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Abstract. Let X, X, ... be independent and identically distributed random
variables with density f(z) = az* 1,0 < £ < 1 where « is a fixed positive
number. Let N, = inf{j > m : M; < (j/c)’} where M; = max(Xy,...,X;)
and m is a fixed positive integer. We study the properties of N, as ¢ — oo.
As an application, we consider the problem of estimating sequentially the
range of the uniform distribution and study the second order properties of
an appropriate estimate.
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1. Introduction and main results. In many sequential estimation prob-
lems, the relevant stopping variable may be written in the form N, = inf{n >
m : Zn > c} where S, = X1+ ...+ X, Z, = S, + &, and {&,} is an ap-
propriate slowly changing sequence. Probabilistic properties of N, have been
studied in the fundamental papers of Lai and Siegmund (1977, 1979). See
also Woodroofe (1982). In particular, if the distribution of X; is nonarith-
metic then as ¢ — 0o, the joint distribution of N, and the overshoot Z N, —C
are asymptotically independent with the former being asymptotically normal
(after appropriate centering and scaling) . This fact has been exploited by
many researchers to derive second order properties of sequential estimates.
See for example Woodroofe (1976, 1977, 1982) and the books by Ghosh et.al.
(1997), Mukhopadhyay and Solanki (1994) and Siegmund (1985). For a ver-
sion of this result for the arithmetic case see Siegmund (1985).

Even though the process of partial maximums has received much atten-
tion from probabilists, results such as above are apparently not known for
maximums. In this article we deal with this in a limited framework.



Let X7, X5,... beiid., with P(0 < X; <1)=1. Let forn > 1,
M, = max(Xy, Xo, ..., Xn).
For any positive integer m, and for positive numbers 8 and ¢, define
(1.1), NENc:inf{nZ m: M, < (n/c)ﬂ}

[c] = integer part of ¢, < ¢ >=c— [¢] = fractional part of ¢

Clearly, for ¢ > m, P(N, < 1+[c]) = 1 and if c is an integer, P(N, < ¢) = 1.
Let N
N = Ne/[c]

THEOREM 1.1. Let P(0 < X; < 1) =1, and ¢ — oo. Let S be the supremum
of the support of the distribution of X;. Then

(i) N. — SV almost surely.
(11) ]sz is uniformly integrable for every p > 0.

Let
N:=[d-N,and M}, =c(l— MyP)

Let Z denote a random variable with density

fz(2) = ape @ z > 0.
where « and § are positive integers. Let —? denote convergence in distribu-

tion. For a restricted class of distributions of X, we have the following result.

THEOREM 1.2. Suppose fx,(z) = az® 1,0 < z < 1, and « is fired. Suppose
¢ — oo such that < ¢ > — €. Then

(1) 27 =(Ng, My, ) —=P(Z-4, 2Z)
In particular if ¢ — oo through integers, then Z* —P ([Z], Z).

(i) For anyp > 0, {|N}[P} and {(M},)?} are uniformly integrable if m > -



COROLLARY 1.3. If m > ﬁ and ¢ — oo such that < ¢ > — ¢, then

—1+ e @ f gmabe
1—ef
The asymptotic distribution of the overshoot is now easy to derive by
using Theorem 1.2. First of all note that My < (¥)f & N > cMp/?. Thus
the overshoot may be defined as O, or Oy, below.

N
1.2 O=N—cM{P or Oy = (=) — My
N C

E([c] - N,) = + o(1).

Note that asymptotically (in distribution), as ¢ — oo,

B
Ope = [1—(1—%] ~ My
1B - )~ My
= 1My —ple=V)

c

Hence asymptotically, ¢cOs. & ¢B(1 — M,{/ﬁ) — B(c — N) = BOs.. Using the
first part of Theorem 1.2, we have '

COROLLARY 1.4. If ¢ — 0o such that < c > — ¢, then

(1.3) O1. —P (Z - [Z — €] —¢),

(1.4) Oz ~—P B(Z —[Z — €] — ¢)

Further, O%, is uniformly integrable for all p > 0 and OY, for p > 0 is uni-
formly integrable if m > a%

The behaviour for the maximums contrasts with the Lai-Seigmund re-
sults in the following ways: First, the limit depends on how ¢ — oo and
the limiting distribution of a suitably normalised N, is discrete. Second, the
limiting mgrginals are not independent and are functionally related. Finally,
the normalisations are completely different in this case.



In Section 2, we give the proofs of the above results. In Section 3, we give
an application to a sequential estimation problem and solve a long standing
problem.

2. Proofs of Theorems 1.1 and 1.2. It is easily seen that almost surely,
(2.1) N, — oo and hence My, — S.

By definition (1.1) of N,, as ¢ — oo,

N, —1
(2.2) —— <My’ <mf <

_NCS2
c

c

Letting ¢ — oo in (2.2), (¢) of Theorem 1.1 follows. The uniform integrabil-
ity claimed in (ii) of Theorem 1.1 also follows from (2.2). This establishes
Theorem 1.1.

PROOF OF THEOREM 1.2. Note that for fixed ¢, the distribution of N} is dis-
crete and its minimum value can be —1. On the other hand, the distribution
of My, is continuous. For j = —1,0,1,... and z > 0, Let

Gn(Ja :I?):P[N::], MITICS"I;]

and
G, z)=Pl[Z-€ =3, Z< z]

To establish part (7), we need to prove that for all j and z,

Gn(j, z) = G(j, z).

Now for j = —1,0,1...., [Z—¢€] = j yields j+€ < Z < j+1+4¢€. With this in
mind, for j = —1,0,1,..., and for z, y positive real numbers with z +y < 1
let,

pi(z, y) = P([Z—€| = j, j+y+e < Z < j+1+e—g) = e oPUtv+e) _gmablitliea)

The distribution G can be identified with the class of probabilities {p;(z, y)}.
Note that if j = —1, then the minimum value of y is actually (1 — ¢).
Let the corresponding probabilities for G,, be

Pa, i(@ ) = P{N; =j, j+e+y< My, <j+1l+e—z}.
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We first show (2.3) given below.

(2.3) limsup pn, j(z, y) < p;(z, y)

for all j > 0 and x, y positive real numbers with z + y < 1.

For ease of notations in the proof, let us write [c] = n and ¢, = ¢ — [¢]. So n
is the integer part of ¢ and ¢, is the fractional part of c.

Using the fact that the event in (2.3) implies N, = n — j and then using the
definition (1.1), it easily follows that p,;j(z, y) is bounded above by

|+ €+
- )ﬂ<Mn_j<(1—]—c—y

)’}

Using €, — € and y > 0, it can be easily checked that for all large n,

n—j)ﬂ (1_j+1+6—-:17

PAMn; < ( c

(1_‘7+e—l—y)S ’)’L—j.
c c

Thus, the above probability for large n equals
P{(1- =) <ar < (1- )’
N e—aﬂ(j+y+e) _ e—a,B(j+1+e—:c) =pj(:E, y)'

It can be shown that

(2.4) {N;, My } is a tight sequence .

This is a by product of the proof of uniform integrability given later for part

(4¢). Details are given at the end of that proof.

Thus, every subsequence of it has a further subsequence which converges to

say (C1, Cs). Let Li(z, y) =P(Cy =3, j+e+y < Cy <j+1l+e—1x).
Recalling the convergence in distribution criteria for open sets, it follows

that along this subsequence,

liminf pn, ;(z, y) > L;(z, v).
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Now using (2.3), it follows that, L,(z, y) < p;(z, y) for all j, and z, y.
Since both L and p define proper distributions, they must be equal. But
the latter distribution is indeed the required one. This proves that every
subsequence has a convergent subsequence which converges to the required
limit. Thus the orginal sequence converges to the required limit, proving (z).

We now show the uniform integrability claimed in (7). We first show
that |[NJ|PIin,>n/2) = |1 — Ne|PI{n,>n/2) is uniformly integrable for all p > 0.
In the following argument, assume that J is suficiently large.

P{N;>Jand N,>n/2} < an{MjS( g

=[n/2] ntn
n—J .

= > P {Mj < (L) }
i=13] "t en

= T, say

For a generic constant K, using the inequality ez < exp(z) for 0 < z < 1,

n—J

j .
v < Y (——)¥F
j=lny2) T €n
n—J .
(nten—j)ojB
< K Z e rnten
J=[7}/2]
< K'Y e(wren—ias/s
J=[%l
[n/2]+1

< K ) e_j%égKe_JK
=7

"This estimate on the probability easily implies that [n — N;|PI{y,>n/2; is uni-
formly integrable for all p > 0.

We now prove that |n — NC|PI{ N.<n/2} 18 also uniform integrable, but only
for m > p/ap.

[n/2] ;
P{N;>Jand N, <n/2} < ZP{MJ'S( ! )ﬁ}
jom n+ €,

= 7T, say.



Let 0 <7 < 1 to be chosen. Then,

L= Y= Y (=)
j:mn—i—en =41 n -+ €,
= T2]_+T22.

For the first term, using the crude upper bound n" for j, we have

[n7] .
(2.5) Ty < Z neBlr=17 _ O(naﬂ(r—l)m)_

Jj=m
On the other hand, we have

[n/2]
(2.6) Tn< S (3)2% = 0(e ),

j= [n’]+1

Using the bounds (2.5) and (2.6) on Ty; and Ty, for § > 0,

(27)  Bln— NPSI{N, < nj2) = O(+oft-0m) _y g
provided
(2.8) (p+9d)+aB(r—1)m <0.

But 7 > %. Thus choosing § and r sufficiently small (2.8) is satisfied.

Using (2.7) and uniform integrability of |n — N, c|PI{Nn,>n2y proved earlier,
establishes the uniform integrability of |n — N,|P when m > 5
The required uniform integrability of (M} ) when m > &5 follows from the
relation

N} +en < Mjj <N +e,+1.

Thus Theorem 1.2 (4¢) is now proved.
We now argue the tightness of {N;, M} } claimed in (2.4) as follows. First,

the above estimates for the tail probabilities immediately yields the tightness
of N;. Now note that My, cannot vary freely and is indeed controlled by the
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value of IV}, a fact heavily used so far. This shows that the joint sequence is
also tight. Thus we have completed the proof of Theorem 1.2.

3. Application to sequential estimation. Let Y7,Y,,... be i.i.d. with
density

a-1

ay
ful) = 2 —10<y <),
where ¢ > 0 is an unknown parameter and a > 0 is known. Having
observed Y1,Y3,...,Y,, the maximum likelihood estimate of @ is Y, =

max(Y1,Ys,...,Y,). Suppose the loss function is
(3.1) Ly = (0 —Yn))’ +con

where ¢y > 0 is the known cost per unit sample. Let R,(cp) be the expected
loss. Since the density of Y() is given by

Py ®) = nay™ 0710 < y < 0),

R.(c0) = E(Ly)
6°T'(s + 1)I'(na + 1)

I'(na+s+1)
¢°T'(s+1)

(na)?

+ con
+ con as n — 0.

If we decide to choose the sample size to minimize the risk, the approx-
imate optimal sample size ny is the smallest integer greater than or equal

to 2 ]
s°I'(s)0 )1/(s+1) — ¢, say .
Ccoe®

Note that
no =[] +I(0 < <c>).

Since ¢ is unknown, sequential procedures are called for. The following purely
sequential stopping rule was proposed in Mukhopadhyay et al. (1983). Fix
an initial sample size m. Define

dyYs (1/(s+1)
N=Ng,=imf{n>m:n2> <ﬂ>
Co



where
d = s’T'(s)/o’.
For the uniform distribution (o = 1), this rule reduces to that given by Ghosh

and Mukhopadhyay (1975) if s = 1. Mukhopadhyay et al. (1983) verified
various first order results including, as ¢y — 0 (or ¢ — o),

(3.2) g — 1 almost surely.
(3.3) E(N/c) — 1.
(3.4) E(Ly)/E(L.)) — 1.

(3.4) holds if m > s?/(as+ ). Bose and Mukhopadhyay (1997) showed that
if co — 0 so that ¢ remains an integer and if m > s/(a(s + 1)), then
(3.5)

—— <lim inf B(N—c) < limsup E(N—c) < — [exp {a(s +1)/s} — 1]
a(s+1)

However, the problem of obtaining the so called second order properties
of the estimate were unsolved. This includes obtaining an expansion of the
regret and obtaining the exact limit in the above result. Below, we give a
complete solution to these problems.

Define X; = Y;/0,% > 1. Note that the stopping time N, may be written
as

N, = inf{n >m: M, < (n/c)ﬁ}

where

B=(s+1)/s.
The stopping time is thus exactly of the form (1.1). We immediately have,
if ¢ — oo such that < ¢ > — € then
. e—aﬂe
IlmE(N —[c])=1- [t

Note that this implies that if ¢ — oo through integers, then the upper bound
in (3.5) is exact.



The second order analysis of the regret is more delicate. The regret
function is given by (here ng is the optimal sample size if § were known),

R. = E(Ly)— E(Ly,)

E (6~ Yon)* + coN] = B [(6 = Y(up))* + cong] -
= 0°F [(1 - MN)S - (1 - Mno)s] + C()E(N - ’I’Lo)

Note that
co = db° /s,
Hence
R cs+1
L = S B{(1- My)' (1 - My)'} + B(N — no)
= Ty + 715 say.

To compute the limit of 77 as ¢y — 0 (or ¢ — 00), note that given N and
My, My, has a mixed distribution with P {M,, = My} = MZ™™™ and
with conditional density (given N =n and My),
fatn, () = a(ng — N)z*=N=1 My < 2 < 1. Thus

s+1 1
T, = & [E {(1 — My)*(1 = MmNy _ g, /M (no — N)(1 — x)sx“("_N)_ldm}]
N

d
= E(Tll) —E(T]_Q) say.

By Theorem 1.2 (7),
(c(1 = M), ([ - N)B(Z, [Z-¢)

and hence asymptotically, in distribution (if < ¢ >— )

Ty = a‘—(ﬂ)fj]c)s (1 —M}\LIO_N)
o BME) el
(3.6) M oar— el = M) §
* ys+1
~ (IBMNC) (nO _ N)
B ol (7~ 4 1(0 <€),
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By Theorem 1.2 (7), {711} is uniformly integrable if m > alﬁ Hence

under this condition, the limit of E(T};) is given by the expectation of the
limit in (3.6).

To compute lim E(T},), note that

1
T12 < %CS—H(TLO — N)(]. - MN)S/ M;(RO_N)_ldCE
My
= 21— My (1 - MRP™Y) =T
Thus T3s is also uniformly integrable if m > 513 Further adding and

subtracting an appropriate term,

a(ng — N)estt

Tho MmNy _ ppy)

d(s+1) .
— Nttt 1 NV
+a(no : )c / (1= g)? (gemo-M)-1 _ M]c\z,(n 5] l)da:
Mw)

The second term of T3, in absolute value is bounded by

a(ng — N)cstt
d(s+1)

(1 — My)**? max{1, M}c\v[(no—N)—2}

which converges to zero in distribution since by Theorem 1.2 (z), (no — N)
and ¢*+%(1 — M,)**? converge in distribution as ¢ — oo.

On the other hand, the first term of T}, is asymptotically equivalent in
distribution to

a(ng — N) (BM; )s+12>a,38+1Z3+1

BT v M A5 +1)

([Z — €]+ I(0<¢)).

Thus the limit of E(T}2) is given by the expectation of the limit given
above. Note that the indicator in the above expression comes from the fact
that ng = [¢] + I(< ¢ > > 0). Now combining the results from (3.6) and

(3.7), and using the facts that d = s’I'(s)/ca® and 8 = (s+1)/s, we have the
following theorem:
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THEOREM 3.1. If m > -1 such that < ¢ > — ¢, then

R,

Co

af
e—aﬂe

E(N—no):—f(0<€)+1'—m

+ o(1)

af®

m[E(Zm{[Z ~ )+ I0 < +1-I(0<e) - exp(—ae)

1 — exp(—ap)
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