilise the structure of the transition state. Greene and
Higman [7] studied the short-range and long-range inter-
action networks in protein structures and showed that
long-range interaction network is not small world and its
degree distribution, while having an underlying scale-free
behaviour, is dominated by an exponential term indica-
tive of a single-scale system. Atilgan et al. [8] studied
the network properties of the core and surface of globu-
lar protein structures, and established that, regardless of
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size, the cores have the same local packing arrangements.
They also explained, with an example of binding of two
proteins, how the small-world topology could be useful
in efficient and effective dissipation of energy, generated
upon binding.

In this study, we model the native-state protein struc-
ture as a network made of its constituent amino-acids
and their interactions. The Cα atom of the amino acid
has been used as a node and two such nodes are said
to be linked if they are less than or equal to a thresh-
old distance apart from each other [6, 8]. We use 7Å as
the threshold distance. Our results show that proteins
are small-world networks regardless of their structural
classification across four major groups as enumerated in
Structural Classification of Proteins (SCOP) [10]. We
also highlight the differences in some of the network prop-
erties among these classes. Our studies are indicative of
the modular nature of these networks.

II. METHODOLOGY

The four structural classes (from SCOP) of proteins
chosen are: α, β, α + β, and α/β. The α proteins are
composed predominantly of α helices, and the β proteins
of β sheets. The α+β proteins mainly have anti-parallel
β sheets, whereas those in α/β consist of mainly parallel
beta sheets. We consider 20 proteins from each of these
classes whose sizes range from 73 to 2359 amino acids.
The structural data is obtained from the Protein Data
Bank (PDB) [11].

The parameters used to characterise the network are :
(i) The Degree (ki) of a node i is the number of nodes to
which it is directly connected. Average degree, K, of a
network with N nodes is defined as

K =
1

N

N∑

i=1

ki.

(ii) The Average Shortest Path Length is defined as

L =
1

N(N − 1)

N−1∑

i=1

N∑

j=i+1

Lij ,
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FIG. 1: (a) The L–C plot of proteins from four structural classes. (b) Increase in the L of proteins with logarithmic increase
in size (N). Random controls are indicated by an arrow in both the figures.

where Lij is the shortest path length between nodes i
and j.
The Diameter (D) of the network is the largest of all
the shortest path lengths.

(iii) The Clustering Coefficient (Ci) for a node i is
defined as the fraction of links that exist among its near-
est neighbours to the maximum number of possible links
among them. The Average Clustering Coefficient (C) of
the network is defined as

C =
1

N

N∑

i=1

Ci.

A network is a “small-world network” if it has high C
and if its L scales logarithmically with N [12]. A net-
work lacking a characteristic degree and having degree
distribution of a power-law form is known as “scale-free
network” [13].

III. RESULTS

A. Network parameters for different structural

classes of proteins

We calculate L and C for each protein. As controls,
we calculate the L and C of random graphs and one-
dimensional (1-d) regular graphs of the same N and K.
Figure 1(a) shows the L–C plot for the proteins and their
random controls (indicated by an arrow). The averages
of the distribution of L and C for the protein networks
are 6.88 ± 2.61 and 0.553 ± 0.027, respectively. The
Lrandom and Crandom are 2.791±0.348 and 0.031±0.022,
and that for the comparable 1-d regular graphs are
Lregular = 29.0 ± 25.97 and Cregular = 0.643 ± 0.004.
The Kolmogorov-Smirnov test [14] shows that the dif-
ferences between L and C of the proteins and random
or regular lattices (not shown in Fig. 1(a)) are statisti-
cally significant. Thus, these protein networks have sig-

nificantly high clustering coefficient than their random
counterparts and the L and C-values fall between the
random and regular networks in the L–C plot.

Fig. 1(b) shows L of all proteins with different N and
their random counterparts (indicated by an arrow). It
can be seen that L increases with log N , regardless of the
structural classification of the proteins and the slope is
higher than the random controls. This property, along
with high C, indicate that protein networks are “small-
world networks” [12].

B. Degree Distribution

The distribution of the degrees is an important prop-
erty which characterises the network topology. The de-
gree distribution of a random network is characterised
by a Poisson distribution. Figure 2 shows the degree
distributions of α, β, α + β, and α/β protein networks.
The shape of these distributions are bell-shaped, Poisson-
like [7], and the number of nodes with very high degree
falls off rapidly. This is understandable as there is a
physical limit on the number of amino acids that can
occupy the space within a certain distance around an-
other amino acid. Such system-specific restrictions have
been identified to be responsible for the emergence of
different classes of networks with characteristic degree-
distributions by Amaral et al. [16]. They observed that
preferential attachment to vertices in many real scale-
free networks [15] can be hindered by factors like ageing
of the vertices (e.g. actors networks), cost of adding links
to the vertices, or, the limited capacity of a vertex (e.g.
airports network).

C. Fibrous proteins

Most proteins are “globular proteins” in their three-
dimensional structure, where the polypeptide chain folds
into a compact shape. In contrast, “fibrous proteins”
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FIG. 2: Degree distributions for (a) α, (b) β, (c) α + β, and (d) α/β proteins, 20 of each class.

have relatively simple, elongated three-dimensional
structure suitable for their biological function (see
Fig. 3(b)). The “small-world” nature of globular pro-
teins was argued [8] to be required for enhancing the ease
of dissipation of disturbances. We studied fibrous pro-
teins and compared their network properties with glob-
ular proteins of comparable size. As shown in the L–C
plot in Fig. 3(a), fibrous proteins have larger L, although
the C are similar to those of globular proteins. Thus, in
this respect, the fibrous proteins also show “small-world”
properties. The average diameter for the fibrous proteins
(D = 15) was found to be larger than that of the globu-
lar proteins (D = 8.57). This is expected because of the
elongated structure of fibrous proteins. Despite this ma-
jor difference in structure, the network properties are not
much different between the fibrous proteins and globular
proteins. This indicates that the “small-world” prop-
erty of proteins is ubiquitous and persists irrespective of
structural differences.

D. α and β proteins

As seen earlier, both α and β proteins show small-
world properties. On finer analysis, we find that there is
a marginal, yet consistent difference in the C of α and
β proteins as shown in Fig. 4(a). The mean of C for α
and β proteins studied are 0.588 and 0.538, respectively.
According to Kolmogorov-Smirnov test, this difference is

statistically significant. Owing to the helical structure of
the α proteins, the amino acids are densely packed com-
pared to that of the flat β sheets. This may contribute to
the small increase in the Average Clustering Coefficient
of the α proteins. Since α + β and α/β have a mixed
composition of α helices and β sheets, they do not show
any clear distinction.

E. Change in C with N

Clustering coefficient characterises local organisation.
For both random as well as “scale-free” networks, the
C is expected to fall with increasing size [15]. It has
been shown [8] that, regardless of the size, the C remains
almost same in the core of the protein. We show the
change in C with increasing protein size (N) in Fig. 4(b).
The figure shows that C does not change significantly
with increasing size of proteins. Similar result [3] is
shown for the metabolic networks of 43 distinct organ-
isms. This property is suggestive of potential modularity
in the topology of the protein networks.

IV. CONCLUSIONS

Our results show that protein networks have “small-
world” property regardless of their structural classifica-
tion (α, β, α+β, and α/β) and tertiary structures (glob-
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FIG. 3: (a) L–C plot of Fibrous and Globular proteins. (b) Examples of three-dimensional structures of a fibrous and globular
protein (not to the scale) with their PDB codes.
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FIG. 4: (a) L–C plot for α and β proteins. Arrows indicate the means of C for α and β proteins.(b) Change in C of proteins
with increasing N .

ular and fibrous proteins), even though small but definite
differences exist between α and β classes, and fibrous and
globular proteins. The size independence of the Average
Clustering Coefficient in proteins indicates toward an in-
herent modular organisation in the protein network.

In the cell, starting from a linear chain of amino acids,
the protein folds in different secondary motifs such as, the
α helices and β sheets and their mixtures. These then as-
sume three-dimensional tertiary structures with helices,
sheets and random coils, folding to give the final shape
that is useful to carry on the biochemical function. This
structure evolves in such a way as to confer stability and
also allow transmission of biochemical activity (binding
of ligand, allostery, etc.) for efficient functioning. Thus
the networks built from such proteins are expected to
show high clustering and also reflect its modular or hier-

archically folded organisation. Unlike other hierarchical
networks [3] that are modelled to form by replicating a
core set of nodes and links, this network primarily grows
linearly first, and then this polypeptide chain organises
itself in a modular manner at different levels (secondary
and tertiary). Evolution of such type of network archi-
tectures demands further study.
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