
PRAMANA c
 Indian Academy of Sciences Vol. 58, No. 4
— journal of April 2002

physics pp. 703–711

Current correlation functions of ideal Fermi gas
at finite temperature

R P KAUR, K TANKESHWAR and K N PATHAK
Department of Physics, Panjab University, Chandigarh 160 014, India

MS received 3 July 2000; revised 29 October 2001

Abstract. Expressions for transverse and longitudinal current–current correlation functions of an
ideal Fermi gas describing the current fluctuations induced in the electron system by external probe
perpendicular and parallel to the propagation of electron wave, have been obtained at finite tempera-
ture. The results obtained for transverse and longitudinal functions are presented for different values
of wavelength and frequency at different temperatures. The diamagnetic susceptibility as a function
of temperature has also been obtained from transverse current correlation function as its long wave-
length and static limit, which smoothly cross over from known quantum values to the classical limit
with increase in temperature.
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1. Introduction

The transverse and longitudinal current–current correlation functions describing the cur-
rent fluctuations induced in the electron system by a weak external probe perpendicular
and parallel to the propagation of electron wave, respectively, are two basic quantities in
the theory of Fermi liquid. The longitudinal current correlation functionχ L(q, ω) [1–4] has
sought more attention in the past than the transverse current correlation function,χ T(q, ω).
Recently the knowledge ofχT(q, ω) have become essential in order to make advancement
in the study of time dependent density functional theory [5] due to the work of Vignale and
Kohn [6,7]. They obtained explicitly an expression for the exchange vector potential in
the linear response regime in terms of correlations of longitudinal and transverse currents.
In the absence of the knowledge ofχT(q, ω) which includes the effect of temperature and
interactions, Vignale and Kohn have used only some of the aspects of this function. Tosi
and co-workers [8,9] have subsequently made some calculations of transverse exchange
kernel but only at zero temperature. In fact the dynamics ofχ T(q, ω) is not known yet
which include the effect of correlations and finite temperature. Moreover, the transverse
part has relevance to the study of viscous effects [10] in the electron gas and to the dia-
magnetic susceptibility [11–13] of the system. Therefore in the present work, as a first
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step, we make theoretical calculations at finite temperature, but neglect the effect of inter-
actions. We will also be presenting the result for longitudinal current–current correlation
function at finite temperature for the sake of completeness and to make the comparison of
its behavior with its transverse counterpart. Expressions for both longitudinal and trans-
verse current correlation functions in the long wavelength and static limit are obtained. It
is found that the diamagnetic susceptibility, related to the transverse part, smoothly cross
over from quantum values to classical limit with increase in temperature.

The lay out of this paper is as follows: Inx2, we present expressions for real and imag-
inary parts of longitudinal and transverse current correlation functions. The limiting cases
along with expression of diamagnetic susceptibility are also given there. Numerical results
obtained at different temperatures ofχL(q, ω), χT(q, ω) and diamagnetic susceptibility are
presented and discussed inx3. In x4 we present the conclusion.

2. Theory

In a homogeneous and isotropic system the current–current correlation function has only
two independent components, namely, longitudinal(χ L) and transverse(χT). The Gauge
invariance and the continuity equation allow to relate the density–density response function
(χρ) to the longitudinal component of the current correlation function [1] through the
following equation

χL(q;ω) =� n
m

+
ω2

q2 χρ(q;ω); (1)

where the density–density response function for the non-interacting electron gas is defined
as

χρ(q;ω) = ∑
k

nk �nk+q

ω �ω(k;q)
; ~= 1: (2)

Hereω(k;q) = ωk+q�ωk with ωk = k �k=2m is the energy of free particles having the
wave vectork. ω andq are the transferred energy and momentum in scattering, respec-
tively, andnk = 1=(1+e(ωk�µ)=kBT) is the Fermi function withµ andkB as the chemical
potential and the Boltzmann constant, respectively.

On the other hand, using Green’s function theory [14] the transverse current correlation
function of the non-interacting homogeneous electron gas is defined [11] as

χ0
T(q;ω) =

1
m2 ∑

k
k2

y

nk �nk+q

ω �ω(k;q)
: (3)

In the above equation,ky is y component of the wave vector when the transferred momen-
tumq is taken along thex-axis, i.e.(q; 0; 0).

2.1Expressions forχ 0
T(q, ω) and diamagnetic susceptibility

In order to have useful expression for transverse current correlation function we follow a
method similar to that of Khanna and Glyde [2] and apply the adiabatic boundary condi-
tions to the response function to ensure that the system response follows the probe linearly.

704 Pramana – J. Phys.,Vol. 58, No. 4, April 2002



Ideal Fermi gas at finite temperature

This is equivalent to replacing the real frequencyω by a complex frequency(ω + iη),
whereη is positive and infinitesimally small, which is taken to be zero at the end of the
calculations. It is convenient to write eq. (3) as

χ0
T(q;ω) =

1
m2 ∑

k
k2

ynk

 
1

ω + iη �ωk�q+ωk
� 1

ω + iη �ωk +ωk�q

!
:

(4)

This equation can be evaluated using the dispersion relation to separate the real and imag-
inary part and then perform angular integration. Quite lengthy calculations leads to the
expression for real and imaginary parts of transverse current–current correlation function,
respectively, given as

Reχ0
T(q;ω ;z) =� k3

F

mπ2

Z ∞

0
dkk2nk+

k3
F

4mπ2q

�
q3

3
+

ω2

q

�Z ∞

0
dknk

+
k3

Fz
4mπq ∑

j

"�
q3

3
+

ω2

q

�
k

00

j

jkj j2
+2qk

00

j +
�
α2

2 � γ
�

�tan�1

 
2α2k

00

j

α2
2 �jkj j2

!
�
�
α1

2� γ
�
tan�1

 
2α1k

00

j

α1
2�jkj j

2

!

�k
0

j k
00

j ln

0
@ [(α1�k

0

j)
2+k

00

j
2
][(α2+k

0

j)
2+k

00

j
2
]

[(α1+k0

j)
2+k00

j
2
][(α2�k0

j)
2+k00

j
2
]

1
A
3
5 ; (5)

and

Im χ0
T(q;ω ;z) =� k3

Fz
4mπq

Z α1

�α2

dkkln(1+e�(k
2
�γ)=z) ; (6)

where

α1 =
ω
2q

� q
2
; α2 =

ω
2q

+
q
2
;

andkj = k
0

j + ιk
00

j with

k
0

j =
1p
2

h
γ +fγ2+(πz(2 j +1))2g1=2

i1=2
;

k
00

j =
1p
2

h
�γ +fγ2+(πz(2 j +1))2g1=2

i1=2
:

To derive the above expressions we have used reduced variables, namely

k=
k
kF

; q=
q
kF

; ω =
ω
εF

; γ =
µ
εF

; z=
kBT

εF
andnk =

1

1+ e(k2
�γ)=z

: (7)

On taking the long wavelength limit in expression (5) we get the following expression
for the transverse current correlation function
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Reχ0
T(q! 0;ω ;z) =� n

m
+

k3
F

4mπ2

�
q2

3
+

ω2

q2

�Z ∞

0
dknk+

k3
Fz

4mπ ∑
j

"
k

00

j

jkj j2

�
�

q2

3
+

ω2

q2

�
+4k

00

j +
16k

00

j
3
q2(q4�12q2jkj j2�9ω2)

3(ω2�4q2jkj j2)2

�
16k

0

j
2
k

00

j q
2(q4+4q2jkj j2�ω2)

(ω2+4q2jkj j2)2 �
256k

00

j q
4(q4+3ω2)

3

�

0
@ k

00

j
4

(ω2�4q2jkj j2)3 +
k

0

j
4

(ω2+4q2jkj j2)3

1
A
3
5 : (8)

From the above expressions, it appears that terms of the order ofq8 are included in the
expression. However, whenj is large these terms reduce to the order ofq2 only. Now if
we takeω = 0, we get

ReχT
0(q! 0I ;ω = 0II ;z) =� n

m
+

k3
Fq2

12mπ2

Z ∞

0
dknk�

k3
Fγzq2

2mπ ∑
j

k
00

j

jkj j4
: (9)

In order to see whether two limits commute, we now first take the static limit and then
long wavelength limit. The limitω = 0 in eq. (5) leads to the static transverse current
response function given by

ReχT
0(q;ω = 0;z) =� k3

F

mπ2

Z ∞

0
dkk2nk+

k3
Fq2

12mπ2

Z ∞

0
dknk+

k3
Fz

4mπq

�∑
j

2
4 q3k

00

j

3jkj j
2 +2qk

00

j +

�
q2

2
�2γ

�
tan�1

0
@ qk

00

j

q2

4 �jkj j
2

1
A

+2k
0

j k
00

j ln

0
@(q

2 �k
0

j)
2+k

00

j
2

(q
2 +k0

j)
2

1
A
3
5 : (10)

In the long wavelength limit, the above expression for static current response function
becomes

Reχ0
T(q! 0II ;ω = 0I ;z) =� n

m
+

k3
Fq2

12mπ2

Z ∞

0
dknk ; (11)

where use of
R ∞

0 dkk2nk =
1
3 andk3

F = 3nπ2 have been made. It is interesting to note that
the first two terms in eqs (9) and (11) are the same as that obtained for zero temperature
except its dependence onz throughnk. Now if z is made equal to zero, the last term in
eq. (9) becomes identically zero. Thusq! 0 andω = 0 limits commute whenz is made
equal to zero. Here it may be noted that these limits (i.e.q! 0 andω = 0 limits) do not
commute [8] whenz is taken to be zero in the beginning of the calculations.

The diamagnetic susceptibility of the system is related [11,12] to the static and long
wavelength limit of the transverse current correlation function through the relation
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χdia(q! 0;ω = 0;z) =� e2

c2q2k2
F

h
χ0

T(q! 0;ω = 0;z)+
n
m

i
; (12)

which leads to the expression

χdia(q! 0;ω = 0;z)

χLandau
=

Z ∞

0
dknk; (13)

whereχLandau=�(e2kF=12π2mc2) is the Landau diamagnetism.

2.2Expression forχ 0
L(q;ω ;z)

Following the same procedure as followed above, in this subsection we evaluate the density
response functionχρ , and hence longitudinal current correlation function, using eq. (1).
Expressions obtained for its real and imaginary parts are, respectively, given as

Reχ0
L(q;ω ;z) =� n

m
� k3

Fω2

4mπ2q2

Z ∞

0
dknk+

k3
Fω2z

8mπq3 ∑
j

"
2qk

00

j

jkj j2

+tan�1

 
2α2k

00

j

α2
2 �jkj j

2

!
� tan�1

 
2α1k

00

j

α2
1 �jkj j

2

!#
(14)

and

Im χ0
L(q;ω ;z) =� k3

Fω2z
16mπq3 ln

 
1+e�(α

2
1�γ)=z

1+e�(α
2
2�γ)=z

!
: (15)

The real part contains a term 2qk
00

j =jkj j2, which is not present in the expression obtained
by Khanna and Glyde [2].

In the static and long wavelength limit, the density response function which is related to
longitudinal response function through eq. (1) is given by

Reχ0
ρ(q! 0;ω = 0;z) =�kFm

π2

Z ∞

0
dknk : (16)

On the other hand, if we reverse the order of limits, i.e., on taking first the long wavelength
limit and then taking the static limit we obtain

Reχ0
ρ(q! 0;ω = 0;z) =�kFm

π2

Z ∞

0
dknk�

kFmq2z

π ∑
j

k
00

j

jkj j4
: (17)

The above expression differ from eq. (16) in respect of the last term which is propor-
tional toz. And at zero temperature, both equations (eqs (16) and (17)) reduce to

Reχ0
ρ(q! 0;ω = 0;z= 0) =�kFm

π2 : (18)

Thus we see that if we takeT = 0 after taking the static and long wavelength limits then
two limits commute. However, whenT = 0 is taken at the beginning, the two limits do not
commute [1].
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3. Results and discussion

The numerical calculations of the real and imaginary part of the current–current correlation
function require the knowledge of chemical potential,µ , at different values of temperature.
To calculateµ we have numerically solved the following equation for different values ofz
andµ

Z ∞

0
dkk2 1

1+e(k2
�γ)=z

=
1
3

; with γ =
µ
εF

: (19)

The validity of this method has also been checked by using its low-temperature expansion

γ =
µ
εF

= 1� 1
12

(πz)2� 7
960

(πz)4 : (20)

However, at large values of temperature, eq. (19) reduces toγ = z ln
�
4=3

p
π(z)3=2

�
,

and for convenience we used this expression for large values ofz to calculate diamagnetic
susceptibility numerically as a function ofz.

The imaginary parts ofχ 0
L(q;ω ;z) andχ0

T(q;ω ;z) are directly evaluated from the ex-
pressions (6) and (15). However, to evaluate the real parts numerically we have used
Kramers–Kronig relation. The direct expression of real part are slightly more complicated
to be evaluated numerically due to the presence of multi-valued functions.

The numerical results obtained for real and imaginary parts of(�m=n)χ 0
T(q;ω ;z) and

(�m=n)χ0
L(q;ω ;z) are shown in figures 1 and 2, respectively, as a function of reduced

Figure 1. Real and imaginary parts ofχT(q;ω;z) for reduced wave vectorq= 0, 5 and 1.5
and for reduced temperaturesz= 0:03, 1.0 and 2.0 versus reduced energy transfer,ω.
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Figure 2. Same as that of figure 1 but forχL(q;ω;z).

energy transfer,ω for q = 0:5 and 1.5 at different values of reduced temperaturez (0.3,
1.0 and 2.0). From figures 1 and 2, we see that the main effect of increasing temperature
for particularq is to spread both Imχ 0

L;T(q;ω ;z) and Reχ0
L;T(q;ω ;z) over larger values of

energy transfer. This may be due to broadening of free particle spectrum with increase in
temperature. In fact, at high temperature the width is proportional to

p
z. We note that the

peak height got depressed atq= 0:5 for both Imχ 0
L;T(q;ω ;z) with increase in temperature.

But at q = 1:5 the peak height of Imχ 0
T(q;ω ;z) increases with increase in temperature.

Here it can also be noted from figures 1 and 2 that ReχL(q;ω ;z) starts from the same
value (i.e. 1.0) whereasχT(q;ω ;z) does not. This is due to the fact thatχL;T(q;ω ;z) are
calculated in terms of(�n=m) which is the normalization constant forχ L but not forχT.

Finally in figure 3, we have plotted diamagnetic susceptibility calculated from eq. (13)
as a function of temperature. At very low temperatureχ dia becomes the Landau diamag-
netism. This is due to the fact that forT ! 0, Fermi function appearing in eq. (13) be-
comes a unit step function. But as the temperature increases the diamagnetic susceptibility
decreases fromχLandauvalue. On the other hand, at high temperature, in the classical limit,
γ which is a function ofz becomes negative and Fermi function reduces to Boltzmann–
Maxwell function. This provides

χdia

χLandau
= eγ=z

Z ∞

0
dke�k2=z

=
eγ=zpz

2
Γ
�

1
2

�
=

2
3z

(21)

Pramana – J. Phys.,Vol. 58, No. 4, April 2002 709



R P Kaur, K Tankeshwar and K N Pathak

Figure 3. Variation of diamagnetic susceptibilityχdia with reduced temperaturez.

with γ=z= ln(4=3
p

π(z)3=2) and Γ(1=2) =
p

π. Thus for large values of temperature,χdia
varies as inverse of temperature, which is also evident from figure 3. Thus diamagnetic
susceptibility smoothly cross over from quantum values to classical limit on increasing
temperature.

4. Conclusion

Expressions for the real and imaginary parts of the transverse and longitudinal current–
current correlation function at finite temperature have been obtained. For the purpose of
numerical calculations, the imaginary parts ofχ 0

L;T(q;ω ;z) have been evaluated from their
direct expressions whereas real parts are calculated using Kramers–Kronig relation. Re-
sults are presented as a function of energy transfer at different temperature and different
wave vectors. It is shown that the long wavelength and static limits do not commute for
longitudinal as well as transverse part of current–current correlation function at finite tem-
perature as in the zero temperature limit [1,8]. However, if the temperature is taken to be
zero after these limits, then these two limits commute.

The diamagnetic susceptibility has also been studied as a function of temperature and it
is shown that this reproducesT = 0 result as well as high temperature results known in the
classical limit.

The present expressions for current–current correlation functions will be useful in any
Fermi system in which temperature dependence of excitation energy and viscous effects
are of interest and for the advancement of time dependent density functional theory.
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