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Current correlation functions of ideal Fermi gas
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Abstract. Expressions for transverse and longitudinal current—current correlation functions of an
ideal Fermi gas describing the current fluctuations induced in the electron system by external probe
perpendicular and parallel to the propagation of electron wave, have been obtained at finite tempera-
ture. The results obtained for transverse and longitudinal functions are presented for different values
of wavelength and frequency at different temperatures. The diamagnetic susceptibility as a function
of temperature has also been obtained from transverse current correlation function as its long wave-
length and static limit, which smoothly cross over from known quantum values to the classical limit
with increase in temperature.
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1. Introduction

The transverse and longitudinal current—current correlation functions describing the cur-
rent fluctuations induced in the electron system by a weak external probe perpendicular
and parallel to the propagation of electron wave, respectively, are two basic quantities in
the theory of Fermi liquid. The longitudinal current correlation funcjorig, w) [1-4] has
sought more attention in the past than the transverse current correlation fuge(ignw).
Recently the knowledge of;(q, w) have become essential in order to make advancement
in the study of time dependent density functional theory [5] due to the work of Vignale and
Kohn [6,7]. They obtained explicitly an expression for the exchange vector potential in
the linear response regime in terms of correlations of longitudinal and transverse currents.
In the absence of the knowledge)pf(q, w) which includes the effect of temperature and
interactions, Vignale and Kohn have used only some of the aspects of this function. Tosi
and co-workers [8,9] have subsequently made some calculations of transverse exchange
kernel but only at zero temperature. In fact the dynamicg-@fi, w) is not known yet
which include the effect of correlations and finite temperature. Moreover, the transverse
part has relevance to the study of viscous effects [10] in the electron gas and to the dia-
magnetic susceptibility [11-13] of the system. Therefore in the present work, as a first
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step, we make theoretical calculations at finite temperature, but neglect the effect of inter-
actions. We will also be presenting the result for longitudinal current—current correlation
function at finite temperature for the sake of completeness and to make the comparison of
its behavior with its transverse counterpart. Expressions for both longitudinal and trans-
verse current correlation functions in the long wavelength and static limit are obtained. It
is found that the diamagnetic susceptibility, related to the transverse part, smoothly cross
over from quantum values to classical limit with increase in temperature.

The lay out of this paper is as follows: §2, we present expressions for real and imag-
inary parts of longitudinal and transverse current correlation functions. The limiting cases
along with expression of diamagnetic susceptibility are also given there. Numerical results
obtained at different temperatures)qf(g, w), x+(a, w) and diamagnetic susceptibility are
presented and discussedt In §4 we present the conclusion.

2. Theory

In a homogeneous and isotropic system the current—current correlation function has only
two independent components, namely, longitud{ixal) and transversgx;). The Gauge
invariance and the continuity equation allow to relate the density—density response function
(Xp) to the longitudinal component of the current correlation function [1] through the
following equation
n o
XL(Qaw):_E'f‘?Xp(q:w): (1)

where the density—density response function for the non-interacting electron gas is defined

as

n,—n
k__kiq h=1 )

Xp(d,w) = m )

Herew(k,q) = W yq— @ With @y =k- k/2mis the energy of free particles having the
wave vectokk. w andq are the transferred energy and momentum in scattering, respec-
tively, andn, = 1/(1+ el H/%sT) is the Fermi function wittu andkg as the chemical
potential and the Boltzmann constant, respectively.

On the other hand, using Green'’s function theory [14] the transverse current correlation
function of the non-interacting homogeneous electron gas is defined [11] as

1 n,—n
Xt(a, w) = ) Zkiwk—T(kkf?q) : 3)

In the above equatiok,, is y component of the wave vector when the transferred momen-
tumq is taken along the-axis, i.e.(q, 0, 0).

2.1Expressions fop(?(Q, w) and diamagnetic susceptibility

In order to have useful expression for transverse current correlation function we follow a
method similar to that of Khanna and Glyde [2] and apply the adiabatic boundary condi-
tions to the response function to ensure that the system response follows the probe linearly.

704 Pramana — J. Phys.Vol. 58, No. 4, April 2002



Ideal Fermi gas at finite temperature

This is equivalent to replacing the real frequereyy a complex frequencfw + in),
wheren is positive and infinitesimally small, which is taken to be zero at the end of the
calculations. It is convenient to write eq. (3) as

0 _1lcpe 1 - :
XT(Q7w)_rnsz}/nk (w+ir]—0q<q+% w+il‘l—wk+0q<q> .
(4)

This equation can be evaluated using the dispersion relation to separate the real and imag-
inary part and then perform angular integration. Quite lengthy calculations leads to the
expression for real and imaginary parts of transverse current—current correlation function,
respectively, given as

Rex%)(q,w,z):—ﬁz/mdk N+ L ( )/ dkn,

4mr2q
w2 k
4;F;qz ( +—> |k|2+2qk +(az-vy)

20K 20.K'
xtam ! [ —21 ) — (a,2—y)tamrt [ — 21
(022_|k1|2> ( 1 ) 2_|kJ|2

"

’ n2 n2
e [(ay — K2+ K Jl(ap+K)2+ K] -
17 ' ' )
[(ay +K))2+ K[, — K))2 +w,-21
and
3 a
Im x(q, w,2) = _4;FZ al dkkin(1+ e~ (-1/2) | (6)
Y2
where
_w 9 _@w 9
1527 2 @2=5q"2

andk; = k| + rkj with

= [y {2+ (2 + )37

\/_
" /2
211/2
K = f[ y+ {2+ (m(2) + )22
To derive the above expressions we have used reduced variables, namely
_k . q W u _ kg T B 1
k= K q_kF, w= gF, y= 5 z= . andnk_1+e(k2_y)/z. (7)

On taking the long wavelength limit in expression (5) we get the following expression
for the transverse current correlation function
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0 __n, Kk (¢ o [ Kz K
Rex7(q— 0,w,2) = + <3+q2> A dkn, + > P

m  4mr? 4mrt 4

n3

X q_2 + 22 + 4k” + l6k] q2(q4 - 12q2|kJ |2 — 9&)2)

° ’ 3(w? — a2

166 K Qo + 47k P - @) 2566 (o' + 30?)
(0 +4q?(k;[2)? 3

k//4 k/4
x j + j : 8)
(w?—4g?k;[?)3  (w?+4g?(k;]?)3 J

From the above expressions, it appears that terms of the ord@grafe included in the
expression. However, whanis large these terms reduce to the ordeg®bnly. Now if
we takew = 0, we get

KB e kﬁvzq2 k_
12mr2 2 k

Rex;°(q— 0,w=0"2 = L

m
In order to see whether two limits commute, we now first take the static limit and then

long wavelength limit. The limito = 0 in eq. (5) leads to the static transverse current
response function given by

32 o 3
Rex;%(q,w=0,2) = kF / dkk’n, + ked dkny + kez

12mr2 Jo 4mry
B <q2 > L aK
X + 20k; C + —=2y|tan " | D———
z ELT§ 2 & Iy
’ n2
i

In the long wavelength limit, the above expression for static current response function
becomes

0 Il | n k3o?
Rex?(a— 0, 0=0,2 =~ + 12mn2/ okn | (11)

where use offy” dkk?n, = 1 andk2 = 3n72 have been made. It is interesting to note that
the first two terms in egs (9) and (11) are the same as that obtained for zero temperature
except its dependence arthroughn,. Now if zis made equal to zero, the last term in
ed. (9) becomes identically zero. Thayis+ 0 andw = 0 limits commute whemz is made
equal to zero. Here it may be noted that these limits ¢.e: 0 andw = 0 limits) do not
commute [8] wherzis taken to be zero in the beginning of the calculations.

The diamagnetic susceptibility of the system is related [11,12] to the static and long
wavelength limit of the transverse current correlation function through the relation
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_ _ 0 _ n
Xdia(qﬁoaw_oaz)__m |:XT(q_>07w_ovz)+a:|7 (12)
which leads to the expression
Xdia(d— 0,0 =0,2) / k. 13)
XLandau

wherex, ongau= — (€°ke/12°mc) is the Landau diamagnetism.

2.2Expression fox2(q, w, 2)

Following the same procedure as followed above, in this subsection we evaluate the density
response functioly,, and hence longitudinal current correlation function, using eq. (1).
Expressions obtained for its real and imaginary parts are, respectively, given as

2w 2,
RexP(q.0.2) = n kKo / ka Z[qu

m 4m712q2 8mnq3 k. |2
20,K; 2a,K;
+tant (%) —tan ! (%)] (14)
az — k| at — k|
and
kw?z 1+ e*("ffv)/z
0 __ X

The real part contains a terrqlé /1K; |2, which is not present in the expression obtained
by Khanna and Glyde [2].

In the static and long wavelength limit, the density response function which is related to
longitudinal response function through eq. (1) is given by

Rexg(qﬁo,wzo,z):—k;—rzn/o ok, . (16)

On the other hand, if we reverse the order of limits, i.e., on taking first the long wavelength
limit and then taking the static limit we obtain

m [ k-mz _ K
Rexg(qao,wzo,z):—k;—z/o dknk—%Zﬁ. (17)
J J

The above expression differ from eq. (16) in respect of the last term which is propor-
tional toz. And at zero temperature, both equations (eqgs (16) and (17)) reduce to

Rexp(q— 0,w=0,z=0)=—F. (18)
Thus we see that if we take= 0 after taking the static and long wavelength limits then

two limits commute. However, wheéh= 0 is taken at the beginning, the two limits do not
commute [1].
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3. Results and discussion

The numerical calculations of the real and imaginary part of the current—current correlation
function require the knowledge of chemical potentiglat different values of temperature.

To calculateu we have numerically solved the following equation for different values of
andu

o0 1 1 . u
/o M Tger =3 Wihy=o (19)
The validity of this method has also been checked by using its low-temperature expansion
H 1 2 ! 4
= _1_= - 20
V= =1 3%~ ggg(m (20)

However, at large values of temperature, eq. (19) reducgs=t@ In (4/3\/5(2)3/2),
and for convenience we used this expression for large value® afalculate diamagnetic
susceptibility numerically as a function nf

The imaginary parts oj(f’(q, w,z) and X?(q, w,z) are directly evaluated from the ex-
pressions (6) and (15). However, to evaluate the real parts numerically we have used
Kramers—Kronig relation. The direct expression of real part are slightly more complicated
to be evaluated numerically due to the presence of multi-valued functions.

The numerical results obtained for real and imaginary parfs-af/n) x %(q, w,2) and
(—m/n)xf’(q, w,z) are shown in figures 1 and 2, respectively, as a function of reduced

ImEy

[=5]
- T

= e

e

It aoez)
Ne il 9

Figure 1. Real and imaginary parts @f-(q, w, z) for reduced wave vectay= 0, 5 and 1.5
and for reduced temperatures- 0.03, 1.0 and 2.0 versus reduced energy traneafer,
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Figure 2. Same as that of figure 1 but fay (q, ,2).

energy transferw for = 0.5 and 1.5 at different values of reduced temperat &3,

1.0 and 2.0). From figures 1 and 2, we see that the main effect of increasing temperature
for particularg is to spread both Iny (0, w,2) and Rex? 1(0, w,z) over larger values of
energy transfer. This may be due to broadening of free particle spectrum with increase in
temperature. In fact, at high temperature the width is proportiongfZoWe note that the

peak height got depressedjat 0.5 for both Ime7T(q, w, z) with increase in temperature.

But atg = 1.5 the peak height of Inx?(q, w,Z) increases with increase in temperature.
Here it can also be noted from figures 1 and 2 thatxR@, w,z) starts from the same
value (i.e. 1.0) whereagr(q,w,2) does not. This is due to the fact thgt +(q, w,z) are
calculated in terms df—n/m) which is the normalization constant fg{ but not forx.

Finally in figure 3, we have plotted diamagnetic susceptibility calculated from eq. (13)
as a function of temperature. At very low temperatygg, becomes the Landau diamag-
netism. This is due to the fact that fér— 0, Fermi function appearing in eq. (13) be-
comes a unit step function. But as the temperature increases the diamagnetic susceptibility
decreases from, ,,qa,Value. On the other hand, at high temperature, in the classical limit,
y which is a function oz becomes negative and Fermi function reduces to Boltzmann—
Maxwell function. This provides

Xdia — ey/z/oo dkesz/z
XLandau 0

_ eV/;\/zr (%) _ 332 (21)
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Figure 3. Variation of diamagnetic susceptibilify,;, with reduced temperatuee

with y/z=In(4/3\/1(2)¥?) and T (1/2) = /7. Thus for large values of temperatugg;,

varies as inverse of temperature, which is also evident from figure 3. Thus diamagnetic
susceptibility smoothly cross over from quantum values to classical limit on increasing
temperature.

4. Conclusion

Expressions for the real and imaginary parts of the transverse and longitudinal current—
current correlation function at finite temperature have been obtained. For the purpose of
numerical calculations, the imaginary parts(q?fT(q, w, z) have been evaluated from their
direct expressions whereas real parts are calculated using Kramers—Kronig relation. Re-
sults are presented as a function of energy transfer at different temperature and different
wave vectors. It is shown that the long wavelength and static limits do not commute for
longitudinal as well as transverse part of current—current correlation function at finite tem-
perature as in the zero temperature limit [1,8]. However, if the temperature is taken to be
zero after these limits, then these two limits commute.

The diamagnetic susceptibility has also been studied as a function of temperature and it
is shown that this reproduc&s= 0 result as well as high temperature results known in the
classical limit.

The present expressions for current—current correlation functions will be useful in any
Fermi system in which temperature dependence of excitation energy and viscous effects
are of interest and for the advancement of time dependent density functional theory.
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