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ABSTRACT

We show, for the two-dimensional case, that the anomalous gauge
theory of chiral fermions yields degrees of freedom whose number
depends on the regularization procedure. For a particular
regularization, the gauge fields have din[4]- rank[4]surviving
degrees of freedom, while for others this number changes to 2 dim[4]
Our procedure and results are compared with Faddeev's recent
suggestions on how to quantize anomalous gauge theories. We
conclude with some remarks on the four-dimensional case.
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In gauge theorles of chiral fermions, generators of gauge transformations

acquire anomalous terms in their commutators which prevent physical states from
being defined as those which are gauge invariant. Faddeevl) has suggested that
these systems may nevertheless be quantized consistently if their constraints are
recognized as being of the second class, and treated appropriately.
Subsequently it has been shown that in two dimensions, both the Abelianz)’3)
and the non—Abelian4) gauge theories of chiral fermions, although anomalous, lead
to consistent quantum theorieg, if regularized.apprOpriately. Consistency and
unitarity were demonstrated for a > 1, where a/2 represents the a priori undeter—
mined coefficient of the A A" counterterm in the effective action. For o < 1,
these theories were shown to be non—unitary.

5)

More recently, Faddeev has suggested that a proper way to quantize chiral
gauge theories may be to introduce an extra gauge—group valued field, with a
gauged Wess—Zumino [WZ] term in the action, designed to cancel the dnomaly in the

6)

original system. Such WZ terms also appear when one attempts to decouple a
chiral fermion from Salam-Weinberg type models. Faddeev also mentions that in
his theory of the chiral system the vector field acquires, loosely speaking, an
extra "half-degree of polarization”, as compared to the corresponding gauge in-
variant non-chiral system.
Faddeev's proposals) is couched in the more important four-dimensional con-—
text. But it is useful to compare within the simpler two—dimensional context, the
physical content of his proposal with that of the original system studied in
Ref. 2)-4) where no extra fields are added, nor the anomaly cancelled away by
hand. In particular, it is intereéting to see whether, and in what sense the
"half degree of polarization” appears in the original two-dimensional model.
‘ 7)

These are the aims of our paper. We will employ bosonization techniques to

obtain our results.

It will be seen that Faddeev's enlarged system, which i% gauge invariant,
reduces upon gauge fixing, to the original chiral system. For the latter, it has
already been shownz)“4) that with the @ > 1 regularization, the space components
AT, of the vector~field multiplet (and their canonical momenta Ea) survive as
dynamical variables, in addition Lo the matter fields. Thus, as compared to the
corresponding anomaly free vector gauge theory in two dimensions, where no com-—
ponents of A2 are dynamical, the ¢ > 1 regularized chiral theory permits one full
polarization component for the entire vector field multiplet. This corresponds

to 2dim[%ﬁ}degrees of freedom in phase space arising from the gauge
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fields. (g.is the gauge group and we are referring to the number of phase-space

degrees of freedom at each space point x)

However, it will be shown below that with the a = 1 regularization, the
chiral theory, while still consistent, permits only N(%) = dim[ﬁ]— rank{:‘g]
degrees of freedom for the gauge field. N(’.) is an even number for any compact
group g,, g0 that one still has an integral number of canonical pairs at each x.
But NL% ) is in general not an even multiple of dim[?]- Thus, in configuration
space the number of dynamical fields surviving from the gauge field multiplet is
s}N(9 ), which roughly equals idim[ﬁ] when dim[9) >> rank [ﬁ] All this is in
addition to matter field degrees of freedom whose number remains the same as in

the non-interacting theory.

Let us begin by recalling the ¢ = 1 case for the chiral U(l) problem, which

3),8)

has already been analyzed Its bosonized action is

.

S["’,Ar] = fdx.lt{-li(aP“’*Af‘)(;F‘*A”) -E’Na,.‘PAv _ T‘;: FP., F"v} -

Ihe associated Hamiltonlan, in terms of canonical pairs (p,n), (4 ,m) and
(Ai,E/ez) is

H =fdx {"i"!*i;@t*r'* 1'_”5*_ LoEA (-n+a,¢+4,)(;\,-a°)+ .,--.r.} (2)
with
T,({x) = O (3>
as a constraint. As permitted, a term vi;, where v(x) 1s a Lagrange multiplier

field, has been added. The preservation of the constraint (3) under time evol-

ution leads to three further constraints.

G‘(g) - L Q,E + M 4+ ;|* - A| = O (4)

q;%=={?";) H]. er

fs.
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and 3, = - (w+3d +2A-hg)=0, implying Ac-A =0 (6)

The requirement {AU ~A] ,H}P: 0 can be fulfilled by choosing v = E + D14 . [In
Ref. 3), the presence of constraint (6) was erroneously, overlooked.]
Equations {3)—(6) form a set of second class constraints in Dirac's termin-
ologyg). Before quantizing the theory, Dirac brackets must be employed. Then
4, Ty, A and E can be eliminated using Eqs. (3)—(6). Only the matter degrees

of freedom ¢ and ©® remain, with {¢(x), n(y)}D = §(x-y) and a reduced

irac
Hamiltonian

Ho= [ds t (1% o) %

The number of non—matter degrees of freedom, namely zero, agrees with
Dim (& ] - Rank [4 ] since Dim{ 4] = Rank[ 4 ] = 1 for this U(l) theory. It is
worth noting that, unlike the anomaly-free Schwinger model, in this ¢ = 1 regu-
larized chiral model there are no interaction effects due to Ap' Only the free
matter field is left. This feature will persist even if Ap were further coupled

vectorially to other matter fields.

Next, let us turn to the non—-Abelian chiral gauge theory in two dimensions.
Consider n massless Dirac fermions whose right—current is coupled to a U(n) Lie-

algebra valued gauge field Ah- The bosonized action for this system, regularized

at ¢ = 1 is 4
[v FUSTAE 3% JUEE VR LV Y P A Y A A 1 e r
S JAP] = Jox T M ~ M Yer M + wi (8)
where U(x,t) is a U(n) group valued field and f%z is the Wess—Zumino term7)
= %, :j“ -t -t P} 9
(v} = o fdy €97 T (VTav vTyvu V) (%
and
N PP o RTRE Y
N 10
T o (7 ) (10)

The field equations, in light conme components (x, = (xotxl)//2 etc. ) are

DT, = = LA (11)



D__ F__+ = i__ A_ (12>
T
and
F = *J, - e*a
D+ -4 + T + (13)

(14)
where the left—hand side gives the anomaly with the o« = 1 regularization.

We will obtain the number of degrees of freedom of this system in two ways.
First let us perturb the system around a class of sclutioms of (11)-(13), lin-
earize these equations and count the number of perturbed fields for which Cauchy

data can be independently specified: One class of solutions of the field equa-

tions is
(o) {o} ), te} : {o]
Alzo Ry =df=r, ad T DA (15)
Here Aio) is an arbitrary Lie-algebra valued matrix function of x4. Let us

choose it to be diagonal. Let

{o} {0} .
A__:. a_ ’ A+ = A+ + a‘. . 3: = ﬁ; A+ + }

(16)

On linearizing Egs. (11)—-(13) around the solution (15), the perturbations a, and
j+ obey, to first order

i - . H (o)
Q_J+— i%a,_a_ + a[&_"j_“—t;_nh{b } (17)

3, [a, A7) = "[Ar)v e, Af’]] + e‘(J;' %) (18)

and

tn (19
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Since Aio) has been chosen diagonal, Eq. (19) implies
D(‘m& (0_) = ©O (20)
This eliminates rank [93 degrees of freedom from a_. The remaining

dimfﬁl‘ rank[%] components of a_ can be specified arbitrarily as imitial data and
their time evolution obtalned using Eq. (19). The fleld a4 is fully constrained
by (18), while (17) places no restriction on the initial data of jy. Thus, the
number of matter degrees of freedom remains unchanged, while the perturbed gauge

field (ays a-) has altogether dim[?] - rank[gj degrees of freedom.

Alternately, let us perform a canonical constraint analysis of the systenm

specified by the action (8). The Hamiltomian associated with this action is “)

H =f°‘m{“(fafa* RE) = (f= HANA-A) + L (487 BEA) +vm ] (2D

Here all fields (including the Lagrange multiplier field v) are Lie-algebra

valued Hermitian matrices. {4 ,m )} and (Al,E/e2) are canonical pairs while PR 1L
Hd

are the right (left) charge densities of the free Fermi field, obeying the fam—
4)

iliar Kac-Moody current algebra ‘. In compounent notatiocn,

@ b abe _¢ ab .
} = - (x- 4 -
AR ALY B I A L R
a 3
{fgw, J‘;mﬁ?_&_ = ©
The constraint
T = @ (22)

requires for its preservation further constraints. We have

- -‘— -..l.— bnd = -
BT = o D E + ‘nrA' j’g = O a 23)
Then .
aoc. = :rt__“g-l-u.[ﬂo,cd-i_ﬂA,J =0,
which implies, given (23) that
Bz e+:ilA ,A] =0 (24)

and .
Bol?; = e‘fR + %:; (Ao-tA,) +i[‘\°, 1E 4+ bnAo] - [U‘, Al]

113

C +i[v,A] =o (25)

Equation (25) cannot be inverted for the Lagrange multiplier field v. Upon
choosing a basis in which A; is diagonal, (25) implies a further constraint



D.-a_%[c] = 0 (26)

For generic A, Eq. (26) gives rank[gJ]constraints. The non—-diagonal components
of (25) can be satisfied by choosing v suitably. This still leaves the diagonal
components of v umspecified, but these will be fixed by requiring that the con-
straint (26) be preserved in time. Altogether, Egs. (22)-(24), and (26) yield

ddim[4]+ rank[ 4] constraints whicﬁ can be imposed on the 4 dim[q:] gauge field
variables Ty, A;, E and 4;. This leaves us with N(§ ) = dim[ﬁ] - rank[§) gauge
field degrees of freedom (in addition to the usual matter degrees of freedonm

¢contained in or L) in agreement with the earlier linearized analysis.
3

Constraints (22)-(24) and (26) are of the second class. Before quantizing
the theory, one must employ Dirac brackets to convert the constraints into strong
equations. They can then be used to eliminate dependent variables. We will not
complete this exercise here. Suffice it to note that when counstraints (22) and

(23) are used, the Hamiltonian (21) can be written as

2
= - I I
H = ]dx T {'ﬂ (PR. e A|) + -’tfhr[_, + zg"-E } (27)
The Hamiltonian dis thus positive on the constrained subspace. When Dirac

brackets are converted to commutators, one has formally a consistent unitary
quantum theory for the o = 1 regularized non-Abelian chiral model (8), with

dimf4]- rank[ﬁ]degrees of freedom for the gauge field.

Now let us follow Faddeev's suggestion and enlarge these systems by adding
an extra field h with a gauged WZ action. For the U(l) case, the action in (1)
is enlarged to

S, 8, h] = SLea] « f‘{’“’w (£ 3k A,) (28)

This action is, by design, gauge invariant under ¢ *> ¢-x, Au-+ Au+6ux and
h + h-yx. Its canonical analysis yields two first-class constraints, T, = 0 and
G= (L/e?RE +x
E=90and

through a subsidiary condition. Consider the gauge h = (0. Preservation of this

1]

+9:¢4 + Ty +0;h = 0, along with two second-class constraints

¢

hoT A; = 0. 1In quantizing this theory, one has to fix a gauge,

condition forces another constraint Ay — A} = 0. Altogether these constraints

reduce the system {28) back to the original system described bylEqs. (2)=(7).



In path integral formalism, when the gauge fixing factor &(h(x,t)) is in-

serted into the path integral of exp[iS(¢,Au,h)] over the fields ¢,Au and h, it
reduces to

I N

D - fD:p DAL exp [LS(Q’,AP)] (29)

This is
fields.

just the naive path integral of the original system (1) over all its
Since S[¢,Au] is non-singular (recall that it is not gauge—invariaunt}, B
defined.

is well To see if P correctly reflects the constrained quantum theory

of the system (l), compare it with

P - JM u',[;jba -;a,,cta"‘?} (30)

In P, only the independent field ¢ appears, with a free action obtained from the
(23-(6)

for on-shell

free Hamiltonian (7). The fields constrained to vanish by virtue of Egs.
However,

Since S[¢,Au] is

do not appeax at all in P, whereas they do appear in P.

~

S—matrix purposes P is equivalent to P. This is easy to check.

quadratic, the associated propagator in terms of (¢,Ay,A-) is given by the ma-
R Y b (K 22) (Ryg) ]
[ N
e —

The omly pole in (31) is at k? = 0, where the residue matrix has only one non-

zero eligenvalue, corresponding to the ¢$—-¢ propagator. Propagators involving
fields which are constrained to vanish in the canonical analysis are non-zero in
(31), but they are all local {(i.e. polynomials in ki, k-) and will not affect the

S-matrix. For instance the ¢—A_ propagator is just (-k_/ez)- In short, ou=-shell,

the naive path integral (29) reflects the second-class constraints and is equiv-

alent to (30).

Note that this Faddeev enlargement procedure can also be done for the o > 1

2)

regularization. The original bosonized action for the Abelian case is 7,

L v Lo [
S o (o AL) = [deott {14 e +(gM-e” Jonon, + LAW- L RUFT) o)

Upen introducing the field h, the enlarged gauge invariant action is



S‘d,\ [q” A?‘lk] = S-tw [‘P’ Ar] +1Lw {eav‘f*k Ay, + ‘i;-_l(a,‘ha't.+:.ﬁra“k)}(33)

Although (auh)2 occurs in (33), no new degrees of freedom are introduced as com-—
pared to the system (32). Gauge must be fixed for the system (33), and the gauge
choice h = O reduces it to the original system (32).

For the non-Abelian chiral theory, the Faddeev enlargement of the a = 1
action (8) yields the new action

. Y =1
S[v, A k] = S[v, AT - Pwl(h)—;_;‘(dxa T {et Wik ALY »

Here h is a U(n) group valued matrix field. The gauged WZ terms involving h that
have been added in (34) are designed to make S[U,Au,h] gauge invariant under
U- Ug, k- hE, A, g~l(A +id )g. ©Notice that S[U,A ,h] is just the gauge
transform of S[U,Ap] under U+ Unh~! and A, > B(A HB Ih7'. If the field h were
integrated over, without gauge fixing, that would formally amount to averaging
correlation functions of the original theory over the gauge group. However,
gauge must be fixed. Upon using the ghost—free gauge h = 1, one again restores
the original system in Eq. (8). Our earlier result that the original system
contalns dim[ﬁ]— rank[%] degrees of freedom for the gauge field, clearly holds
for the enlarged system (34) as well.

We conclude with some comments about the more important four—dimensional
case. We have seen that in two dimensions, the @ = 1 regularization yieilds
dim[4) - rank[4] degrees of freedom for the gauge field. For the a > 1 regular-
ization, this number changesa) to 2 dim[q]’while for « ¢ 1 the theory is non-
unitary. We expect that this dependence of the comnsistency and the number of
degrees of freedom on the regularization would also be a property of the four—

dimensional chiral gauge theory.

In four dimensions, bosonlzation techniques are not available and one must
work with the action in fermionic form. Then Faddeev's method of introducing an
extra field h and adding gauged WZ terms to this classical fermionic action pro-
vides a natural way of treating the constraints of the chiral gauge theory in the

path integral formalism. For instance, consider the Abelian chiral theory with a

regularization such that the ancmaly is proportional to Fuvf +» The correspon-—~
v

F

ding gauged WZ term to be added to the action is h Fuv , where h is a
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scalar field which gauge transforms as h + h — y. This leads to a gauge in-
variant quantum theory. The h = § gauge reproduces the original chiral theory.
Alternately, integration over the field h forces the constraint G(Fuvf“v) in the
path integral [compare this with Eq. (2.19)_of Ref. (10)]. We believe that in
order to test the unitarity of this chiral theory one must use a perturbation
expansion which respects this constraint at each order. [This is also suggested
by Ref. 5) when applied to the Abelian case.] One way to obtain such an expan—
sion may be to parametrize the surface F Y = 0 and revrite the action using

¥11)

these co-ordinates, as is done with o-models « Another approaéb may be to use

the perturbation expansion for a composite~field effective actionlz), which for
our problem would break gauge invariance at the lowest order. In any case, the
question of whether anomalous gauge theories are consistent in four dimensions

needs to be further examined.
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