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1. Introduction

Bogomolnyi published, in 1976, a very interesting paper (Bogomolnyi 1976) on some
aspects of classical topological soliton solutions of several relativistic field theories. His
procedure was generic in nature and covered such examples of solitons* as Kinks in two
(space-time) dimensions, vortices and flux lines in 3 dimensions as well as the famous
monopole solution in 4 dimensions. The thrust of his results was two-fold. Firstly he
showed that the energy of any finite-energy field configuration in these systems was
bounded from below by its topological index, apart from a known numerical factor.
Secondly, on requiring that this bound is saturated, one attains first order partial
differential equations—far simpler to solve than the parent field equations which are
second order non-linear partial differential equations. The familiar solitons like the
Kink, the flux lines and the monopole can be obtained as solutions of these first-order
equations. (It must be mentioned that the basic trick used by Bogomolnyi had been
employed slightly earlier, in the context of instantons, by Belavin et al 1975).
Bogomolnyi’s work was at the classical level. Meanwhile, methods have been
developed during the past decade for “quantising” solitons, to yield quantum soliton
particles in the corresponding quantum field theories. A detailed discussion of the
quantisation of solitons is given in the book by the present author (Rajaraman 1982).
One finds that these quantum solitons possess, in a suitably generalised sense, many of
the remarkable properties that the classical solitons did. One can ask therefore whether

* Strictly speaking, most of these solutions should be called solitary waves, rather than solitons. But here
we follow the practice in most of the recent literature of using the term solitons to also cover solitary waves, ie
localised, non-dispersive solutions. Note however, that contrary to the incorrect feeling that still persists in
some circles, solitary waves are not limited to (1+ 1) dimensions. Especially after the entry of particle
physicists in this field, many solitary wave solutions have been found in higher dimensions as well. Thus,
interesting gauge-theoretic solutions such as vortices in (2+1) dimensions and the ‘tHooft-Polyakov
monopole in (34 1) dimensions are legitimate solitary waves.
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Bogomolnyi-type bounds can also be obtained for quantum solitons, relating their
exact quantum masses to their topological quantum numbers, and whether these
bounds are saturated. :

In an elegant and compact paper, Witten and Olive (1978) showed that for quantum
supersymmetric extensions of some of the models considered by Bogomolnyi, an exact
bound can be obtained for the masses of the quantum soliton states. In fact, Witten and
Olive pointed out that the existence of the soliton sector affects the véry algebra of
supersymmetry (susy), introducing a central charge in the algebra in that sector. This
central charge is intimately related to the topological charge of the soliton and, after
some manipulations, yields a lower bound to the masses of all the states in the soliton
sector. Having obtained the bounds, Witten and Olive also offered some speculations
on whether quantum solitons actually saturate these bounds, as in fact they do at the
classical approximation.

The question of whether these bounds are saturated at the quantum level is an
important one. For, if they are, they would give us some handle on the exact quantum
mechanical masses of these soliton particles. One must remember that calculating the
mass-spectrum is one of the primary goals of particle physics. Yet hitherto no one has
been able to calculate exactly, the mass of any massive bound state in any non-trivial 4-
dimensional field theory! We emphasize that these quantum bounds apply not just to
solitons in two space-time dimensions like the Kink or the sine-Gordon soliton, but
also to some solitons in realistic four-dimensions as well, such as the (supersymmetric)
monopole.

Recent investigations by several workers have pursued further the question of
whether the Witten-Olive bounds are saturated and the related questions of whether
the soliton mass and its topological index each receive quantum corrections in these
susy models. The detailed results, as we will see, vary with the models.

In this article, we review the developments mentioned above. This is strictly a
review—prepared specifically for the special volume in honour of Dr Raja Ramanna.
There are no new results in this article, but only a synthesis of results already contained
in the references cited. Also, in order to keep the length of this article within its
prescribed bounds, we have to assume that the reader is familiar with the overall
background in which our specialised topic is imbedded, which includes the basics of
gauge theory, supersymmetry, classical and quantum solitons, and the ’t Hooft-
Polyakov monopole.

2. Classical Bogomolnyi bounds

Bogomolnyi inequalities at the classical level are well-known. Our chief concern here is
their quantum generalisation. Nevertheless, for the sake of completeness, let us quickly
sketch the classical bounds and their derivation. We will use as illustrations (1 + 1)-
dimensional scalar field theories as well as the (3 + 1) dimensional Georgi-Glashow
model which yields that famous soliton, the ’t Hooft-Polyakov monopole (Georgi and
Glashow 1972;’t Hooft 1974; Polyakov 1974).

Let us begin with the simple problem of a real scalar field theory in (1+1)
dimensions, with any potential which has degenerate minima so that topological
" solitons can arise. The Lagrangian is

L= f ix[100) @H-3S@] )
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where without loss of generality, we can take the potential to be positive and to vanish
at its absolute minima. We write this potential in the form 4S%(¢) for the later
convenience when we supersymmetrise the system in §3.

The classical energy functional associated with this Lagrangian is

E-= f dx [%(%?) +%(§§)2 +%s2(¢)]. @

Clearly, all finite energy configurations must approach one of the zeroes of § (¢) at the
spatial extremities x = — o0 and x = + o0. We are interested in a lower bound to the
energy, and therefore need to consider only static configurations, where the (positive)
kinetic energy is absent. The energy of static (time independent) fields d(x) is

e[ () ]

© 2 ]
=j_ dxi(-‘;—‘:iisw) Jr'f dx S(¢) 32

, dx
>\ axsin®
=2[D(¢(x))]3Z %, &)
where D(¢) = f d¢ S(¢). | 4)

This is the Bogomolnyi bbund for this system and sets a lower bound on the energy of
any field configuration. The bound is saturated, ie. the equality in (3) is obeyed
provided (i) ¢ is static, and (ii) it obeys

dgjdx = +5(4) )
Meanwhile, the field equation arising from (1), for static configurations, is

d%¢ ds

- haad 6

o =S (©)

The first integral of this field equation is just the saturation condition (5). Hence any
static classical solution, including the topological soliton, will satisfy (5) and therefore
saturate the bound (3). Thus we know, without explicitly finding the soliton solution,
that its energy will be just D(¢,) —D(¢,) where ¢,, ¢, are the boundary values of the
soliton at x = + oo respectively. Clearly this bound, depending as it does only on
boundary values of the field, is a topological index of the soliton.

As an illustration, consider the kink solution of the double-well potential, where

s<¢)=\/g(¢2—“7).

A 3 2
b= [5(5-54)

The kink solution goes from ¢, = —u/\/l atx = —oo to ¢, = +u/\/,1 at x = oo.
Hence the bound is L ; :

Then
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. 2./2 3
D($)—D(é) = —%——’-—‘I | U

Meanwhile, on explicitly solving the field equation, the kink solution has the well-

known form

X
L tanh—‘u-—-—,

Prink = \/A \/2

with a classical energy (the classical kink mass) equal to

2\/2;43 .
(-
3 40 | ®

kink

This exactly equals the bound (7), as expected. .
As a second example, let us turn to the Georgi-Glashow model, which is a non-

abelian (3 + 1) dimensional gauge theory, with a triplet of scalar fields ¢ coupled to a
triplet of SU(2) gauge fields 4°. The Lagrangian density is

A
F=4%(D,p) (D"¢) — 2 (p°¢*—C??* =% Fj, F* )
with U, v= 0, 1, 2, 3a= 1, 2: 3, (Du¢)a = apd)a +gaabcAz¢c
and F2, = 8,4%— 0, A%+ geae ALAS. (10)

Although this system is more complicated than (1), Bogomolnyi showed that a bound
can be obtained in a similar way. Consider again the energy functional for static
configurations, in the A5 = 0 gauge.

A
E = J‘d:ix[%F?‘F?j'*'%DiﬁbaDifﬁa+Z(¢“¢"—C2)2] ' (11)
with i, j = 1, 2, 3. Finiteness of energy requires, as |x| — oo,
¢°Pp° — C2, (12a)
and F$, D;¢" - 0. (12b)

Each field configuration permitted by the boundary condition (12a) corresponds to a
mapping of a two-sphere S, into another §,. Since the second homotopy group 7,(S,)
= Z,such configurations fall into homotopy classes characterised by an integer-valued
index, given by
1 ~~ N ”~

N = 3 L doe & (@7) (0;0°) (Bu), ' (13)
where ¢° = ¢°/ |¢| = ¢°/C. Recall also the result thata configuration with homotopy
index N carries magnetic charge m = N/g.For a detailed discussion of these well knowr
results, see Rajaraman (1982). The energy in (11) can be written, after a little algebra, ir
the form '

4nC ' A
=— "N+ J de[:lc(F?j — oDy g™ + (676" - cz)l]
4nC

>= N = d4nCm | (14
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where mis the magnetic charge of the configuration. This is Bogomolnyi’s inequality for
the Georgi-Glashow model. In the so-called Prasad-Sommerfield limit (Prasad and
Sommerfield 1975), where A — 0 with C fixed, the bound (14) is saturated, provided

Fii = &3 (D, ). (15)

A solution of (15), by virtue of minimising the static energy in any given N-sector, will
also be a classical solution of the field equations. In fact, the well-known Prasad-
Sommerfield solution for the monopole

1
4= Cre N . a . -
¢*=C [coth (rgC) » C:,’ A3 =0; and

1 - |
Af = —g,, P (1 rg¢ ) (16a)
gr

" sinh rgC
satisfies (15) and lies in the N = 1 sector. Correspondingly, its classical mass,
MO = 4nC/y, (16b)

mono

saturates the bound (14). Note that (15) is a first-order equatjon, like (7), although the
parent field equations derived from (10) would be of second order. "

Similar results can also be obtained for the Nielsen-Oleson vortex lines, the CP,and
non-linear 05 models in (2 + 1) dimensions. Note that the discussion in this section,
based on Bogomolnyi’s (1976) paper, has been entirely at the classical level.

3. The Witten-Olive bounds

Witten and Olive (1978) considered the quantised and supersymmetric extension of the
models discussed in the previous section. First take the two-dimensional example and
consider the Lagrangian density

L=1[0u9) - S* () + ¥ (i6,5* — S (D)W ], 7

where i is a Majorana spinor in two dimensions. The two y-matrices could be taken as,
sayy’ =g, andy! = —ig,.S (¢) is any function of the real scalar field ¢ which permits
topological solitons. It must have degenerate minima. This Lagrangian is supersym-
metric under the transformation

¢= LU oY+ (~in, 0" —S(@ONE; TP +E(iy, 0 —S) (18)

where &, € are Grassmann numbers. For § = (4/2)!/? (¢ — C?), the system (17) is the
supersymmetric extension of the double well system (1).
The supercharge which generates the transformations (18)is also a Majorana spinor

Q given by '
Q= fdx (70,0 +iS)y%y. (19)

In our representation of y-matrices, charge conjugation is just complex conjugation.
Hence the Majorana spinors Q and ¥ have only real components:

(@), , (¥ ‘
Q,‘(Qz)’ n//-(%), : 20)
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with 0, = j‘dx[(aoff’ +8,9)Y1 — Y21,
. (21)
Q= jdx [(@op —01)¥2+ Sy}

Using the canonical commutation rules for the fields ¢ and V¥ it is straightforward to
check that

(0 =H+P. (22a)
Q) =H—P, ; (22b)
and (0 Qi) = 2]drS@) e —2D@IIT0 =T, @)

where H and P are the total energy and momentum operators respectively, for the
- system (17), and D(¢) = [d¢ S(¢)- Equations (22a, b) can be recognised as part of the
“usual” susy algebra in 2 dimensions. But in the “usual” algebra, the anticommutator in
(22c) would have been taken to vanish, and indeed it does vanish in the vacuum sector.
where ¢(x) takes the same value at x = — and x = + 0, and so will D(¢(x)).
But, in the soliton sector, where $(00) # ¢(— ), D(¢(c0)) need not equal
D(¢(— )). In fact, for systems we are interested in, ie those which support static
topological solitons, D(¢(0)) will not equal D(¢(— o0)). To see this, note that a static

‘topological soliton will go from some ¢ = ¢, at x = — oo to some other ¢ = ¢, at x
= o0, where ¢, and ¢, are two neighbouring distinct zeroes of S(¢). Therefore ¢, anc
¢, will also be two neighbouring extremes of D(¢), one of them a minimum and the
other the next maximum. Clearly D(¢,) cannot equal D(¢,). Thus, in the sector of state:
based on the topological soliton, the operator Tis non-vanishing, and forms (as can b
verified) a central charge in the susy algebra. (See, however, remarks by Schonfelc
(1979) on the validity of (22) in the face of boundary conditions.)

The quantum version of the bound (3) follows immediately from the algebra (22). Wi

have
H=4(Q%+03%)
=4$[(Q: £22)* F{Q1, Qa}+]
= %[(Ql iQ2)2 + T]
>3|T}. (2

This operator inequality is the quantum generalisation of (3), obtained by Witten an
Olive for the susy system (17). The last step in (23) holds because (Q; + 0,)* is a re:
non-negative operator. Equation (23) is an operator inequality, ie it holds for th
expectation values of both sides taken between any state of the quantum field theor
associated with (17). In the vacuum sector (T} = 0 for all states, so that (23) is trivia
But in the soliton sector it is not. The quantum soliton-particle at rest is the lowe:
energy state in this sector. Let us denote it by |sol . Then the full quantum mass of tt
soliton, M, obeys

M = (sol|H|sol}
> 4| <sol|T|sol > |. ' 2
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Note that (24) is still in the form of an inequality. We will return later to the question of
whether the equality holds.

A similar bound can be obtained for the quantum supersymmetric monopole by
considering a susy extension of the Georgi-Glashow model (9-10). The Lagrangian, in
(3 + 1) dimensions, is

= —&FLF" 131y, (DY)} +5(D,$,) (D0 )"

*gfz Tr ([¢1, 6,1 + %gejk Tr{[y¥, ¥ 1.+ [P, ys¥* 12} (29)

where Y5, j = 1,2;a = 1, 2, 3 form a pair of isotriplet Majorana spinors, ¢ is a scalar
and ¢3 a pseudoscalar isotriplet,and F wv the gauge field tensor of the su(2) gauge group.
We have also used the popular notation of representing isotriplets ¢ and ¥4 by matrix
valued fields ¢; = (°/2)¢% and y ;= (z%/2)ys§ respectively in the last two trace terms in
(25). The model (25) enjoys N = 2 supersymmetry whose generators are

Q;=Tr f x{"F W+ Dd1) + (Do) (yshy°y!
+alés, ¢21°7s ¥}, (26)

where i=1, 2 and the spinorial indices of Q and ¥ are suppressed. When the
anticommutators of the Q; are evaluated using the canonical commutation rules of the
fields, one obtains

{Q:, Qj}-&- = ;7" P, +&;(U +ysV), ' (27)
where .

U= fd3x Gi(p1Fg; +%3ijk¢‘5F§'k), (28a)

V5stxai(¢gF:i+%8ijk¢qF;k)- : (28b)

Note that the boson potential in (25) has the positive form T r([¢1, ¢,]1)*> When ¢,
= ¢, = 0, this vanishes. Correspondingly, one choice of the vacuum is the symmetric
one, with {@; ), = {¢2>,. =0. However, Tr ([¢1, ¢2])? also vanishes if the
matrices ¢; and ¢, commute, ie if the iso-vectors ¢1 and ¢4 are parallel in internal
space, regardless of the magnitudes |¢¢| and |¢%|. This choice DT Dvac € <D Doaer
with either non-zero, corresponds to spontaneous breaking of the su(2) gauge
symmetry. Now, consider the charges U and ¥ in (28). Both are integrals of divergences
and can be written as surface integrals at infinity. In the symmetric case, {¢$ >.,.
= {@% Dvac = 0,both ¢ and ¢4 will vanish at spatial infinity for any physical state, and
hence U = ¥V =0. Then (27) reduces to the “usual” susy algebra. It is only when
{1 Dvac OF {P%D.,. is non-zero that the central charges U and V come into play.
The quantum Bogomolnyi-type bound follows easily from (27). A simple trick, used
by Witten and Olive is to exploit the fact that the system (25) is also chirally invariant.
- Under a chiral rotation, the fields ¢1 and ¢3 rotate into one another, and therefore so
do U and V. Perform a rotation such that { ¥’} = 0. Take the expectation value of (27)
between any energy-momentum eigenstate (whether solitonic or otherwise) at rest.
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Then (27) gives ;
{0 Qi}+7 = 6;iM +e;y° (U ), (29)

where M is the invariant mass of the state. Note that Q; (or Q;)is also a spinor in Dirac
space, with spinor index « (or ) which we had suppressed so far, in addition to the index
i (or j) which takes values 1, 2. Considered as an 8 x 8 matrix, {{Q;, Q;s}+ > is a positive
matrix. It will have real non-negative eigenvalues. Therefore so will the matrix
8i;M +¢,7°CU ), thanks to (29). But ¢; ;7°¢ U ) clearly has eigenvalues + CU ). Hence,

M= |(U)) (30)

This result was obtained after setting { V> = 0 through a chiral rotation. The general
result is clearly a chirally invariant generalisation of (30), viz.

M? > (UM + (VD2 - - (31)

This is the Witten-Olive bound for the susy Georgi-Glashow model, for the mass of
any state, in terms of the expectation values of U and V in that state. For, the case
(D% e = {P% Dyac = 0 Whichi corresponds to- full unbroken su(2) gauge symmetry,
(U = (V) =0for any state. Then the bound (31) is trivial. But, for all symmetry-
broken cases, with either { ¢$ ).,. o {35 >, nON-2ero, the bound (31)is non-trivial. In
such cases, it is applicable not only in the solitonic sectors, but also in the vacuum sector.
That is, (31) can be used to get a lower bound on the exact quantum masses of the
monopoles and dyons, as well as the vector bosons and the Higgs bosons of this susy
theory. Thus, this result of Witten and Olive is a truly remarkable one.

4. Saturation of the bounds

The quantum Witten-Olive bounds (23) and (31) reduce, in the appropriate classical
limit, to the Bogomolnyi bounds discussed in §2, and are, furthermore, saturated
classically by soliton solutions. For the (1 + 1) dimensional scalar field case, it is obvious
that the quantum bound (23), where the operator T'is given in (22c), reduces to just the
Bogomolnyi bound (3) in the classical limit. This classical bound, as we showed in §2,1s
saturated by the soliton. For the (3 + 1) dimensional gauge theory, the relationship of
the classical bound (14) to the quantum bound (31) may be made more transparent, as
follows. Using chiral symmetry freedom, we can consider the case where only
(P dyae # 0, With <% Dyac = 0. Let the modulus |{${ dvac| = C, with the internal
space direction of {¢9 D, arbitrary. For all finite energy systems, topological or
otherwise, | ¢ | must then tend to C and ¢% must tend to zero as |x| = 0o. The gauge
group su (2) is broken down to U(1) by such a vacuum. The associated electromagnetic
field F2,™ has the gauge invariant form ('t Hooft 1974) ,

1 1
Flenl’n = E(quZv—aa—iaabc(p‘i (Du¢1)b (Dv(tbl)c

1
x:':o—c—qbtlz.Fuv ) (32)
since. finiteness of energy requires that (D,$,)* — 0 faster than 1/|x|>/? as |x|— co.
Now, consider the charges U and ¥V defined in (28). Since ¢ — 0 as x — oo, we have,
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using Gauss’ theorem,

U= gﬁ do, (9§ F2) = c§f5 do,Fg™ = 4nCq, | (33a)
N s

V= § do'i% (¢‘]1.3iij,‘;k) = C§ da; %Eiij?icm' = 4nCm, (33b)
s s

where g and m are just the total electric and magnetic charge operators. Hence the
‘bound (31) can be written as

M? > (4nCy* [{gD*+ (m)?], (34)

where (¢> and {(m) are the expectation values of the total electric and magnetic
charges of the state in question. Thus this bound applies non-trivially to particles which
carry either electric or magnetic charge, or both. Equation (34) is still the same quantum
- bound as (31), but rewritten in terms of more familiar charges. In the classical limit,
when applied to static topological configurations in the A, = 0 gauge (which carry zero
electric chz-ge) it reduces to precisely the classical Bogomolnyi bound (14). As pointed
out in §2, the exact single-monopole solution, in the Prasad-Sommerfield limit,
. saturates this classical bound. For states which carry no magnetic charge (these will be
non-solitonic states, in the N = 0 homotopy sector) the bound in (34) 1s still useful,
giving

M > 4nC|<q| (39)
The familiar “quanta” of the fields, such as the Higgs boson, the massive Vector (W)
boson and the photon of this theory come in this category. Notice again that at the
classical (“tree”) level, the W boson has electric charge g/4n and mass gC, thus saturating
the bound classically. The photon is a special case. Thanks to unbroken U(1) gauge
invariance, the photon (g = 0) has exactly zero-mass quantum theoretically, and will
infact saturate the exact quantum bound (35). For the other particles, ie the monopole,
the W-boson, and the Higgs boson of this model, as well as for the solitons of the two-
dimensional model, while precise quantum bounds exist in the form of (24) and (34),
their saturation at the quantum level calls for further discussion. The rest of this section
is devoted to this question. ' ‘

Let us begin with solitons of (1 + 1) dimensional scalar field theories, whose quantum
bound is given in (24). There is no rigorous closed result available, as far as we know,
establishing that the quantum soliton must saturate the bound. What most people have
attempted is to evaluate separately the quantum corrections to both sides of the bound,
ie to the soliton mass and to its topological index 7. Then one can see if these corrections
equal one another. Of course this is not a completely definitive way of answering the
question. Quantum corrections are generally calculated using a semi-classical loop
expansion, in powers of A. In practice such a calculation can be done only up to some
given order, usually to order £. If the two sides of (24) agree upto O(h), that by itself does
not guarantee that they will agree to all orders in k. (See however an ingenious and
indirect argument by Witten and Olive, based on counting of states, suggesting that the
monopole does exactly saturate the quantum bound. See also Imbimbo and Mukhi
(1984a) for the 2-dimensional soliton). Of course, if the two sides of (24) do not equal
each other upto order A, then we can be sure that the bound 1s not saturated.

Let us first consider calculations of the O(h) corrections to the soliton mass. The
general principles of soliton quantisation, particularly in (1 + 1) dimensions, are by now
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well knowh (for reviews, see Rajaraman 1975; Jackiw 1977; Coleman 1977) so that
we need not present the details of this calculation here. But there are some special
features which arises in susy models that one should be careful about. The soliton’s

quantum mass to O(h) is given by
=g+ 4( 5 wa)-i( 3 o Mo, 36
w, >0 e,>0

where w? and e, are respectively the eigenvalues of the boson fluctuation equation and

the fermion Dirac equation in the background of the soliton. M, is the contribution of

the O(h) renormalisation counter term. For the system (17), the eigenvalue equations
determining w2 and e, are ‘

: |
(~ e+ 57455 ) = win) @7
(g 85 ) = ntte) 39

| d , d’s
where §' = [——— S(¢):| and §" = [———-J
40 Jpun) 99 ] o)

D’Adda and Di Vecchia (1978) made the following important observation regarding
(37) and (38). Let us write the two-component spinor ¥, as

v
(i)

It will be convenient to use the representation § = ¢,,a = —0,. Then, uport $quaring
the Dirac Hamiltonian in (38), we get
d
(19 dy+ 0,8 Y1, = (—di +(7 —osaS') Vo=l (9

Since the soliton obeys dgo/dx = —S(Psa), dS'/dx = (S")dgo/dx = —8"S, (39)

 yields, for each component of ¥, .

(—d2+(SP+SSWH = ey, (40a)
(—d2+(S) —SSW = ey, (40D)

One can see that thanks to supersymmetry the upper component of the spinor, Y4,
obeys the same eigenvalue equation as (37), obeyed by the boson fluctuations ,. Thus
any solution of (37) would also serve as a solution of (40a) with the same eigenvalue and
vice versa. The associated .~ could then be determined from the Diracequation (38)ie

Y = (b IS @)

As evident from (41), this matching between boson and fermion fluctuations may not
hold for zero-energy (e, = 0) modes, but we need not worry about these for our
purposes, since they make no contribution to the energy in (36).

Upto this point, these observations of D’Adda and Di Vechia are interesting and
correct. However, from this they concluded that Tw, —Xe, = 0 and that the soliton
receives no quantum corrections to its mass upto order (k). This is not correct for two
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reasons, as pointed out by Schonfeld (1979) and by Kaul and Rajaraman (1983):

(1) The counter-term contribution M_, has been neglected. Normal ordering
counter terms proportional to S§” exist for these models consistent with supersym-
metry and make a non-zero (and in fact divergent) contribution M ct

(i) A more subtle point is that (Zw, —Xe,) does not vanish even though, loosely
speaking, every non-zero eigenvalue w of (37) also occurs as an eigenvalue of (38) and
vice versa. The reason is that, apart from a few discrete levels, the spectra of both 37
and (38) are continuous, and the densities of continuum level in the two cases are
different. The simplest way to understand this difference in density states is to put the
system in a box of length L, and later take L — co. Then the Boson eigenfunction Na(X)

obeys boundary conditions

(= L/2) = n,(L/2), | (42a)
dn, _ dn,
and o ("L = (L2, (42b)

as appropriate to the second order differential operator in (37). However, the fermion
~ eigenfunction ¥,(x) obeys the first order Dirac equation (38), and correspondingly,
obeys first order boundary conditions, but, for both components:

Y (=L = y{H (L)2), (43a)
and Wi (= L/2) = Y (L)2). (43b)
The condition (43b) can be reduced, using (41), to a condition on y{*.

[@x+SWiV(0)] -1 = [+ SW ) ]1p- (43c)

We can see that although both #,(x) and Y{*(x) obey the same differential equations
(37) and (40a), they must satisfy different boundary conditions. The condition (42a) is
the same as (43a), but (42b) is not generally the same as (43c), especially for topological
solitons for which §’ = (dS/d¢)s ) is not the same at x = + L/2, as L-> oo. The
eigenvalues of differential operators are specified both by the differential form of the
operator as well as the boundary conditions. Therefore, the set of boson eigenvalues w2
and fermion eigenvalues e; will in fact be different, for any finite L, however large. As
L — oo, both spectra will merge into the same continuum, but with different spectral
densities. The difference Zw, — Xe, will not vanish in general.

Once we are aware of these pitfalls, the evaluation of the fermion and boson densities
of states p,(E) and p,(E) using the correct boundary conditions (42—43), is straight-
forward. One finds that the fermion level density is in fact the average of the densities of
the two equations (40a) and (40b), as one would expect from symmetry between the
upper and lower components of the spinor y,. Given the densities of states, the
fluctuation energy (Ew, — Ze,) = {EdE (p5(E) — p;(E)) can be calculated, added on to
the counter term to obtain the quantum soliton mass (see Schonfeld 1979; Kaul and
Rajaraman 1983; their results have been rederived, using more elegant methods and
without recourse to boundary conditions, by Imbimbo and Mukhi 1984a).

To illustrate the results, consider again the example of the Kink of the susy double-
well problem. For this system

2 1/2 |
5= (5) (@ =13/, (44)
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while the counter term added to S is

. AN [~ dk 1
= —h(Z — ———+K|, 44b
Sc.t. h(2> [L 21 (kz +2“2)1/2 + ] ( )

where K is an arbitrary finite constant. On computing 3Zw, —3Ze, + M, one finds,
for the O(h) quantum Kink mass,

Mith = m3/3i4 )
where we have eliminated dependences on u and K by using m; which is the
renormalised mass, to O(h), of the boson in that model. In the classical limit, the second
O(h) term in (45) is absent and m, can be replaced by the “tree” level boson mass
mgy = (2)*/?4 in the double-well problem. Then (45) reduces to the classical kink mass
M ‘°’k given in (8). However there is not much meaning in calculating the difference
between M}, and M), to see “how much” quantum correction the kink-mass
acquires. In quantum field theory, thanks to’ultraviolet divergences and their removal
by subtraction schemes which are not unique, the relation between the same physical
quantity evaluated to different orders in ki, contains arbitrariness. For instance, the one-
loop renormalised boson mass m, can be evaluated in terms of the “bare” boson m,
= (2)'/2u by standard perturbation techniques, but the relation between m; and m, is
arbitrary upto a constant. Any attempt to write m, in terms m, and insert it into (45) so
that it may be compared with the classical result (8), will be fraught with ambiguity (see
Kaul and Rajaraman 1983 for more details). But (45) as it stands, is meaningful. It gives
the one-loop quantum mass of the kink in terms of one-loop boson mass. One can also
meaningfully compare (45) with § | {sol [T|sol » |, also evaluated to one-loop level, to see
if the bound (24) is saturated.

The one-loop correction to 4 {sol|T|sol ) has been evaluated independently by
Imbimbo and Mukhi (1984a) as well as by Chatterjee and Majumdar (1984). These one
loop corrections come from two sources:

(i) Recall that 37 = [D(¢$(x))] . Classically, we evaluated this by inserting the
classical function ¢ = @ (x). In quantum theory ¢(x, t) is an operator, which we write
in terms of the shifted field operator #5(x, t),

P(x, 1) = o1 (x) +7(x, 1).
Then, at each point (x, t), '
¢sol| D(@)]s01 > = D($sor) + (AD/dB) et 50l | s01 >
+ 3 (d*D/d¢?)dsq (sOl|n?|s0l D+ . .. . (46)
Since T involves D(¢) only at x = + oo, note that for the kink system (44)
@2  dD

D(¢s,) =+ EERE w((ﬁsol) =0 énd
| g¢—2(¢sol) =*(2)'? asx- too. 47)

Hence (sol|D(¢(x = + oo, t))|sol >

+ (2)3”2%.4-%( 2124 Csol (4 o, )]sol (48)
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The two-point function (sol |n%(x, 1)|sol ) can be easily obtained, to leading order, by
using the expansion in terms of the normal modes 7,(x) in (37).

nix, )= [Za—;’;—me"iwn‘.n"(x) + h.c.]

with [a,. a5 ] = kb, (49)
This yields

(sol|n?(+ oo, t)[sol ) = hr dk L (50)

The two-point function will be ultraviolet divergent, but this is cancelled by the counter
term (44b) which leads to

Det (@01 (x = £ 0)) = ( f doS.. (¢)) Ps01 (+ 00)

— hu ©dk 1
= +W[JO 2nw+K:l. (51)
On adding (50) and (51), one gets a finite result, which when cast in terms of the
renormalised boson mass m, yields
. m3 km
3| <sol|T|sol y| = ?i'+(i’2")f/l’2E+o(hz) (52)
in agreement with the quantum soliton mass in (45).

Thus we see that for a (1 + 1)-dimensional scalar field soliton like the kink, the
Witten-Olive bound is saturated at the O(k) quantum level. In fact, a stronger result
appears in the recent work by Yamagishi (1984), where the Witten-Olive inequality as
well as its saturation in O() quantum theory are worked out at the level of densities—ie
relating the expectation values of the Hamiltonian density and the density of the
topological index 7. That the bound holds to O(f) makes it plausible that it may hold to
all orders in 4. An argument that it indeed does so hold, has been briefly advanced in the
Imbimbo-Mukhi work.

Turning to the (3 + 1) dimensional susy extension of the Georgi-Glashow model (25)
an evaluation of the quantum corrections to the susy monopole’s mass has recently
been done by Kaul (1984). Although the underlying principles and pitfalls are similar to
those in (1 + 1)D models, the actual calculation is more difficult. One has to compute
fluctuation — energies associated with the two species of isotriplet Fermi fields ¢ and
Y3, the two species of scalar fields ¢4 and ¢2, the gauge field 4%, and ghost fields, and
that too in 3 space-dimensions. All this has been ably done by Kaul (1984). He finds that,
once again, the boson and fermion fluctuation energies do not cancel, and leave behind
an ultraviolet-divergent residue. This divergence, again, is cancelled by counter terms.
Further, the resulting answer for the one-loop monopole mass has the same form as the
classical mass (16b) provided one replaces the vacuum-expectation value C and the
coupling constant g by their renormalised values. That is

C

M, =4 (~—) . (53)
g ren .
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Turning to the right side of the quantum bound (34), as applied to the monopole, it will
become, after one-loop corrections, 47(Cm),. Assuming that as required by the exact
Dirac condition, Mye, = 1/gren, the bound is saturated.

In the last stages of his proof of (53), Kaul uses the relation gren Cren = gC, ie that this
product gC receives no renormalisation correction in this model. The validity of this
assumption as a gauge—and renormalisation-scheme-independent statement has
been questioned in a very recent preprint by Imbimbo and Mukhi (1984b). This preprint
reached us just when we were completing this review, and we have not had the
opportunity to digest its contents. We will merely report that these authors also study
the quantum mass corrections for the N = 2susy monopole (as well as the N = 4 susy
extension), by using trace theorems which are a generalisation of what they had
employed in their earlier paper quoted above. Their differences with Kaul notwith-
standing they too find that the quantum bound is saturated for the N = 2susy

monopole.
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