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Abstract

We study an abelian Chern-Simons theory on a five-dimensional man-
ifold with boundary. We find it to be equivalent to a higher-derivative
generalization of the abelian Wess-Zumino-Witten model on the bound-
ary. It contains a U/{1) current algebra with an operatorial extension.
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Three-dimensional gauge theories with an action given just by a Chern-Simons (CS)
term have been recently analyzed by several authors [1-5] . On a spacetime manifold of
the form R x I, where R stands for the time axis and ¥ is a Riemann surface without
boundary, such a theory has only a finite number of physical degrees of freedom, namely
the moduli of flat connections on £. When X has a boundary, there are additional degrees
of freedom corresponding to a Wess-Zumino-Witten (WZW) model on the boundary. This
has stirred much interest because it may lead to a classification of all rational conformal-
field theories [2,3]. EE

These results can be generalized to hlgher dimensions. For instance, it hag been proven
that an abelian CS theory on a 2n + 1-dimensional manifold R x & without boundary has.
again a finite number of physical degrees of freedom; the reduced phase spa.ce consists of
gauge fields whose curvature has rank < 2(n — 1) modulo U(1) gauge transformatlons and
diffeomorphisms of % [6]. %

In the present paper we study the case in which E has a boundary. For simphmty we
will restrict ourselves to the case when £ = B* (a four dimensional ball) and 8% =53,
We show, using canonical methods, that the physical degrees of freedom of the theory are
three sca.lar fields ®, ¥ and L on § 3. We derive a Lagrangian for these fields in analogy to
what has been done in the case ¥ = B? and, applying again canonical methods, we prove
that it gives rise to a current algebra, which in terms of the original field variables A,,
restricted to $*, can be written:

(p(2), p(¥)} = 5-e"0"0uAp(e) 56Nz, 1), 1)

where p is the U(1) charge density of the model. One notices that the algebra extension
is of the form predicted by cohomological arguments [7]. This is our main result; we shall
comment at the end on its generalization to higher dimensions.

As in [6] we start from the action:

S = a] d°z e*P7 4,0, 4,0,A, , (2)
M

where €912*% = 1, « is a dimensionless constant and M = R x T is space-time. We denote

with 2° the coordinate in R and {2¢}, with i = 1,2,3,4 the coordinates in . In order to
ensure that the Gauss law does not get a contribution from the boundary, we will assume
that A9 = 0 on the boundary. We then repeat the constraint analysis of [6] keeping track
of boundary terms. We have the following set of constraints:

0= C°=P%; (3a)

0~ C' = P' — 20 ¢¥* 4,0, A, ; (3b)
3 .

0% G = o e E Ry (3¢)

where P* are the momenta canonically conjugate to 4,. Since (° commutes with all other
constraints, we can choose the gauge condition 4y = 0 and thereby eliminate Ay and P°
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from the theory. We then remain with the phase space T*C(X), where C(%) denotes the
space of the gauge potentials 4;, together with the constraints C¢ and G. The brackets
between the variables A; and P* are still the canonical ones, and the Hamiltonian vanishes
identically.

We define P € T*C(X) to be the subspace where the constraints C* hold. Since P is
obtained by fixing the values of the momenta P* as functions of the 4;, P is diffeomorphic
to C(X). We also define D to be the subspace of P defined by the constraint (3c). A
gauge field A; satisfies (3c) if and only if the matrix F}; is degenerate. Thus D consists
of connections whose curvature form has rank two or zero. The reduced phase space is
the quotient of D by the gauge transformations which are generated by the first class
constraints.

It is convenient to smear the constraints (3) with arbltrary test one-forms £ = £;de?
and arbitrary functions f on ¥: C¢ = [ d*z £(2)C*(z), and G5 = [d*z f(2)G(z). Then,

we have the following Poisson brackets:

{Ce, Co} = F(&ym) + R(&,m) (4a)
{Ce,Gr} = F(&,df) + S(&, f) (4b)
(Gs, G} =0, - (4c)
where

F(&n)=- 3a/d4$ e Fu (5)
R(&,m) = 20/65433 Bi(e M EmeAr) (6)
S6,1) =3 [ d'e oM s Fu) )
From these formulae one sees that the following are first class constraints: |
Dy = Cuy -Gy, (8)

when f is zero on the boundary,
Ay = Cip+ Dj,a, | (9)

(with (i, F); = v/ F};) when the vectorfield v is zero on the boundary, and (', when 5
satisfies A F' = 0 everywhere and 7 A A = 0 on the boundary. For generic A thls implies
that 5 vanishes on the boundary. On C(Z) = P these constraints generate the following
transformations: '

bsA; = {A;, D¢} = & f , (10a)
§pA; = {A,‘,AI.} = 'l.'jajA,' + (3;'!7J)Aj s (10b)
6,,‘41' = {A,‘,Cn} =1 . (10(:)
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As in [6] one can sho_iav that for every one-form 7 vanishing on the boundary and satisfying
n A F =.0, there exists a vectorfield v vanishing on the boundary, such that

Cy=Ay—Dia. | (11)

Therefore, every constraint ', which is first class can be expressed as a combination of
a A, and a D; which are first class. Thus we can take Dy and A, as independent first
class constraints. It is seen from (10) that the gauge group generated by these constraints
consists of U(1) gauge transformations and diffeomorphisms which are both the identity
on the boundary. .

The general solution of the Gauss law (3c) is

A= &dT +dQ - (12)

where ®, ¥ are real-valued functions and e*? is a U(1)-valued function (so if & had not
been simply connected, Q could be polydromic). Thus we can parametrize the constrained
surface D by the three functions ®, ¥, . Note that the decomposition (12) is not unique.
For instance, constant (space-independent) shifts in ¥ and €0 leave A unchanged, as do
the transformations @ = ® +¢, ¥ — ¥, 2 — ) — c¢¥ and

b — Pcosf+ ¥sind
Y —Psind + Ycosb

Q— 0+ ®Usin’ b + %(@2 — ¥?)sinfcos b ,
where ¢ and § are space-independent parameters. We shall discuss below the consequences
of this arbitrariness.

We can now count the degrees of freedom: - we have eight canonical variables A;(z),
Pi(z) and five independent constraints, e.g. Ci(z) and G(z). In the interior of B* one
has to add three gauge fixing conditions, one for each independent first-class constraint;
therefore in the interior there can be at most a finite number of degrees of freedom. On the
boundary all constraints are second class and therefore there remain three physical fields.

All this can be made more precise using global geometric arguments, If one considers
the action of the transformations (10) on ®, ¥, €}, one sees that their values in the interior
of ¥ are gauge degrees of freedom. More precisely, by means of a U(1) gauge transformation
which is the identity on the boundary one can transform every ) into any other Q' which
has the same boundary values as §2, and by means of a diffeomorphism which is the identity
on the boundary one can transform every ®, ¥ into any other @', W' which have the same
boundary values as ®, ¥. Therefore, the physical degrees of freedom of the theory are
the boundary values of the scalar fields ¢, ¥, Q. Note that if we had worked with fixed
boundary values for the fields, the reduced phase space would be a point; this is a special
case of the results in [6], since & = B* is simply connected. If ¥ is a more complicated
four-manifold with 8% = S§° one finds in addition to the fields ¢, ¥, £ on the boundary
also finitely many degrees of freedom in the interior, as in [6].

To further explore the physical content of the theory one could proceed canonically
by fixing the gauge for the first class constraints, compute Dirac brackets etc, This 1s
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technically complicated. Instead, we shall derive an action for the physical degrees of
freedom by inserting the solution of the Gauss law (3c) into the original action (2). This
produces a surface term which, using Stokes’ theorem, can be written:

5= za/ dte P18, 85, ¥8.0 (DY + Q) | (13)
Rx 32

where 2 with a = 1,2,3 are coordinates on $* and a dot signifies derivative with re-
spect to time. The action (13) is invariant under diffeomorphisms of §* and also under
the transformations of &, ¥, @ which leave A invariant. In particular, among these are
the global (space-independent) shifts of Q. The Noether charge corresponding to these
transformations is j° = 2ap, where

p=e"0,88;,90,0 . (14)

The lagrangian in (13) can be written in the form £ = ¢®A,(p), where the index
a = 1,2,3 labels the fields ¢* = (®,¥,Q) and A is a one-form on the space of fields given
by Ao = (0,2ap®,2ap). Then, as discussed in [8], the symplectic form on the space of the
fields is given by the functional curl of A:

6An(y)  6Aq(z)

Fab r,y)= -
(©V)= fpua)  Gotly)

0 ®Xs X
=2 |p+®Xs 28Xy Xo+8Xqa | 8V(a,y), (15)

Xg Xy + ®Xq 2Xq

where

Xg = X] 8, = *Pr3,99,50 8, , (16a)
Xg = Xg 8, = e*P73,08;% 8, , (16d)
Xa = X] 8,y = e*P79,803V 8, , (16¢)

and the operators appearing in the matrix act on the variable z. The canonical brackets
between the fields &, ¥ and 2 are given by the inverse of 7. However, F has a nontrivial
kernel. These are associated entirely with the arbitrariness in the decomposition (12), and
therefore this does not contradict our earlier result that in the variables A; the CS theory
has no first class constraints on the boundary. To see this, we note that the equation

]cﬁy Fusl,y) v¥y) = 0, (17)

is covariant under coordinate transformations and thus can be studied in any coordinate
system. Por almost every point in phase space the functions ®, ¥ and § define a local
coordinate system on 8% F' = @, 7% = ¥, 7 = . (These are adapted coordinates in
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which the only non-vanishing components of F;; are Fi; = —Fy; = 1.) In these coordinates,
5Xs = 8;, 5 Xy = 85, 1Xq = 85, p = 1, and (17) reduces to (suppressing the bars):

2'0v® + vt = 0, (18a)
v' + 2 010! + 2 2'80% 4 9o’ + 2'850° = 0, (18d)
61'01 + 621)2 -+ 12183’02 + 2 63‘03 = 0. (18C)

After some algebraic manipulations one finds that d;v° = 0, and the previous system is
equivalent to:

z'Ov? + 8;0° = 0, (19¢)
vl 200t + B = 0, (19b)
221331)2 + 33’03 = 0. (196)

But the quantities on the left hand side of these equations are exactly the variations of
Aq under the transformation * — ¢ + 02, written in adapted coordinates. Therefore,
the gauge degrees of freedom corresponding to the null eigenvectors of F give exactly the
arbitrariness in the decomposition (12).

Recall that in the corresponding analysis of the 2 + 1-dimensional CS theory with
boundary, the component A, of the gauge field along the boundary satisfies an abelian
Kac-Moody algebra. The field A, could be interpreted as the current density of the WZW
model because, thanks to Gauss’ law, 4, can be written as 8,51, where () is the WZW
field and 8,0 is the Noether charge density for the transformations § — € + constant.
Note also that Gauss’ law smeared with the test function f = 1 could be written as:

G, af d*z e Fy; :2/ dpA, . (20)
B 51

The corresponding current in our 4 + 1-dimensional theory is €*$74,85A4.. In fact the
analog of (20) is

G ~ §a diz sij“F,:ij; _ 30:/ &z EaﬁTAaaﬁA7 ] ‘ (21)
4 Jge : 83

When translated into variables ®, ¥ and 2, ¢*#74,834., = p, as defined in (14), and this
is also the Noether charge associated with the global shifts of .

Let us compute therefore the bracket {p(z), p(y)}. Although it is possible to actually
invert F in adapted coordinates, this is not particularly instructive. One can compute the
algebra of quantities of interest without explicit inversion of . It is convenient to perform
a linear transformation in field space:

1o 0
Tf(mz) =10 1 -&(e)| 6®(x,2) . (22)
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Then we get

Falos) = [ [ 84 T542,2) T, 0) Fuae,t)

0 —p ¢
=—2a] p 0 X¢ —®Xq 6(3)(:13,3;) . (23)
Xs Xg¢-—9Xq 2Xq

If we write
o L [ Ay By Cly)
(F )@y =—5- | -B(v,z) D(=,y) Exy)| , (24)
—C(y:m) _E(y,m) F(:Bsy)

then the condition fd%z ]}ab(m,z)(ﬁ"l)bc(z,y) = 6,°6%)(z,y) gives differential equations
for the kernels entering in (24). Using these equations one can express all kernels in terms
of F(z,y); furthermore, one must have

1 1 1 1 1 1
([—Xw, ~Xs) - ®[-Xq,-Xs] +3 —Xn) F(z,y) = =6®)(a,y) , (25)
P P p P P P

where [ , | denotes the Lie bracket of vectorfields on §° and the differential operator on
the left hand side acts on the variable z. Note that p is a scalar density and that X, are
vector densities, so le o« are true vectorfields. As observed before, in adapted coordinates

%Xa form natural bases on $° and hence commute. Thus the equation for F(z,y) actually

reduces to 5 .
ar N Y — = 5(3)
Ka(z)g S Flz,y) 307 (@) (26)

A direct calculation using (23), (24) and (26) then shows that

elantw} = [ d= [ @ (7 (o0 R
1

d 0
= X XNB oy
L ey O gy
—GaXn(m)B:caa (z,y) . (27)

If we use the relation (12), this is exactly the announced result (1).

We conclude with some remarks on the action (13). It is a generalization to four
dimensions of the action fp ., didy Q8,2 which describes an abelian WZW model in
light-cone coordinates. It is also similar to the purely WZW actions discussed in [9] and to
higher-derivative sigma models. However in these models the contraction of the derivative
indices is effected by means of a totally antisymnetric four-dimensional tensor or by means
of two metric tensors, respectively. Instead, when (13) is formally covariantized, it involves
a tensor t#"#? which is antisymmetric in three indices.
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As in the purely WZW models, dynamics is trivial: the Hamiltonian vanishes and
all fields are time-independent. This is due to the invariance of the action (13) under
diffeomorphisms of $*, which in this theory are true symmetries and not gauge invariances.
These provide infinitely many conserved charges @, = 2« JdPzp vP (2850 + 8512), where
v? is any vectorfield on 3. '

In 2n + 1 dimensions, the Gauss law is 0 = F A ... A F (n times) and its general
solution is A = ®1d¥; + ...+ ®,_1d¥,_; + d2. The analog of (13) is

S = naf d*y (<I)1li!1 b B U+ Q) J (28)
R.XSZ""I .

where p = e®1 =18, @184, ¥1...80,,_,Pu-10a;,_, 0 It is natural to expect that the
algebra (1) generalizes to

9 o
{P(w)ap(y)} ~ Ealmazn—lam.Aa: v -aazu—aAazn.—z W‘S(z 1)(“3?31) . (29)

R.R. wishes to thank the Elementary Particle group at SISSA, where this work was
done, for their hospitality.
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