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Abstract. Collective behaviour in multicell systems arises from exchange of chemi-
cals/signals between cells and may be different from their intrinsic behaviour. These
chemicals are products of regulated networks of biochemical pathways that underlie cel-
lular functions, and can exhibit a variety of dynamics arising from the non-linearity of
the reaction processes. We have addressed the emergent synchronization properties of a
ring of cells, diffusively coupled by the end product of an intracellular model biochemical
pathway exhibiting non-robust birhythmic behaviour. The aim is to examine the role of
intercellular interaction in stabilizing the non-robust dynamics in the emergent collective
behaviour in the ring of cells. We show that, irrespective of the inherent frequencies of
individual cells, depending on the coupling strength, the collective behaviour does syn-
chronize to only one type of oscillations above a threshold number of cells. Using two
perturbation analyses, we also show that this emergent synchronized dynamical state is
fairly robust under external perturbations. Thus, the inherent plasticity in the oscillatory
phenotypes in these model cells may get suppressed to exhibit collective dynamics of a
single type in a multicell system, but environmental influences can sometimes expose this
underlying plasticity in its collective dynamics.
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1. Introduction

A vast majority of cellular functions rely on the ability of cells to maintain equilib-
rium or homeostasis. However, there are also many functions, which require rapid
and efficient response to even small inputs or signals. Such sensitivity coupled with
robustness is only possible because the biochemical pathways, which carry out all
cellular functions are controlled by combinations of positive and negative feedback
processes [1]. The highly non-linear regulatory mechanisms of control in cells arise
from cooperativity and elicit a vast array of dynamics from equilibrium to periodic,
multistable, multirhythmic, complex and chaotic oscillations [2]. There is increas-
ing evidence of the importance of such varied dynamics in models of circadian,
glycolytic, calcium, peroxidase–oxidase and neuronal rhythms [2–9]. Although the
first experimental observations of periodic oscillations in cellular dynamics were
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made only in the 60s, in the intermediates of the glycolytic pathway, rhythmic be-
haviour of living systems has been well-known for a long time [10]. Multirhythmic
behaviour is more difficult to observe experimentally since such behaviour generally
occurs in a very narrow range of the parameter space in many models. Birhyth-
micity, trirhythmicity and hysteresis have been observed in chemical systems such
as the bromate–chlorite–iodide oscillators [2,11,12].

In order to show coherent, coordinated activity, cells in tissues or organs must syn-
chronize their rhythms and phases, through exchange of information or chemicals
with the environment or the other cells in their vicinity. Emergent synchronization
is well-known in many areas of science. Pendulum clocks, electrical generators,
electronic circuits, arrays of lasers, chirping crickets and flashing fireflies are some
well-known examples of oscillators, which get synchronized due to coupling [13–15].
The exchange of information among cells (coupling) can be global (all-connected-
to-all) or local (nearest neighbours). The coupling can also be direct or indirect.
In many cases the oscillators are arranged in chains or lattices with each element
interacting with its nearest neighbours, in which case we consider the coupling to
be local. The coupling itself may be direct or indirect. Direct coupling takes place
when membrane-bound molecules interact or when there is exchange of signalling
molecules through gap junctions in cells. When an external medium or an intercel-
lular matrix mediates the information exchange, the coupling is indirect. In nature,
there are instances of local and global, direct and indirect couplings, depending on
the structure and function of the interacting oscillators [14,16–21]. In biological
tissues, local, direct coupling is useful in promoting coordinated functional activity.

Synchronization of chaotic and multistable systems has been studied in different
model systems using different coupling schemes (e.g., unidirectional, bi-directional,
nearest neighbour, global and star coupling), external forcing by daylight and other
sources of entrainment and also coupling between populations of interacting cells
[22–27]. Such studies have shown that the coupled dynamics are richer and more
complicated and show different types of synchronizations such as complete syn-
chronization, phase and lag synchronizations, intermittent phase synchronization,
etc. Pisarchik et al [24] show that when a bistable chaotic system is coupled uni-
directionally with an identical chaotic system, synchronization occurs first by in-
termittent switching between the two coexisting attractors and at relatively strong
coupling, there are phase-synchronized, period doubling oscillations with the nat-
ural frequency of the slave system shifted towards half of the natural frequency of
the master oscillator [24]. It is not clear as to how inherently birhythmic oscillators
may behave when coupled. It is important to understand, for the robust func-
tioning of the coupled system, whether the dynamic plasticity gets suppressed or
variability retained, especially in a noisy environment. Even though a comprehen-
sive microscopic view of how stochastic fluctuations in gene expression can cause
cells to change their phenotype has been shown recently [28,29], how cell–cell in-
teraction may regulate such variability is not understood both experimentally and
theoretically.

In this paper, we have studied the synchronization properties of a multicell sys-
tem, diffusively coupled by the end product of an intracellular model biochemical
pathway, exhibiting birhythmic dynamics. Our model multicell system has cells
located at the nodes of a closed one-dimensional lattice. Such structures are found
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in the arrangement of cells in intestinal muscles, walls of blood vessels, plant roots,
etc. The communication among the cells is assumed to be through the diffusion of
the end product of an activator–inhibitor biochemical pathway to the two nearest
neighbours in the lattice. Our aim is to examine the role of intercellular interaction
in stabilizing the non-robust dynamics in the emergent collective behaviour in the
ring of cells.

We have shown earlier [30] that, with changing parameters, a wide variety of
dynamics can be exhibited by the model activator–inhibitor, such as equilibrium,
periodic, chaotic and complex oscillations. In particular, we had shown coexistence
of two types of oscillations (birhythmic attractors – termed Type-I and II) with
very different amplitudes and frequencies for certain parameter values, whose basin
of attraction is fractal [30]. That is, in this regime, single cells, with the same
parameter values, can exhibit two different ‘dynamic phenotypes’ (that are non-
robust with variable frequencies), which can switch from one to the other in response
to a small amount of noise [22,31].

In an earlier work, we had shown that a coupled multicell system in which cells
show periodic or chaotic dynamics, can exhibit partial to complete synchronization
in parameter regimes where the cells show periodic or chaotic dynamics [22,32,33].
Here we show that, birhythmic cells synchronize their dynamics completely, but
at low and medium coupling strengths, for small lattice sizes, it is impossible to
predict the type of emergent phenotype (Type-I or II). For larger lattices, the
emergent collective dynamics stabilizes to only one type (Type-I), irrespective of
the inherent frequency of the individual cells. To study the robustness of the
synchronized state, we use two-perturbation analyses. The long-term behaviour
of the lattices show that the synchronized state (Type-I) is fairly robust to noise,
and only a few of them exhibit variable dynamic phenotypes that depend on the
strength of the perturbation and not on the composition of the lattice. Our results
show that the inherent plasticity in the oscillatory phenotypes in these model cells
gets suppressed to exhibit collective dynamics of a single type in a multicell system,
which is fairly robust under environmental influences.

2. Model and methods

Our model of a multicell system is a one-dimensional lattice, with each lattice
node containing a single cell, which is directly coupled to its nearest neighbours by
the diffusion of the end product. The imposition of periodic boundary conditions
renders all the cells equivalent, leading to a ring of cells (figure 1a). Each cell is
assumed to have a model biochemical pathway that incorporates a coupled positive
and negative feedback process as shown in figure 1b.

The model biochemical pathway consists of a three-step reaction process with
substrates S1, S2 and S3, regulated by an autocatalytic activation of the end prod-
uct, S3, through an allosteric enzyme, E, and negative feedback with end product
inhibition of S1 by S3 (figure 1b). The time evolution of the normalized substrates
of this simple pathway in each cell is modelled as in refs [34–37]. Diffusion to
the nearest neighbours is included and modelled using the discretization scheme of
Oono–Puri [38]. The resultant dynamics of the coupled systems is described by the
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Figure 1. (a) The multicell system showing diffusion to the nearest neigh-
bours. (b) A model cell incorporating a three-step biochemical pathway with
coupled positive and negative feedback processes.

following differential equations:

dxi

dt
= F (zi)− kxi,

dyi

dt
= xi −G(yi, zi),

dzi

dt
= G(yi, zi)− qzi +

e

2
(zi−1 + zi+1 − 2zi), (1)

where

F (zi) =
1

(1 + zn
i )

and G(yi, zi) =
Tyi(1 + yi)(1 + zi)2

L + (1 + yi)2(1 + zi)2
.

Here x, y and z are the normalized concentrations of the substrates; i is the index
of the cell number, with i = 1, 2, 3, . . . , N ; the parameters are assumed to be the
same for all the cells, where k and q are parameters controlling the rates of degra-
dation of S1 and S3; n is the number of molecules of S3 required for the cooperative
inhibition of S1; L and T are the allosteric constant and maximum velocity, respec-
tively, of the allosteric enzyme, E. F (z)i and G(yi, zi) are the functions expressing
the negative and positive feedback processes; e is the strength of coupling. N is
the number of cells in the lattices. When e = 0, the equations describe the dy-
namics of the individual cells. The basal parameter values for this pathway have
been obtained from other cellular processes with similar regulatory mechanisms as
n = 4, L = 106, T = 10, k = 1 and q = 0.01 [34–37]. For these values the system
shows simple periodic oscillations. Numerical simulations of these equations were
performed in Mathematica 4.0 and Fortran 90 programs, using fourth-order Runge–
Kutta integration method and some results plotted using MATLAB 6. For each set
of parameter values, 50 realizations were considered with random initial conditions,
for about 8 × 104 time steps. The first 50,000 steps were discarded as transients
and the figures show the last 3000 time steps of the end product concentration, z.
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3. Results and discussion

3.1 Single cell behaviour

3.1.1 Birhythmic dynamics. For the parameter values chosen here, the pathway
exhibits two types of coexisting limit cycles, one a period-two oscillation of high
frequency and low amplitude (T = 183.4, A = 27), which we call Type-I limit cycle.
The other is a low frequency, high amplitude oscillation (T = 1466, A = 64), called
Type-II limit cycle. Figure 2a shows the two types of attractors in the (x, y, z)
phase space, superimposed for comparison. It is clear that there is considerable
overlap in the phase space of the two attractors – the Type-I attractor has a very
narrow range of variation in the x-direction and hence is almost two-dimensional,
while the Type-II oscillations have a larger spread. The basin of attraction shown
in figure 2b has been mapped in the yz plane, in the region around the steady
state (x = 0.53, y = 37.1, z = 5.3) and is found to be riddled, with no well-defined
boundary [30].

This indicates that the system is sensitive to initial conditions, leading to unpre-
dictability and non-robust long-term dynamics of the pathway in the birhythmic
region, even under small levels of noise [31]. Thus, depending on the initial con-
ditions the pathway can show either Type-I or Type-II behaviour, so that cells
with the same parameter values can have different phenotypes, exhibiting widely
differing periodicities.

3.1.2 Robustness of the birhythmic state. A consequence of the riddled basin of
attraction and the overlap of the two types of attractors in the phase space (figures
2a and 2b) is that even a small perturbation is sufficient to push the system from
one kind of dynamics to the other. We have mapped the long term response to
perturbation for both types of attractors, by externally adding varying levels of
end products, at different phases of one complete oscillation, and observing the

Figure 2. (a) Overlapped three-dimensional phase plots of end product of
model pathway for k = 0.0024, q = 0.1, showing coexisting attractors of
Type-I and II. (b) The basin of attraction around the steady state in the y–z
plane where crosses represent initial conditions that lead to Type-I and dots
to Type-II oscillations. Here e = 0 for single cells.

Pramana – J. Phys., Vol. 71, No. 2, August 2008 427



C Suguna and Somdatta Sinha

0 40 80 120 160 200 240 280 320 360

2

4

6

8

10

Phase of perturbation

S
tr

en
gt

h 
of

 p
er

tu
rb

at
io

n 
(in

 u
ni

ts
 o

f z
)

a

0 90 180 270 360

10

20

30

40

50

60

Phase of perturbation

z(
t)

b

Figure 3. (a) Phase sensitivity to varying levels of perturbations in end
product, z, shown for one complete oscillation of Type-I attractor and (b)
Type-II attractor. Sensitive regions are shown as black dotted line and robust
in gray.

long-term dynamics [31]. Sensitive regions (where the Type-I attractor switched to
Type-II oscillation after perturbation) are shown as black dotted lines, while robust
regions (where the dynamics remained unchanged even on perturbation) are as gray
lines (figure 3a). It can be seen that although there are regions of sensitivity at all
perturbation strengths, there is no overall demarcation. This makes the response
of this attractor to perturbation unpredictable.

The sensitivity map for the Type-II attractor is summarized in figure 3b. The
response of this attractor to perturbation is the same for all perturbation strengths
from 0.5 to 10 units of z. The sensitive regions, where switching to Type-I occurs,
lie near the region of the phase space where the two types of attractors overlap
(figure 2a). It is also the region where the system stays most of the time during the
oscillation. Therefore, neither type of attractor is robust to perturbation in this
region of overlap, making large excursions into the 3D phase space before settling
into either one of the attractors.

3.2 Multicellular behaviour

We consider a multicell system where each cell in the circular lattice can exhibit
either Type-I or Type-II oscillation. We study the role of lattice size, N , as well as
the coupling strength, e, on the emergent dynamics and examine the robustness of
this collective state.

We have considered both homogeneous lattices (all cells exhibiting either Type-
I or Type-II oscillations) and heterogeneous ones (cells exhibiting a mix of both
kinds of oscillations). In figure 4 the typical long-term temporal dynamics of the
end product in all cells of the uncoupled and coupled homogeneous lattices are
shown, for two representative simulations with lattice size N = 20 and coupling
strength e = 0.3. Figures 4a and 4b show the superposed time series of the end
product, z, of the uncoupled cells in the two lattices for each phenotype – (a)
Type-II and (b) Type-I oscillations. Each cell oscillates with its own phase, so that
the overall dynamics is incoherent. The coupled lattices are shown in figures 4c
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Figure 4. Incoherent dynamics of individual cells in a lattice (N = 20)
exhibiting Type-II (a) or Type-I (b) oscillations. Superposed oscillations of
the coupled cells showing synchronization either to Type-I (c) or Type-II (d)
dynamics with different probabilities. Here e = 0.3.

and 4d (plots for the 20 cells are overlapping perfectly). On coupling (e = 0.3)
both types of lattices synchronize their dynamics completely, but interestingly, to
either type of behaviour with different probabilities as indicated by the arrows.
In this case (N = 20), 88% lattices exhibit the emergent-coupled behaviour of
Type-I, and the rest evolve to the Type-II phenotype (although the individual
dynamics are different). The probability for either type of synchronized state does
not depend on the dynamics of individual cells. We also found that the composition
and arrangement of cells of both types within the lattices does not influence the
overall dynamics of the coupled cells (results not shown). Predicting the type
of the emergent synchronized state is impossible because of the riddled basin of
attraction.

3.2.1 Effect of population size. Here we show the results of our study of the emergent
behaviour of coupled cells for varying population sizes for coupling strengths e = 0.3
and 0.7, for lattices showing either type of behaviour (50 simulations each). The
results presented seem to depend on both lattice size (N) and coupling strength
(e) as we elaborate below. Figures 5a and 5b show the percentage of simulations,
for which the collective dynamics synchronizes to the Type-I oscillations for the
two coupling strengths, e = 0.3 and 0.7. The remaining simulations synchronize to
the Type-II oscillations. We find that populations above a certain threshold size
(Nt ∼ 30 for e = 0.3 and Nt ∼ 50 for e = 0.7) always get completely synchronized
to the higher frequency Type-I oscillations. For populations of smaller size (< Nt),
the emergent collective behaviour can be of either type, irrespective of that of the
constituent cells, as shown in figure 4.
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Figure 5. Percentage of simulations showing Type-I dynamics in coupled
lattices of varying sizes, with coupling strengths (a) e = 0.3 and (b) e = 0.7.
Lattices for which the individual cells are all Type-I are shown as crosses and
Type-II as open circles.

Thus a larger number of cells in the ring have the effect of stabilizing the vari-
ability in the dynamics of populations. Such behaviours that are dependent on
population size are well-known in biology. For instance, in quorum sensing, genes
for functions such as bioluminescence are expressed at basal levels while the den-
sity of the bacteria is low. On achieving a critical population size, these genes are
expressed at very high levels leading to enhanced emission of light, in the whole
population of cells [39–41].

3.2.2 Effect of coupling strength. Since the behaviour of the cells in the population is
influenced by the coupling to neighbouring cells, we studied the dependence of the
dynamics on the coupling strength, e, for birhythmic cells, for different lattice sizes.
Figures 6a–c show the percentage of simulations synchronizing to Type-I oscillations
for populations of sizes (a) 20, (b) 30 and (c) 40. We observe the existence of a
threshold value of coupling, below which all simulations synchronize to Type-I,
and above which they synchronize to either type. Thus, we have the existence
of a threshold in coupling strength, in addition to a threshold population size,
for the occurrence of bistability of the synchronous state. The threshold coupling
strength is higher for larger population size (threshold value, et = 0.2, 0.4 and 0.6
for N = 20, 30 and 40 respectively).

Figure 6d shows the positive linear correlation between the threshold population
size Nt, and the threshold coupling strength et, at which the emergent birhythmicity
is lost. As N increases, we find that only one synchronized state persists for a larger
range of coupling. We also found that the heterogeneity in the dynamic composition
of the lattice has little effect on its emergent behaviour or the threshold values
(result not shown).

3.2.3 Robustness of emergent behaviour. Although the faster Type-I attractor seems
to be the preferred state for synchronization of populations above the threshold
size, it may not be stable, due to the riddled structure of the basin of attraction of
Type-I and Type-II attractors. In the coupled system, along with the sensitivity
of the individual cells to noise, the additional constraint due to coupling tends to
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Figure 6. Percentage of simulations of coupled lattices for varying couplings,
with lattice sizes, (a) N = 20, (b) 30 and (c) 40, which synchronize to Type-I.
(d) Threshold coupling strength for definite synchronization to only Type-I
phenotype, for varying lattice sizes. Crosses represent lattices for which the
individual cells are all Type-I and open circles Type-II.

stabilize the emergent dynamics. In order to study the stability of the emergent
state (Type-I), we have characterized its sensitivity to perturbations. We perturbed
the coupled system by externally adding different levels of z to all the cells, at two
time points after the system attained stable emergent behaviour (either Type-I or
Type-II). We examined 50 realizations each, with different combinations of lattice
sizes (N = 10 and 50), coupling strengths (e = 0.3 and 0.7) and perturbation
strengths (zpert = 2 and 10). The initial conditions were chosen randomly. The
1st and 2nd perturbations were added to the synchronized states of the lattice as
shown in figure 8 by arrows 2 and 3. We show the results for one case, with N = 50,
coupling strength of e = 0.3 and perturbation zpert = 2. Figures 7a and 7b show
the typical random value of z(t) at which the end product, z, was perturbed both
the times, in all 50 simulations. These show that the perturbations span the entire
oscillation period and hence are non-specific.

Figures 8a–d show the end product dynamics of four representative simulations.
The time series of 50 uncoupled cells (consisting of an equal number of Type-I and
-II dynamics) have been shown superposed, for 1000 time steps (before the 1st
arrow). On coupling all the lattices show Type-I oscillations (after time = 1000).
The second and third arrows mark the time of the two perturbations (zpert = 2) to
the coupled system. As can be seen in figures 8a and 8b, on the first perturbation,
the emergent collective state (always Type-I), can switch its dynamics (with a low
probability of 16%), as shown here, or continue in the same state as in figures 8c
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Figure 7. Phases of end product at the time of (a) 1st and (b) 2nd per-
turbation (zpert = 2) for 50 simulations of coupled lattices of 50 cells, with
e = 0.3.

Figure 8. (a, b, c, d) Four typical realizations of the long-term dynamics
of multicell system under perturbation. Overlapped time series of 50 cells
without and with coupling (e = 0.3) and after two perturbations of zpert = 2.
The cells are coupled from the point shown by arrow 1. The perturbations
are applied to the coupled synchronized system at points shown by arrows 2
and 3.

and 8d. After the second perturbation, 64% of the cases continued to show Type-I
dynamics, and the other variations in dynamics are observed in a few of the cases as
shown in figures 8a, 8b and 8d (these being 4%, 12% and 20%). The behaviour was
similar for higher perturbation of zpert = 10, with 50% of the realizations continuing
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to remain in Type-I dynamics (similar to figure 8b). Thus we found that emergent
Type-I behaviour was predominantly robust. The results were found to be similar
for the other combinations of perturbation, coupling strength and lattice size. Hence
in the multicell system, the additional constraint due to coupling quickly suppresses
the unpredictable dynamics seen in the single cells (figures 3a and 3b).

4. Conclusions

Synchronization of linear chains of non-linear oscillators have been studied in lasers,
Josephson junctions in physics and in vascular smooth muscles, mammalian intesti-
nal smooth muscle and synthetic quorum sensing oscillators among other systems
in biology [13–15, 42]. In these studies the oscillators considered are in regions cor-
responding to stable, periodic or chaotic behaviours. Such systems are also known
to show behaviours such as clustering, phase locking, quenching, etc. Chaotic os-
cillators are synchronized partially or completely, depending on the parameters
[13–15,22,32,33].

Here we have studied the role of intercellular coupling on the emergent behaviour
of a diffusively coupled linear chain of cells exhibiting birhythmic behaviour. The
fractal basin of attraction facilitates switching from one dynamical state to other
in the presence of low levels of noise [31], and leads to non-robust behaviour of the
individual cells in the lattice. We have shown that synchronization of this kind
of oscillators is unique in that the two coexisting frequencies of oscillations yield
complete synchronization to either of the frequencies depending on a threshold of
coupling strength and lattice size. Thus, irrespective of the inherent frequencies
of individual cells, depending on the coupling strength, the emergent collective be-
haviour synchronizes only to the higher frequency oscillations above this threshold
number of cells in the ring. This indicates that, at large lattice sizes, the inter-
cellular coupling has the effect of stabilizing the dynamic plasticity inherent in the
individual cells.

Although multiplicity of dynamics is essential in situations where variability is
advantageous under selection pressures, suppression of one of the birhythmic states
provides for reliable and definite expression of a phenotype by the population and
is important for survival as seen in the case of quorum sensing response in bacte-
ria. Since cells function in noisy, fluctuating environment they would be subjected
to repeated perturbations. The stability of the emergent synchronized state is of
utmost importance for its functionality. With a two-perturbation experiment we
have shown that the collective behaviour of this multicell system is mostly stable
even under such perturbations. Thus, our study shows that, intercellular interac-
tions (coupling) play a significant role on the robustness of the emergent collective
behaviour of the multicell system under environmental noise by suppressing the
inherent plasticity in the individual cell dynamics.
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