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Abstract. We critically examine some recent claims that certain field theories with
and without boson kinetic energy terms are equivalent. We point out that the cru-
cial element in these claims is the finiteness or otherwise of the boson wavefunction
renormalisation constant. We show that when this constant is finite, the equiva-
lence proof offered in the literature fails in a direct way. When the constant is
divergent, the claimed equivalence is only a consequence of improper use of divergent
quantities.
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1. Introduction

The classic paper of Nambu and Jona-Lasinio (1961) in which ideas from the theory
of superconductivity were applied to relativistic Fermion field theories has led to
many far-reaching consequences. Amongst other things, the paper introduced boson
fields as collective coordinates to describe fermion-antifermion pairs. The original
Nambu-Jona Lasinio model was in (341) dimensions, where the four-fermion inter-
actions considered by them are non-renormalizable. The results therefore involved
using a momentum cut-off A. To avoid this problem and for other reasons, many
years later Gross and Neveu (1974) considered essentially the Nambu-Jona Lasinio
model but in (1 - 1) dimensions, where it is renormalizable and has many interesting
properties. As part of their work, Gross and Neveu also pointed out in a compact
way how a fermionic system governed by the Lagrangian '

— . 2 S
Z1= Grd— M)+ Gy, )
is equivalent to the Yukawa-like system

Zo=9 (yd —M)p—g b — i @)

Similar relations hold when the scalar bilinear form 3  is replaced by other bilinear
forms. Such equivalences are by now well-known, and can be proved easily through
a variety of methods. The important point, for the purposes of our paper is that
the boson field in (2) has no kinetic energy terms. Its field equation is just the
constraint ¢ =— gy, and it acts, loosely speaking, as a collective co-ordinate for the
pair Jy. Wehave no quarrel with these results, or with any other features contained
in these two excellent papers.

491

{it
)
|



[ES——————

492 R Rajaraman
However, more recently, a new twist has been added by some authors to such

equivalence relations. It is claimed, for instance, that not only are the systems %,
and %, equivalent, but that both are equivalent to the genuine Yukawa system

Gy = (fy3—M)§ — gy — §4* + & (0 P 3)

A compact and clever derivation to this effect, using functional integration methods
is offered in the work of Eguchi (1976) (see also other references cited therein). Such

ideas have been extended to other models in Eguchi’s paper and more recently by

Rajasekaran and Srinivasan (1977, 1978). One of the models treated in the latter
work is the Amati-Testa (1974) model '

£ = (iyd + M) ¢,

under the constraint

it i

jp.i = $ e ‘5 i, (4)

where s are quark fields and X, the SU(n) generators. It is claimed, applying the
Eguchi proof, that this is equivalent to the familiar gauge theory

5’=$(i?"3—M)S”‘“%Gw'Gpv——gJ;w%gbAﬂ. (5)

Once again, if the term — G,y Gy, were absent in (5), its equivalence to (4) may

be trivially valid, but what is claimed is equivalence in the presence of that term.

Such results, if true, are clearly very interesting. Apart from their academic
interest as startling results in the theory of quantum fields, some of the systems in-
volved are important in their own right to particle physicists. Thus, the Yukawa
theory in (3) is widely used, and is known to be renormalisable in (3 + 1) dimensions.
The (4 y)* theory in (1) is also familiar, but is generally considered non-renorma-
lisable. Their equivalence, if true, would be a major result. Similarly, the system
in (5) is just quantum chromodynamics—the leading contender for a quark model

- of hadrons, and its alleged equivalence to the Amati-Testa model is also an important

matter.

At the same time, several features of such ‘ equivalences ’ are disturbing. One
would, at first glance, expect that a system such as (2) where (9, $)? is not present
would contain quite different physics from (3) which has a (9 p®)? term. In the latter
cdle, the field ¢ has a non-trivial equation of motion and a canonical momentum.
One can use the standard canonical quantisation procedure for ¢. In the former case
it obeys just a constraint equation and has no canonical momentum. Of course, the
spirit of the Eguchi proof is that upon integrating over the i degrees of freedom, the
field ¢ acquires (9p4)* terms through radiative corrections. However, radiative
correction terms are of higher order in powers of %, and the notion of a canonical
momentum which is explicitly proportional to # is disturbing in the normal quantisa-
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tion framework. Furthermore, the proof offered by Eguchi and subsequent workers
involves rescaling fields by divergent factors, and these factors are treated rather
formally, if not casually in these papers. While the success of the renormalisation
programme in QED has given us some confidence in dealing with infinite quanti-
ties, it is well known that they are fraught with peril.

These are merely misgivings and do not amount to solid criticism. But they
motivate us, especially in view of the potential importance of these results, to examine
critically the validity of Eguchi’s proof of equivalence. That is the purpose of this
article. -

We begin in the next section with an example from non-relativistic quantum mecha-
nics. It is designed to study the anatomy of the Eguchi method in its simplest con-
text. On the one hand, the candidates chosen in § 2 are such that they can be clearly
distinguished from one another by counting the degrees of freedom. At the same
time, all the algebraic steps of the equivalence proof can be carried out here. No
divergent radiative corrections occur to obscure the issues. Given that the starting
systems are a priori distinct, the equivalence proof must of course fail for this example.
That it does, but at the very last stage and in a fairly subtle way.

The lessons of this analysis help us greatly in § 3, in studying the more interesting’

field theoretic examples considered in the literature. We illustrate our arguments
using the systems (1) to (3). We find that equivalence between such systems as (2)
and (3) will not hold if the (9 w$)? term arising from radiative corrections has a finité
coefficient. This shows clearly why the proof of Eguchi and successors necessarily
relies on the presence of divergent quantities, which are then used to rescale fields.
Yet, at the same time, if these quantities do diverge, we argue that rescaling fields by
such divergences is neither permissible, nor implied by the usual renormalisation
procedure. If the manipulations of the Eguchi proof were carried to their conclu-
sion they would lead to absurd results in the presence of such divergences. We also
show that if one tries to recast the last stages of the proof by handling divergent
quantities carefully, the equivalence does not follow in any obvious way. From all
this we conclude that the equivalence claimed between systems (2) and (3) is merely
the result of improper use of divergent quantities. Our argument, with obvious
changes in algebra, is equally applicable against similar equivalence claims for other
models. :

We should emphasize that from the outset we have no objection to the equivalence
of pairs like (1) and (2). Our conflict is only with the more recent articles which
equate systems like (2) with corresponding systems like (3) which have the added
boson kinetic energy term. We also do not argue against the presence of fermion-
antifermion bound states in systems like (1). But the possibility of such bosonic
bound states does not necessarily lead to its equivalence to (3), contrary to what has
been implied in this recent literature. In fact, we argue that these equivalence proofs
can be examined in their own right without appealing to possible bound states, and
are found wanting. We conclude that in view of these proofs not holding water,
the possible equivalence of systems like (2) with (3) or (4) with (5) is at best an open
question. In fact, conventional renormalisation analysis would indicate otherwise
for the pair (2) versus (3). V ~
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2. A non-relativistic quantum mechanics example

Consider the following three systems, governed by Lagrangians:

L, = 3G —wix?) + §°x% — x5 ®)
L2=%(552—w2x3)-——g1x"‘y — 3y — x5, - (M
Ly =3 —wix?) — L¥*y — '—’gy“ + 32— X (8)

The choice of these systems is clearly motivated by analogy to the field theoretic
example in (1) to (3). In the place of the fields (X, t) and ¢(x, £), we have x(t) and
(t) respectively. The main difference is that the systems in (6) to (8) involve a finite
number of dynamical variables (either one or two). Both x and y are functions of
time ¢ alone. They can also be thought of as boson fields in zero-space dimension.
The extra term (—x®) in (6) to (8) has no anologue in (1) to (3) but is necessary here
to ensure that the Hamiltonian is bounded from below. [It is not needed in (1) be-
cause i is a Fermi field and the Hamiltonian for (1) is bounded from below as it
stands, despite the (jup)? term in &, having a positive sign.] The presence of this
additional term common to L,, L, and L, while necessary, does not make any essen-
tial difference to our problem. Our task is (a) to establish that while systems L, and
L, areindeed equivalent to each other, the system L, is distinct and different, (b) to
attempt to ‘ prove’ the equivalence of L, to L, and L, by using functional integral
methods identical to that of Eguchi and point out where exactly the proof fails, as it
must for this example, and (c) to draw inferences about the interesting field theoretic
examples considered in the literature. :

The statement () is intuitively evident, but since it is a crucial point it is worth
double checking with canonical principles for quantising constrained systems. The
Lagrangian L, leads to the following equations of motion:

% = — whx — 2g; xy — 65, ’ Q)
and y=—g X% - (10)

The second equation is clearly a constraint. Classically, the system has only one
independent degree of freedom, say, x(¢). The variable y(¢) is just another name for
—g.x*(t). Upon substituting y=—g;x* into (9) one obtains the equation of motion
for the system L,. 'Thus I, and L, are classically equivalent. Similacly, the quantum
theory of L,, when properly constructed, is identical to that of Lj. For doing this,
we use Dirac’s theory for quantising constrained systems (Dirac 1950; Hanson and
Regge 1974). Dirac’s prescription calls for constructing the Dirac Bracket from the
Poisson Bracket, and replacing the former rather than the latter by commutators to
quantise the theory. To start with, the system L, has two co-ordinates x and y
with their canonical momenta p, and p,. There are just two constraints which, using
Dirac’s notation, are

¢, =p, = (0Ly/0%) =0, ‘ 11
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and pp=y+gxt=0 - . 1 12)

whose Poisson Bracket is {951, 962}:—-1. Then, for é.ny two classical observables,
A(x, py, ¥, py) and B(x, py, ¥, py) the Dirac Bracket in this case reduces to

{4, B}os = {4, B} — {4, ¢} {952’ B} + {4, ¢s} {¢1, B} (13)
Note that ' -
{4, ¢} = (04/09); {4, ¢} = — 2, (34/0p,) — 24/2p,,

and similarly for B. Hence

0A0B OB aA)
A, BYpp = {4, B —(_.__-___.
{4, Byop = {4, B} 2y op, 0y op,
BAaB 3A ]
-2 — 2g; X)
[( &= oy om op. Vg
=(Qé 2g,% _3;4)33 (aB 2g,% Qf) o4 (14)
ox oyl opx \ox 0y/ Opx

Notice that dy/dx=—2g,x if y were set equal to —g;x*. Thus we see that the Dirac
Bracket in (14) is just the Poisson Bracket that would result if we were to discard y
as an independent degree of freedom, and set p,=0 and y=—g,x? in all observables.
That is, we insert the constraints (11) and (12) into every observable. The Hamiltonian
for the system L, becomes

Hz = ?pr +}.’pv - La(x’ 72, y)s
= ipx - L2 (x’ JZZ, — 81 xz)’

=3p" + 3w — g (x%/2) + x°. (15)

These manoeuvres are done already at the classical level to eliminate the constraints
and bring the system to the canonical Hamiltonian form. We quantise the system
only after this by setting [x, p,] =i#%. The complete set of commuting observables is
just one operator x. Wave functions ¢ (x) depend only on x even for the system L,.
The operator y can be defined, but it is always equal to —g;x%. The quantum system
corresponding to L, is thus identical to that in L, and its Hamiltonian as given in (15)
is the same as what would arise for L;. By contrast, the system L, has two genuine
equations of motion:

X = — wix — 2g,xy — 6x5, and
y=—mly — gyx* (16)

Thus, there are two separate degrees of freedom. The quantum theory of L, will
have two independent commuting operators x and y and wave functions will be func-
tions ¢ (x, y) of two variables. Thus, L, and L, differ in a very basic sense in terms of
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number of degrees of freedom. For no finite choice of parameters g;, gs, m?, etc. or

rescaling of variables x and y, can the quantum (or classical) system L; be made
equivalent to L, or L.

We have perhaps belaboured the point in applying Dirac’s powerful machinery to
such trivial systems. But we wanted to outline the logic, using time-honoured canoni-
cal quantisation procedures, which establishes that L is not equivalent to L; and L,.
1t will be useful to remember this logic in studymg the more complex field theory
examples.

As long as we are being careful, it is also worth disposing of a mathematical red-
herring. There are theorems which map a plane, in some sense, onto a real line.
Similarly, in the quantum-theoretic context, it is possible to map the Hilbert space of
functions ¢ (x, y) of two variables into functions of just one variable ». These
theorems may cause anxiety about the sanctity of the number of degrees of freedom
as a distinguishing feature of different systems. However, we are assured by mathe-
maticians that such mappings are necessarily non-differentiable. Thus, a classical
system with smooth time evolution (say, the trajectory of a particle on a plane) des-
cribed by x(¢), y(¢£) will necessarily be a non-differentiable function »(¢) in terms of
the equivalent single parameter. A similar pathology will result for Heisenberg
operators when the Hilbert space of  (x, y) is mapped to functions of just one
variable. Therefore, for purposes of meaningful physical or dynamical description,
these theorems do not violate our intuitive notion that a particle in n-dimensional
space, classical or quantum, needs » co-ordinate variables and no less.

Having thus satisfied ourselves that L, in having two degrees of freedom, cannot
be equivalent to L, and L,, we can beconfident that attempts to prove such equivalence
by alternate path integral methods must necessarily fail for this example. To see
exactly where this failure occurs let us apply Eguchi’s method as adapted to this
example.

Let us begin with L, and evaluate exp (z W1J, n]) which generates the n-point corre-
lation functions of the quantum system, i.e.

(—i)mm om™ (exp iWy [J, 1))
exp (iWy) &J(ty) ... &I (ty) n(ty)) ... O (tm Vs=n=0

O T (.. ) Y &) 9] | 0 - (1)

This functional W,[J, 7] is given, as is well known, by the path mtegral (Abers and
Lee 1973),

exp [iW; (J,n)]
= [ DIx(®)] DIy()] exp {i [ dt[Ly + T () x(t) + 7 () y(®)] }. (18)

Here, and in subsequent steps, we set =1 and ignore overall constants multiplying
exp (/W) since they have no consequence. We insert (8) for L; and use the compact

vector-space notation, { f]g) =/ f(t) g(t) dt, for any two functions f and g, and any
operator 4, and { f| 4|g) = [ f(t) A g(t) dt.
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Then
exp [(W3(J, m] = [ D[x] D[y] exp [i ({x| M |x) — g,{x2| D
+ 2| 019) =28y + x> Ln |9, (19)
1 = 52
where M = (572 +w2), 0=—1 (BF n m2) | (20)

2
andfdt () =—fy.g_t%;dx,

on integration by parts.
Note that,

exp [i(KJ] x> —{(® ] x2 3] =vexp [i fdt J () x(t}]'

(=i asa) 1n

=> Un x)[i f dt’ (9%/0 J8(t") ] exp (i f dt J (1) x(t))

=exp {1 [ dt' [0%0 7 (¢} exp (i (T | %)), @)

The last equation is rather compactly written. The first exponent is understood to
be expanded, and the functional derivatives §/d J(¢') are to act on exp (i { J [ x D).
Thus,

oxp () = [DB] exp {i[ 3] 01y > + <l +
+ [ ar @ 79]}

'fD[x]exp{i[(le—gg:\x)—l—(Jlx)]}. | (22)

The functional integral over [x] has quadratic form, and can be exactly integrated to
yield

fD[x] exp {i [{x| M —gy|x) + <J|x>]}
= [det (M — guy)] ™* exp [(—i/4) (I | (M — g™ | T, (23)

again suppressing overall constants. This last step has used the fact that

2
M—gy= w%(g—ﬁ%—wg) — &Y

J"‘iw
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is a real symmetric operator. Further

[det (M — goy)] /2

= [det M2 exp[ —4Trln (1 - ;—[gz y)]

= [det M]2exp [i V (g, ¥)], ' (29
where the functional
V gy = ——izm 1o {_1_ 2 y]” (25)
n=12n M
Note that the expression,
Tr[ L 2 Y ]n
7ot

stands in more explicit notation for

&2 [ dty... [ dt Gt 1)y () G (1) ¥ (1)...G (ta ) ¥ (1)
where G(t,t) =1/M

— f (dV/Tr) ¢Xp (i 4 (tl — tﬁ))‘ (26)

V2 — o - je

The term V[g,y] represents the radiative contributions to the effective action of the
y-variable upon integrating over x. Following the Eguchi procedure, we separate
from V[g,y] those pieces which are similar in form to

(rio|yy =] diy (= Z—m)s

Such pieces arise from the
1 2
Tr (,_ )
Mgz Y

term in the expansion (25). We have

i 1 2
— _Trl =
© 4 r[Mg“]

) dv dv'"
= — ig,? f dtldtzzf {;y (t) y () x

exp [[(v' — ") (t, — 1,)]
(O) — @ +ie) (0) — w? + fe)

f

g [y 6) ex b (= 1] K6t @)
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where
— idy’

28
— w? 4 ie) (' — v)’— w? + ie) @8)

K@) =(1)2
0 =0 [ o
Note that K(v) is finite and well defined. So are its Taylo rcoefficients
= (9"K(0)/&v") in
K@) = K, + 12 v* K, + (1/4) 4K, + ...... (29)

(Odd terms do not occur as can be checked).
Inserting (29) into (27) we can write,

—-ig.__z_zTr [.l y]2
4 M

d K, v .
—gefdndn 2y (Y ) e liv (e — w16

— e [ @0 (K—1 5Ty 0 + I > 4 tems) (30)

Bearing all this in mind, let us go back to (22) with (23) and (24) inserted. We have,
exp (iWy) = (det MY [D[y] exp [[] (¥ [ O]y > + {11y )

+ ¥V (g2)]

exp e e = 1) M — g 7] (1)

Let us separate the two terms explicitly shown in (30) and lump the other terms of
(31) together to write

xp Wy, U, 7l) = (@et My [ D DY exp §1(C»[0] )
+<n|y>+fdty(t)(g22K —} g2 Kza ) ()
+ Va5 7D ¢ (32

where f/:[gay, J] is a functional of both y(#) and Jiz) and contains all remaining terms
in (31) not explicitly shown in (32). The important point to bear in mind is that

v [g.7,J] depends on (t) only through the combination g,)(¢) where g, is the coupling
constant.

b2t
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An exactly similar evaluation may be made for

xp(; ;) = [ DDIDI exp [1 [ dt(Ly +J(1)x (D) + () y(1)].
(33)

The only difference between L, and L, is that the term$y:—£m?y?in L, is replaced by
just —§y®in L,. Clearly, following the steps shown above, we will get

exp ( Wy [, 1]) = (det MY 22 [ D3] exp {(i (— <»[»D) + <019
+ [ 450 62K — 1 82K, @0t ) + Plgyp 1)) (34

Comparing (32) with (34), we see that W;[J, 7] differs from W,[J, 5] only in that (32)
contains {y| 0|y} in the place of —}{y |¥> in (34). Now, if the quantum systems
corresponding to L, and L, were equivalent, the n-point functions of the type shown)
in (17) should be equal in the two theories, except perhaps for an overall scaling on
the variables x and y. In other words exp (iW; [J(1), n(2)]) should at least equal a
exp (iW,[BJ(2), y1(t)]) where a, B and y are some constants. In Eguchi’s work and
in its successors along the same theme, such an equivalence is claimed through
appropriate rescaling of fields. Let us attempt the same trick here.
The exponent in (32) has the form

[ {er Rt D+ 82K — (212} + {n |5 + Pl I,
@39

while the exponent in (34) has the form

J @t {et 015 + @PE—D 7} + o1y + Plen . G6)

In (35) and (32) let us rescale variables to Yr» 825 and n, given by

DaO(®] = (go/gar) = (/1] = (g2 Ky+ 112, (37

| Similarly, in (34) and (36) let us rescale to Yrs &1z and 7, given by

DrOYO] = (g1/g1z) = IOt = (e 2K ). (38)
Let us further suppose we can choose m?, the parameter in L, such that

2K - 2 2
%"T{%) = (22K~ P&, Ky) = (— 3/2). (39)

Then clearly, both exp (i) in (32) and exp (iW,) in (34) could be cast into the com-
mon form

5P 17y s ngl) oc [ D gl exp {i [ dt (332 — (u212) yg2]

+ i <77R IJ’R> +i I‘;[gZRyR: J]} (40)
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and
exp (iWy [ing]) ¢ [ Dyl exp {i [ dt Bygd — (u312) 3]

+ i <ng|vr) + 17 lg1zyz, N1} (1)

Of course, the factors which scale y into Vg in (37) and (38) are different in the two
cases, but this will only lead to an inconsequential difference in the constant of pro-
portionality in front of the functional integral (40) and (41). Similarly the fact that 7
is related to 7, by a different factor will only lead to a time-independent constant of
proportionality between n-point functions of the two systems. It would appear then
that the systems L, and L, which we have taken pains to establish as basically distinct,
yield equivalent forms for the generating functional exp [i W(J, 1)]. This apparent
paradox is resolved by noting that although the functional form of the path integrals
in (40) and (41) are the same, the allowed range of the parameters is non-overlapping.
Note from (37) and (38) that

& = &/(8:2 K, - 1)12, while &1z =8/ 2 K)'? = (1/ vV Ky).

Recall further that for our system, the constant K, as obtained from (28) and (29)
is a finite constant., Thus, for no finite choice of the original couplings g, and g,
can the renormalised coupling g,, and g,, be equal. Despite right hand sides of (40)
and (41) looking identical, for no finite rescaling of variables ¥ (or the currents 7)
will the functional W;[J, 7] be equivalent to W,[J, ]. The two systems L, and L,
are indeed distinct, as our earlier analysis based on well founded canonical procedure
has established. '

This does not necessarily prove that for the higher dimensional field theory examples
considered in the references, the corresponding equivalence is not true. The analysis
of our simple example, however, brings out the crucial elements involved in such
equivalence proofs, and will help us throw more light on their validity for the inte-
resting field theoretic cases.

3. Equivalence proofs in field theory
To consider the possibility of such équivalence in field theory, let us work with an

example. Consider the systems mentioned in the introduction and described b
the Lagrangians '

Py =y 85— M) ¥ + te P (T, 42)
S =g @y 8—M) — g pd — 4% and (43)
Py = iy 8— M) — gaJipd — $mPd* + 3 (Opd). (44)

Here y==y(x, t) is a Fermi field and ¢=¢ (x, 7) a Bose field. Our arguments will be
illustrated for these systems, but they are equally valid when adapted to the other
equivalence candidates in the literature mentioned. :

T
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As stated in the introduction, we have no quarrel with the equivalence of #; and
#s. One field equation arising from 2, is

p=—gi . (45)

This is a constraint equation, which can be used to eliminate ¢, and this makes %,
identical to ;. Careful analysis using the canonical procedure for quantising con-
strained systems will support this, as in the preceding section. So will functional
integral methods by the well known procedure of integrating over the ¢ field. Of
course, this equivalence is meaningful only when both theories exist, as they certainly
do in (1-41) dimensions. But the interesting questions concern the equivalence of
&3 with &5 and ;.

The example in the preceding section was deliberately chosen with a finite number
of degrees of freedom. Thus we were able to claim with certainty that the system
L; in (8) was distinct from L,, in having two degrees of freedom versus one. For
field theories, there is a field variable at every space point x. The systems %5, %,
and %; in this section all have a continuous infinity of degrees of freedom. We
cannot therefore easily claim, by counting degrees of freedom, that % is in-

equivalent to &,. Nor can we rely on the formal equations of motion for such
purposes. They are for .%,,

(yd—M)y=g¢; ¢=—g i (46)
and for &,
(v =M= b O +mid=— g Tg @)

Classically, these equations are nof equivalent, no matter how you scale the fields or
vary the parameters. But in quantum field theory, the presence of operators such as
(%, 1) ¥ (x, ) makes these equations ill-defined, thanks. to ultraviolet divergences.
Thus, in contrast to §2, the quantum field theoretic systems are much more murky.
One cannot a priori rule out the equivalence of %, and #,. Of course, these systems
do notlook superficially equivalent. The usual renormalisation analysis would say that
in (3 + 1) dimensions, the system &; = %, is non-renormalisable while the Yukawa
system % is renormalisable. Thus conventional wisdom would suggest that &£, is
not equivalent to &%, Therefore the burden of proof is not on us to prove their
inequivalence, but rather on those authors who claim to demonstrate their equiva-
lence. All that we do here is to critically examine such claims and point out that
the proof involves an essential and non-permissible use of infinite quantities.
These proofs, as stated earlier, calculate the Generating functional

exp [iW[J,7,1] = | DI#] D[] D}
exp [zj dxdt (& +T  + 37T + 7795)]

for the cases Ly anc% Z3. We will merely quote the final result, since it has been
worked out in Eguchi (1976) and is also a straightforward generalisation of the steps
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in our § 2. For both ¢, and &, one can write exp [i W, 5 (JJ, )] in the common
form

[ DIggl exp [i [ dt dx G (op ) — 3 12 8% + g b)
+i Vigbn J, 71 (48)

where, for the &#,, 4, n and the coupling g, are scaled by

br(X, 1)/B(X, £) = (82)'" = (g1/815) = (X, 2)/mp(x, 1) (49)
while for &,

(Pr/$) = (82°Lp + 12 = gy/gap = n/np (50)
with B2 = m*2 — gL /(1 + &) = & — g,2L)/(g:2Ly).

The functional ¥ [gz $&> J, J] once again depends on ¢, in the combination g ¢p.
These relations look very similar to (37) to (39), but the constants I, I,... are here
obtained from the Taylor expansion

I(pp) = Iy + pp Pl + .. (51)
of pp) =1 | [dPk/@m) Tr {[1/(p + K-y — M] - [1f(k+y — M)} (52)
Thus I =i j [dPk)(2m)P] (1/(k* — M?), (53)
while I = f dPk/(2m)P 1/(k2 — M. (54)

We have omitted unimportant numerical constants, and D-1 is the space dimensiona-
lity. Equation (52) is nothing but the generalisation of (28) to include D—1 space-
dimensions and the fact that i, unlike the variable x in §2, is a fermion field. The
discussion now divides into examining two cases, (i) when I, is finite and (ii) when I,
diverges. When I, is finite, we can repeat the argument used in §2, namely, that the
valie of gy, in (49) can never equal 8z in (50) for any finite choice of the
parameters gy, g, etc. Then, notwithstanding the fact that exp (iW,) and exp (iW;)
can be cast in the common form in (48) the two systems %, and %, cannot be
equivalent. An example of such a case is when the space dimensionality (D — 1)
is unity for our model. Then I, given in (54) involves a finite integral, and the (i y)?
theory is not equivalent to the Yukawa theory in (1-4-1) dimensions.

Clearly then, in order to proceed further with an equivalence proof along these
lines, I, must necessarily diverge. In more familiar language, this amounts to the
wave function renormalisation constant Z=1/(g?l,}1) being zero. The equivalence
candidates in the literature do come under this category. In our example, when the
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dimension D=4, the integral I, diverges. Superficially, it would seem that now the
‘ renormalised > couplings -

g1z = (8/(&"R)I'? and gy, = gy/(g:2l, + 12, -

will be equal. Combining this with the fact that both exp (i) and exp (iW;) have
the same form (48), the two theories ¥, and %, would appear equivalent. This is
the crux of Eguchi’s claim of equivalence as well as that of other papers with
the same theme. o

However, even when I, diverges, this proof of equivalence is not valid. As every-
one knows one must be very careful in dealing with divergent quantities, or else one
may end up with wrong or paradoxical results. If one were willing to be casual about
using infinite quantities, a much simpler ‘ proof”’ of the equivalence of %, and &,

could be proposed. Take 3 and rescale ¢ into g =md¢ and g, into g, = go/m.
Then £, has the form i (iy8§ — M) —Z, y b — $ + 1/2m? (9, $)%. Then as
m—> oo, if we drop the last term, we would end up with the Lagrangian %,,
which in turn is equivalent to &%;. The well known catch in this argument is that

no matter how large m is, there will always be field configurations with O 952

much larger than m? ;52 and the kinetic energy term cannot be neglected. In the
language of perturbation theory, in any divergent loop integral, involving é-pro-
pagators one cannot replace . o

ik ds
o= ™ [ oms

for any m® however large.

Let us examine the Eguchi proof to see if a similar non-permissible step is
involved, when I, is divergent. Indeed, if we put I, = oo in (49) and (50), the
renormalised coupling constants g, and g,, both vanish! Substituting into (48),
we would conclude that both %, and %, correspond to a set of non-interacting
Fermi and Bose fields for all finite values of the original couplings g; and g,!

Alternately, if we tried to keep gz real and non-zero, then upon inverting the
" relation : :

(82" = (22 [(&9* I +- 1], we have (g2 = (230)%/[1 — I, (22)"]-

As L~ + o, g?—>—1/c0, leading to an imaginary coupling (non-Hermitian
Hamiltonian) for the original Yukawa system. These are just some of the
paradoxical results one can ‘derive’ if one rescaled fields by divergent factors
as done by Eguchi. The reader is reminded that even in the time-honoured theory of
quantum electrodynamics, where divergences are removed by the renormalisation
prescription, one does not literally rescale fields by divergent constants. The re-
normalisation prescription is, strictly speaking, a procedure for removing divergences
from S-matrix elements. The prescription acts “ as if * “bare * fields were replaced
by ‘ renormalised ’ fields, but if such rescaling of fields by infinite factors were taken
literally several conceptual problems arise. In fact, careful textbooks, such as Bjorken
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and Drell (1965) and Bogoliubov and Shirkov (1959) avoid the concepts of  bare’
and ‘renormalised * fields in discussing renormalisation. The latter book discusses
this point in some detail (in § 31.4) pointing out paradoxes that can arise if one took
such rescaling literally. The fact that setting Z (which corresponds in our case to
(8° I?+1)7 equal to zero leads to g,=0 has also been pointed out by others (see for
instance Lurie 1968), and is a symptom of the difficulties involved in enforcing Z=0
in a local field theory.

Returning to the Eguchi-type of proof, if one rescaled fields as per (48) and (49)
and used a divergent I,, one would end up with the result that g, =0 for both theories
&yand #,!  Alternately, if one went back to the original unscaled field ¢, then we
have

exp(zW2>~jD[¢ exp (i [ 4P G 8?0 47

@t —DE i VIns LI (55)
while

exp (iWy) ~ [ D [9] exp (i [ 4P (G &* h +1) (2, 4
+ (@ bk 7§+ d] + i Plead, 1,71} )

If one substituted divergent Z, and I, into the integrand, the exponent becomes
meaningless. One could try, as suggested in the last paragraph of Rajasekaran and
Srinivasan (1977), to put a finite ultraviolet cut off A into the momentum integrals
contained in 7, and L. This would render the integrands in (55) and (56)
meaningful. But, aside from the fact that a finite A is inconsistent with local field
theories (within which framework these proofs are suggested), we have already
seen that when I, is finite, the systems P, and ¥, are not equivalent anyway
because g;, cannot equal g,p.

Finally, one could try to take the limit A—cooutside the functional integrals in (55)
and (56). Then, for any finite A, however large, the two systems are not equivalent.
There is no obvious reason why they would become equivalent as A - co.
In this context remember that as A becomes larger and larger, even though
L (® u ¢)? > (6“ $)2, nevertheless, the (a# $)? term cannot be ignored as compared

to I, (0 “96)2 in (56). These terms occur inside an oscillatory exponential, where a

finite term in the phase cannot be ignored even if larger terms are present.

We conclude by emphasizing the precise nature of our result. We have not shown,
nor do we claim that the pairs of field theories considered are inequivalent. They
may well turn out to be equivalent. But the burden of proof of equivalence rests on
those who claim it. It is not the purpose of this article to claim or to prove the oppo-
site. Rather it is to point out that the proof offered by Eguchi—simple, elegant
and superficially correct—is in fact not valid.

Indeed, responsible speculations along similar lines have been around for a long
time before this recent spate of papers. (See for instance the work of Bjorken 1963),
Lurie and Mcfarlane 1964; see also Kikkawa 1976). What is needed is a conclusive
proof one way or another. Perhaps a much more careful analysis, using functional
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methods, or other non-perturbative techniques, may yield a definitive result. It is
our hope that our analysis of the Eguchi work will help to stimulate a well founded
proof one way or the other. Such a proof in the future, while very welcome, would
not negate the objections we have raised against the Eguchi proof.
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