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SUMMARY. This article provides a modern review of univariate and multivariate
stable and infinitely divisible distributions and processes. Various characterizations and
properties of stable and infinitely divisible distributions, including tail, moment and in-
dependence properties, and methods of simulation from an infinitely divisible distribution
are discussed. Also discussed is the currently popular problem of estimating the index of
a stable law and more generally, the heaviness of the tail of a distribution in the domain
of attraction of a given stable law. A special feature of this article is its large collection of

illustrative examples and a table of Lévy measures.

1. Introduction

Infinitely divisible distributions were introduced by de Finetti in 1929
and the most fundamental results were developed by Kolmogorov, Lévy and
Khintchine in the thirties. The area has since continued to flourish and a
huge body of deep and elegant results now exist in the literature. There
have been many significant developments in the area in the last 20 to 25
years, especially in the areas of Lévy processes, uniform approximation of
convolutions, and statistical inference, and a contemporary review seems
to be needed. This article provides a review on both univariate and multi-
variate infinitely divisible distributions on R and R? with a significant review
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of the recent developments. The intersection with Fisz (1962) and Steutel
(1979a) is small. A special feature of our review is that we include the
probabilistic, statistical as well as the simulation aspects. We also give
numerous illustrative examples. The bibliography is far from being inclusive.
This is particularly true of the bibliography on Lévy processes due to the
huge literature in that area.

What are infinitely divisible (id) distributions? The following definition
most fits the name, although other equivalent characterizations are available
and are to be described later. See Chung (1976) and Feller (1966) for basic
exposition and other basic examples.

DEFINITION 1. A real valued random variable X with cumulative dis-
tribution function (cdf) F(-) and characteristic function (cf) ¢ is said to be
infinitely divisible (id), synonymously F' is an id law or ¢ is id, if for each
n > 1, there exist iid random variables X7, ..., X,, with cdf say F}, such that
X has the same distribution as Xy +...+ X,.

REMARK 1. Since such a “division” of X into “small” independent
components is possible for each n, the name infinitely divisible seems appro-
priate. A degenerate random variable is by definition id. This possibility is
discounted in some of the subsequent discussion.

EXAMPLE 1. Let X be N(u,0?%). For any n > 1, let Xy,..., X, be iid
N(u/n,0%/n). Then X has the same distribution as X7 + ... + X,,. Thus
X isid.

ExXAMPLE 2. Let X have a Poisson distribution with mean A. For a

given n, take Xi,..., X, as iid Poisson variables with mean A/n. Then X
has the same distribution as X; + ...+ X,,. Thus it is id.

EXAMPLE 3. Let X have the continuous uniform [0, 1] distribution. Then
X is mot id. For if it is, then for any n, there exist iid random variables
X1,... X, with some distribution F}, such that X has the same distribution
as X1 + ...+ X,. Since supremum of support of X is 1, this forces the
supremum of the support of F,, to be 1/n. This implies V(X;) < 1/n? and
hence V(X) < 1/n, an obvious contradiction.

REMARK 2. Indeed, the above argument shows that no bounded non-
degenerate random variable can be id. Hence, binomial, hypergeometric,
and beta distributions are not id.

This raises the natural question:

QUESTION 1. Which real valued random variables with unbounded sup-
port are id?
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This question can be completely answered via several equivalent charac-
terizations available for id laws. Some of these are given below. Interestingly
most common univariate random variables with unbounded support are id.
But there are a few common univariate random variables with unbounded
support that are not id. Here are two lists which cover univariate distribu-
tions in common use:

LisT 1. Those that are id: Includes the discrete distributions Poisson,
geometric and negative binomial and the continuous distributions normal,
lognormal, noncentral chi-square, ¢, exponential, Gamma, double exponen-
tial, Pareto, Cauchy, half Cauchy, squared Cauchy, extreme value distribu-
tions, logarithm of a gamma, logarithm of a beta, and product of standard
normals.

See section 2.4 for many more examples.

LisT 2. Those that are not id: Includes finite mixtures of normals,
integer part of a normal, (certain) products of Poissons and products of ge-
ometrics, discrete normal, half normal, maximum of independent normals,
maximum and minimum of independent Poissons, inverse normal and in-
verse t.

REMARK 3. The proof that a distribution is or is not id is often non-
trivial. Instances of this are the proofs that half Cauchy, lognormal, and ¢
distributions are id. Similarly, the proofs that inverse normal and inverse
t distributions are not id require tricks that are not well known. It is a
peculiarity of the subject that hard special techniques may be needed for
particular special problems. See Bondesson (1978, 1981, 1987, 1992), Steu-
tel (1970, 1974) and Thorin (1977a,b).

2. Characterizations

Now let us return to Question 1. A number of equivalent characteriza-
tions will be given. We shall also discuss results known for subclasses such
as the class of all nonnegative random variables and all nonnegative random
variables which have density. Feller (1966) and Chung (1976) contain most
of the results below.

2.1 General characterizations. First, let us see another familiar but mo-
tivating example.

ExXAMPLE 4. Fixn > 1, and take X,1,..., X, to be iid Bernoulli (p,)
random variables. Then S,, = X;,1 + X2 + ... + X, has a binomial(n, p,)
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distribution, and if p,, — 0 as n — oo in such a way that np, — A, for some
0 < X\ < o0, then S, converges in distribution to a Poisson random variable
with mean A which is id.

Note that the distribution of X, does depend on n, and that the limit
distribution is Poisson, which is id. Hence we may ask the following question:

QUESTION 2. Fix n > 1. Take X,1, Xp9,..., Xy, to be iid with some
common distribution say H,,. Let S, = X1 + X;0 + ... + Xy If S, has
a limit distribution, say F', can we assert anything interesting about the
nature of F'?

The answer provides our first characterization:

Characterization # 1:

Such an F' is id and conversely, every id F' arises in this fashion.

REMARK 4. In Question 2, the random variables at the nth stage have
a distribution H,, that depends on n. Suppose instead that we have one
sequence of summands which are iid but we allow appropriate centering and
normalization. This raises the following question:

QUESTION 3. Suppose X7, X9,... is an iid sequence with a common
distribution H. Take S, = X; + Xy +...+ X,,; suppose, for some sequences
of numbers a,, and by, (S, — ay)/b, has a limit distribution, say F. Can we
assert anything interesting about the nature of F'?

Question 3 is a special case of Question 2 by taking X;, = X;/b, —
an/(nby). So certainly our limit law F' in Question 3 is id. The collection of
all such F’s is thus a subclass of the class of all id laws. This subclass is the
class of all stable laws and can also be defined as follows:

DEFINITION 2. A cdf F on the real line is said to be stable if for every
n > 1, there exist constants b, and a, such that S, = X1+ Xs+...+X,, and
b, X1 + a, have the same law. Here X1, Xo, ..., X,, are iid with distribution
F.

REMARK 5. Two random variables X and Y are said to be of same type
ity Zax + b for some constants a and b. Thus F is stable if S;, and X; are

of same type. It turns out that b, has to be n'/e for some 0 < a < 2. The
constant « is said to be the indez of the stable distribution F'.

ExAMPLE 5. All stable laws have infinitely differentiable densities with
bounded derivatives. However, the density functions are known in simple
closed forms in only three cases: (i) the normal distribution (index 2), (ii)
the Cauchy distribution (index 1) and (iii) the Lévy distribution (index 1/2).
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Let us return to the issue of characterizing id laws at large. There is a
very elegant characterization of id laws as compound Poisson distributions.

Characterization # 2.

Let N; be a sequence of Poisson random variables. and let {X;;} be iid
for every fixed i. Let Z be a single normal random variable. Suppose all
the random variables are mutually independent, and {¢;} is a sequence of
constants such that the series below converges. Then Z + 221(2;\;1 Xij —
¢;) is infinitely divisible, and conversely every infinitely divisible law has such
a representation, provided the random variables are allowed to be degenerate.

A nice use of this characterization is the following:

EXAMPLE 6. Take X to have a noncentral chi—square distribution
with say one degree of freedom and some noncentrality parameter. It is
well known (see Feller, 1966, for example) that X may be written as Y7 +
Ys 4+ ... 4+ Yony1, where the Y; are iid central chi-squares with one degree
of freedom and N is an independent Poisson random variable. Write X; =
Yo+ Y3, Xo =Y, + Y5, etc. Then X =Y; + (X1 + X9 +...—|—XN), where Y7
is id. The quantity in parentheses is also id by characterization # 2, and so
is their sum. That is, X is id.

The most common means of characterization of id laws is by their char-
acteristic functions. Several forms are available— some are easier to describe,
while others are easier to apply. We give two of these forms, Form A for
the finite variance case, and Form B for the general case. For a history on
representation formulae, see Gnedenko and Kolmogorov (1954, page 68).

Characterization # 3.

Form A (Kolmogorov, 1932). Let F' be an id law with mean b and finite
variance and let ¢(t) be its characteristic function. Then

o0

log $(t) = ibt + / (€ —1 — itz) d’“‘(j’) (1)

o x

where p is a finite measure on the real line. Further, u(R) = Var(X).

EXAMPLE 7. Suppose F' is the normal distribution with mean 0 and

variance 02. Then the measure y is degenerate at 0 with point mass o there
and b is 0.

EXAMPLE 8. Suppose Y has a Poisson distribution with mean A and
let F' be the distribution of X = ¢(Y — \). Then p is degenerate with mass
c? at cand b = 0.
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REMARK 6. Form A can be roughly interpreted as follows. The measure
1 is degenerate when F' is normal or Poisson. A general y can be approxi-
mated by linear combinations of such degenerate measures. In other words,
a general id law may be written as limit of finite convolutions of normal
and Poisson type random variables. This is in fact true without the finite
variance assumption made in Form A above.

Form B (Lévy, 1937, Khintchine, 1937). Let F' be an id law and let ¢(t)
denote its characteristic function. Then w(t) = log ¢(¢) admits the repre-
sentation

o . itr 1+ 2

w(t) :ibt—t202/2—|—/_oo(e”‘” —1- 1+x2)7d)\($) (2)

where b is a real number, and A is a finite measure on the real line giving
mass 0 to the value 0, i.e., A{0} = 0. The integrand is defined to be —#2/2
at the origin, by continuity.

REMARK 7. This is the original canonical representation given by Lévy.
For certain applications and special cases, Form A is more useful. The
measures p and X in the two forms are both termed as Lévy measure of the
cdf F.

Since normal laws are also limits of convolutions of Poisson type variables,
we have the following characterization.

Characterization # 4. F is id if and only if it is the limit in distribution of
Sp = X1+ Xo+ ...+ X,, where X; are independent Poisson type random
variables.

Lévy Measures for some distributions

We now give the explicit identification of Lévy measures for some spe-
cific distributions. Most of the details may be found in Gnedenko and Kol-
mogorov (1954), Feller (1966) and Bondesson (1982). Below, Form A will
be used for cases of finite variance.

1. Normal distribution with mean 0 and variance 0. Here w(t) = —o?t2/2.

Thus, b = 0 and p is concentrated at 0 with mass o.

2. Poisson distribution with mean A. Here w(t) = A exp {it — 1},b = X and
1 is concentrated at 1 with mass .

3. Geometric distribution with parameter 0 < p < 1. Here w(t) = > o2 | (e~
1)¢"/x. It is easy to check that b = % and du(z) = zq*, ©=1,2,..

4. For the (number of failures) negative binomial distribution with param-
q

eter n and p, using the above, b = % and du(z) = nxq®, x = 1,2, ...
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5. For the exponential distribution with mean 1, ¢(t) = (1 —it)~1,b =1
and du(z) =z exp {—z}dz,x > 0.

6. For the gamma density f(z) = %e_m%p_la $(t) = (1 —£)7P and

e*CMI

dr

p it
t) =1— + wr_ 1 —qt
w(t) =1 p/o {e itx} .

Hence b = £ and du(z) = pz exp {—az}dz, x> 0.

7. The double exponential distribution has density f(z) =exp(—|z|)/2, —oo
< x < oo with cf ¢(t) = (1 —it)~(1+it)~!. Using the representation for the
exponential, in this case, b = 0 and du(x) = |z| exp{—|z|}dz,—00 < z < 0.

8. Logistic distribution. Suppose Y has the logistic density exp(—z)/(1 +
exp(—z)), —00 < x < 0o. Then its Lévy measure is

22 exp(—z)
Mdzx) = . d — .
[2) = 1 Tl —exp(—fa]) 05 ~® <E<®

9. Non-Gaussian Stable distributions with index o, 0 < o < 2. In this case,

0

oo |$|1+a x1+a

where A(t,z) = e —1— lf:";Q and f3; and f3; are nonnegative. Hence 02 = 0,

and d\(z) = 1«1:1:2 2|~ (H ) dg, —o00 < 2 < oo.

10. The hyperbolic cosine density is f(z) = (7 cosh £)~!, —o0o < z < 00
Its characteristic function is ¢(t) = [cosh(nt/2)]7!. See Feller (1966, p.476).

Here b =0 and du(z) = mdm.

11. Bessel distribution. The Bessel function of order p > —1 is defined as
I(z) = Ziom <%> 2k+P_ Then for every r > 0, the Bessel density
fr(z) = e ®21,(z), (x> 0) hascf ¢(t) = [1 —it— /(1 —it)? — 1]7‘. Here
du(z) = rx exp {—z}lo(z) and b =r.

12. Log beta distribution. Suppose Y is a beta random variable with density
fy(z) = [Beta(a, B)] 'z* (1 —2)?~!, 0<z < 1. Let X =—log Y. Then

X is id and its Lévy measure concentrates on the positive real line with
2
measure \(dz) = #xile*w(l —e ) /(1 — e )du.
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13. Log gamma distribution. Suppose Y has the Gamma (1,p) distribu-
tion. Let X = logY. Then its Lévy measure is A(dx) = 13’;% exp(pz)/(1 —
exp(z))dz, z < 0.

2.2 Characterization of nonnegative discrete id laws. There is an elegant
characterization of all distributions supported on the nonnegative integers
that are id. The characterization says the following. See Dharmadhikari and
Joag-Dev (1988), and Katti (1967, 1977).

Let X take values 0,1,2,..., with P(X = k) = px. Then X is id if and
only if

: i—1
tpq by .

n=—— Zni—j_] >0 Vi>2, where m = p1/po. (3)
po = Do

REMARK 8. It is difficult to verify (3) to establish infinite divisibility.
The relation is more useful to exclude a given distribution from being id.

ExXAMPLE 9. Consider the discrete standard normal distribution with
mass function pp = 2[0(2m) 1) + 1] ! exp(—k?/2) where 0(:) is the Jacobi
theta function. Then n; = .6065 > 0, but ny = —.0972 < 0, and it follows
that the discrete normals are not id. (3) can also be used to prove that the
product of two independent Poissons with small mean is not id.

However, simple and verifiable sufficient conditions that imply the above
characterization are available. One such sufficient condition is the following:

Sufficient Condition. Let X take values 0,1,2,..., with P(X = k) = pg.
Then X is id if logpy is convex in k.

REMARK 9. The support of a discrete id law on nonegative integers
cannot have any gaps if P(X = 1) is strictly positive. We will see below
that a similar result holds for positive id random variables with a density.

2.3 Nonnegative id laws with densities. The details of the results described
in this section may be found in Steutel (1969, 1979) and Goldie (1967).

One of the most important and useful results on id laws is the Goldie-
Steutel law for positive random variables. The proof that a certain positive
random variable having a density is id may be accomplished in one of the
following ways: (a) verify that the Goldie-Steutel law applies; (b) try to
verify a known characterization result parallel to the discrete case; (c) use
a known sufficient condition; (d) use a special technique for that particular
problem.

The problems that are solved by using technique (d) generally turn out
to be the difficult ones; the lognormal and the half Cauchy are two instances.
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The Goldie-Steutel Law. Let a positive random variable X have a density
f(x) which is completely monotone. Then X is id.

REMARK 10. Complete monotonicity means that the function is contin-
uous, decreasing, and derivatives of successive orders have opposite signs. It
is well known that such functions may be written as exponential mixtures.
So the Goldie-Steutel Law says that a positive random variable X with den-
sity f is id if it can be written as X = Y Z, where Z is exponential with
mean 1, and Y is nonnegative and independent of Z. Many positive random
variables are known to be of this variety, and a fortiori, they are id. In fact,
the same proof can be used to remove the restriction that Y is nonnegative;
see DasGupta (2002a) for applications of this extended version.

EXAMPLE 10. Let X have the Pareto density f(z) = z(mfi )@*L. Then,
easily, f is completely monotone, and so X is id. It can be verified that in
the representation X =Y Z as above, Y has a Gamma, density.

The following extension of the Goldie-Steutel law is sometimes useful:

Extension of the Goldie-Steutel Law. Let X have a density f(z) of the form

o) = [ exp(-atig(tyi

where g(-) changes sign once. Then X is id.

Now let us see the continuous analogs of some of the results we saw in
the discrete case. First, a characterization of id laws in terms of the density
function; see Steutel (1979) (to our knowledge, the result first appears in
McCloskey (1965), where it is credited to H. Rubin).

Characterization of nonnegative id laws with densities. X > 0 with density
f(z)isid if and only if there is a nondecreasing function 7(u) on [0, co] with
[Z umtdr(u) < oo, such that f(z) =z~ [J f(z —w)dr(u).

This integral equation has an interpretation in terms of size-biased sam-
pling and decomposability of the size-biased version of an id law. See Per-
man, Pitman and Yor (1992) and Steutel (1995). For applications of this
formula, see Pitman and Yor (1997).

Verifying whether a given f may be written in the above form corresponds
to solving an integral equation with difficult constraints and hence is often
difficult to implement. But fortunately, there are certain verifiable sufficient
conditions and necessary conditions for applications. We give one pair below.

Sufficient condition. Let X be a positive random variable with a strictly
positive decreasing and twice continuously differentiable density f(x). Then
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X isid if

1
< -+ , VO<y<uz. (4)
x
Necessary condition. Let X be a positive id random variable with a density
f(x). Under regularity conditions, if f > 0 in some neighbourhood of 0,
then it cannot have any zeroes. See Sharpe (1995) for precise statements.

REMARK 11. Note that this parallels the result for the discrete case
that the support of X cannot have any gaps.

2.4 Basu’s theorem and infinite divisibility. DasGupta (2002a) shows
by using Basu’s theorem (Basu, 1955) that a large class of functions of ran-
dom variables X1, ..., X;,, two of which are independent N (0, 1), is infinitely
divisible. Precisely, one has the following theorem.

Let X1, Xs beiid N(0,1) and X3, ..., X, arbitrary random variables such
that (X1, X3) is independent of (X3, ..., X,,). Let f(X7, X2) be any homoge-
neous function of degree 2 and ¢(X3, ..., X;;) any arbitrary function. Then
f(Xl, Xg)g(Xg, ceny Xn) is id.

The following examples are some consequences of the above result. See
DasGupta (2002a) for more examples.

ExaAMPLE 11. If Z,"IN(0,1),1 < i < n, then Z, Zs...Z, is id.

ExaMmpLE 12. If X;% Cauchy (0,1),1 < i < n, then X; X»...X,, is id.
EXAMPLE 13. Let X, X5, X3 be iid N(0,1) then X; X5 £ X5X3 is id.

ExampLE 14. If Z,“IN(0,1),1 < i < n where n > 3, then e T
idfor2<k<n-—1.

ExampLe 15. If X;% Cauchy (0,1),1 < i < n, where n > 3, then
%isidforZSkSn—l.

3. Properties of id and Stable Laws

Id laws have very interesting properties in terms of their characteristic
function, moments and tails. Moreover, subclasses of id laws such as those
that are unimodal, totally positive, etc, turn out to be quite interesting. We
shall discuss some of these below. The important subclass of stable laws is
treated separately in subsection 3.3.

3.1 Properties of the characteristic function. Characteristic functions
of id laws satisfy some interesting properties. Such properties are useful to
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exclude particular distributions from being id and to establish further prop-
erties of id laws as well. They generally do not provide much probabilistic
insight, but are quite valuable as analytical tools in studying id laws. A
collection of properties is listed below. See Chung (1976) for proofs of most
of these results.

1. Let ¢(t) be the characteristic function (cf) of an id distribution. Then
¢ has no real zeroes. The converse is false.

2. Let ¢(t) be the characteristic function (cf) of an id distribution. Then
for all A > 0, ¢*(t) is also a cf. Here ¢*(t) is to be defined as
exp(ALog[¢(t)]), where Log|.] denotes the distinguished logarithm.

3. Let ¢1(t), p2(t) be two id cfs; then ¢y (¢)po(t) is also an id cf.

4. Let ¢(t) be the characteristic function (cf) of an id distribution. Then
$, the complex conjugate of ¢, and |$|? are also id cfs.

5. Let ¢,(t) be a sequence of id cfs, converging pointwise to another cf
@(t). Then ¢(t) is also an id cf.

6. Let ¢(t) be the characteristic function (cf) of an id distribution. Then
there exist real constants a, b, such that |log ¢(t)| < a + bt? for all ¢.

REMARK 12. Property 3 just says that the convolution of id laws is
id. Property 4 says that the negative of an id random variable X is id,
and therefore if X; and Xy are iid and id, then (X; — X9) must also be id.
Property 5 is essentially a restatement of Characterization # 1. Let us see
a quick example that the converse of Property 1 is false.

EXAMPLE 16. The function ¢(t) = (cost + 2)/3 is the cf of a non-id
symmetric distribution on {—1,0,1} and obviously has no real roots.

3.2 Moments and tails of id laws. An id random variable may have all
moments, some moments, or even no moments: the normal has all moments,
the Cauchy has no moments, and intermediate ¢ distributions have some
moments. But one can say some definite things about the tails of id laws.
For example, roughly speaking, no id law can have tails thinner than that
of a normal. We state these and connections to the canonical measures of id
laws below. See Steutel (1979).

Let X be an id random variable with cdf F'(x) and corresponding canon-
ical measure A as in Form B of its characteristic function. Then,
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(1) —log(l — F(z)+ F(—z)) = O(zlogz) as x — oo unless F' is a normal
cdf;

(2) There cannot exist any reals ¢ > 0, b > 1 such that 1 — F'(z) + F(—x)
= O(exp(—az'*?)) as  — oo unless F is degenerate;

(3) There cannot exist any reals a > 0,0 < b < 1 such that 1 — F(z) +
F(—z) = O(exp(—ax'*?)) as  — oo unless F is normal;

(4) If lim F(z)/®(x) =1, then F must be & itself;
T—r—00

(5) For a given p > 0,1 — F(z) = O(z™P) as ¢ — oo if and only if
[2dA(u) = O(z?) as & — o0; and F(—z) = Oz ?) as ¢ — o0
if and only if [77 d\(u) = O(z™P) as 7 — oco.

(6) For a given p > 0, E(|X|P) < oo if and only if [* |ulPdA(u) < oco.

REMARK 13. The connections of F' to the canonical measure X\ via their
respective tails as in (5) are nice; so is the equivalence between existence of
absolute moments. It is also interesting that the assertion of (4) is false if
the cdf in the denominator is an id cdf G(z) other than ®(z).

ExXAMPLE 17. Suppose X has the density function

f(2) = exp[~2"]/(2D'(5/4)).

Then, from (1) or (2), it follows that X cannot be id. The tail of f(z) is
too thin. Similarly if X has a mixture normal distribution pN (0, 0%) + (1 —
p)N(0,02), for unequal 02,02, then, from (1), it follows that X cannot be
id.

3.3 The stable laws. The subclass of stable laws occupies a special position
in the class of id laws. Their probabilistic properties have been studied
extensively. They have also found numerous applications in statistics. In
this subsection we discuss some of the probabilistic properties of stable laws.
In section 6 we shall look at the statistical importance of this class. Basic

properties of stable laws can be seen in Feller (1966), Zolotarev (1986), and
Dharmadhikari and Joag-Dev (1988) and Samorodnitsky and Tagqu (1994).

Characteristic function of stable laws: Starting from Form B of the character-
istic function of id laws, it is possible to derive the following characterization:



INFINITELY DIVISIBLE DISTRIBUTIONS AND PROCESSES 775

@(t) is the cf of a stable law F":

with index « # 1 if and only if it has the representation
log ¢(t) = ibt — o®|t|*(1 — iBsign(t) tan(ma/2)); (5)

with index « = 1, if and only if it has the representation

log (1) = ibt — ot <1 + iﬁsign(t)% log |t|> . (6)

The scale parameter o > 0, the location parameter b and the skewness pa-
rameter  of F' above are unique (except that if &« = 2, the value of f is
irrelevant). The possible value of 3 ranges in the closed interval [—1, 1].
The possible values of b are the entire real line. It follows trivially from the
characteristic function that F' is symmetric (about b), if and only if 5 = 0.
If @ = 2 then F is normal. If « = 1 and # = 0, then F' is a Cauchy law with
scale o and location b.

Moments and tails of a stable law. The stable laws also have some very nice
moment and tail properties. But first an easy fact: The first moment of any
random variable, if it exists, is equal to the first derivative of the cf at zero.

By using the above characterization, it is easy to see that if X is stable
with & > 1, then E(X) = b. What can be said about other moments? Of
course, if & = 2, then all moments exist. If X is stable with 0 < o < 2, then
for any p > 0,

E|XP <ooifand only if 0 < p < a.

This property of the moments suggests that the tails of a stable law
behave as £~%. This is essentially correct: If X is stable with index 0 < a <
2, then there exists a non-zero constant C, # 0, such that,

mlL%O 2P{X >z} =Cy(1+ B)o%/2 (7)
mhﬁr{)lo *P{X < —z} = Cy(1 — B)o“ /2. (8)

Thus a stable law of index 0 < o < 2 has at least one of the tails of ezact
asymptotic order z7¢. If § # 1, —1, then both tails are of this order.

3.4 Unimodality, total positivity and the class L. The standard examples
of id laws are all unimodal. Even the discrete ones are discrete unimodal.
See Wolfe (1971), Yamazato (1982), Ibragimov and Cernin (1959) and Dhar-
madhikari and Joag-Dev (1988) for general theory. But it is not difficult to
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construct simple continuous id random variables which do not have unimodal
densities. Let us see an example. See Sato (1994) for additional information.

EXAMPLE 18. Suppose X; has the N(0,0?) distribution, and X», in-
dependent of X1, has a Poisson () distribution. Consider the convolution
X = X, + X5. Evidently, X is id. However, for given A, the density of X
will not be unimodal for sufficiently small . Figure 1 gives the density of
X when A =1 and 0 = 1/4. An X of this form, in general, has a density
with finitely many distinct local maxima.

2 2 4
Figure 1. Density of X in Example 18 (A =1, 0 = 1/4)

In view of this, it is interesting to ask what can be said about unimodal-
ity of id laws. It turns out that a large class of id laws having a certain
property known as self decomposability are indeed unimodal. We first give
the definition.

DEFINITION 3. Let X be a random variable with characteristic function
@(t). X is said to be self decomposable if for every 0 < ¢ < 1,¢(t) can be
factorized as ¢(t) = ¢(ct)(t), where ¢ is another characteristic function.

In other words, X can be written as a convolution X 2 X +Y for every
0 < ¢ < 1. The class of all such laws is called the class L.

A recent paper with further references for self decomposable laws is Jean-
blanc et al. (2002).
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REMARK 14. Clearly, normal and Cauchy distributions are self decom-
posable.

The following three results give the interconnections between id/stable
laws, class L and unimodality. For details see Yamazato (1975).

1. Every id random variable that is in the class L is unimodal.
2. All stable distributions belong to the class L.

3. All stable distributions, which are a fortiori id, are unimodal.

REMARK 15. Thus, we have a nice subclass of id laws, namely all
stable laws, that are unimodal. The proof that every density in the class L
is unimodal is nontrivial. Note that the result stated above indicates how
to construct other large subclasses of id laws that would also be unimodal.
For instance, take a convolution of a normal random variable with a stable
random variable. This will be id, and will also be unimodal because a normal
random variable is strongly unimodal and a stable one, as we just stated, is
unimodal.

For one sided, i.e., either positive or negative, stable laws, it is sometimes
possible to assert a very strong kind of unimodality. See Karlin (1968). It
is the following :

Let X be a positive stable random variable with index o = 1/k for some
natural number k& and || = 1 in the canonical representation of its charac-
teristic function. Then the density of X is totally positive.

3.5. Approzimation of sums in total variation by id laws. Take iid ran-
dom variables X1, Xo,... having some common distribution H. Under well
known conditions, S, = X1 + Xs + ...+ X,,, when centered and normalized,
will converge to a normal distribution. However, the convergence is not nec-
essarily in total variation. A simple example is that of iid Bernoulli random
variables X,,. In this case, for all n, the total variation distance remains
equal to 1. However, if H is continuous with a unimodal density, then the
convergence will also be in total variation.

So it is interesting that if the approximating class is enlarged to the class
of id laws, then it is possible to say definite things about convergence in total
variation. See Fisz (1962). A few results are as follows:

Let Xy, Xo,... be an iid sequence with some common distribution H.
Let Z denote the class of all id laws and let Hy(z) = P(S, < z). Then
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1. nlLHgO sz{p }?rngV(Hn,F) =0;

2. There exist finite constants c¢1, ca, such that

c1(nlogn)~! < sup inf dyy (Hp, F) < con™ '3 (logn)?;
g Fel

3. If X; are iid Bernoulli (p), then

sup inf dry (Hy,, F) = O(n=%/3).
0<p<1 FeZ

3.6. Kolmogorov’s Uniform limit theorems. For two distribution func-
tions F' and G on R, let p(F, G) denote their Kolmogorov distance sup,, |F'(z)
G(z)|. Prohorov (1955) proved that infg.p p(F",G) — 0 for any F, where
F™ is the n-fold convolution of F' and D is the class of id laws. Kolmogorov
(1956) addressed the question whether the convergence is uniform over F
and showed that ¢ (n) = supp infg.p p(F",G) = O(nfé). Over the next
twenty five years, numerous researchers in the former Soviet Union obtained
progressively improved results on the asymptotic behaviour of ¢(n), culmi-
nating in the brilliant resolution of the problem in Arak (1981, 1982). The
table below sketches the evolution of this problem.

Author Result

Prohorov (1960) P(n) = O(nfé(log n)?)
Mesalkin (1961) P(n) >c n_%(log n)_%
Kolmogorov (1963), Le Cam (1965) P(n) =0 n_%)

Arak (1981,1982) ein”3 < 4p(n) < con”3

with the nfg rate attained

at suitable Bernoulli distributions.

Arak also shows that if F' is restricted to distributions whose cf’s do
not change sign, then the rate of 1(n) is n~'. Thus, by allowing all id
distributions to approximate F", the n~7 rate of the Berry-Esseen theorem
is improved. Discussion of other metrics including the Lévy metric may be

seen in Zaitsev and Arak (1983).

3.7. Slepian inequalities. If X,Y are zero mean normal vectors and
corr(X;, X;) > corr(Y;, Yj), then

P(X<e¢)>P(Y <o)
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Thus the quadrant probabilities (either lower or upper) are increasing func-
tions of the correlations. This is the original Slepian inequality (Slepian,
1962). Tt has many applications.

A version of the Slepian inequality for stable distributions with o > 1
was obtained in Marcus and Pisier (1984) and for some id distributions in
Samorodnitsky and Taqqu (1993). But the conditions are difficult to verify.
Brown and Rinott (1988) provide Slepian inequalities for a subfamily of
multivariate id distributions under simple conditions.

Samorodnitsky and Taqqu (1994) revisit this problem and relate Slepian
inequalities for id distributions to those for the corresponding Lévy measures.

3.8. Operator Stable measures and C-decomposibility. Two concepts
that generalize infinite divisibility are the concepts of operator stable and C-
decomposable measures. Primary references are Sharpe (1969b) and Bunge
(1996,1997). First we introduce operator stability.

3.8.1 Operator stable measures. Let V be a finite dimensional inner prod-
uct space. For a probability measure A on V, and a nonsingular linear
transformation B, let A" denote the n-fold convolution Ax Ax---*x X and BA
the measure AB~!. Let also d(a) denote the point mass at the point ‘a’.

A probability measure i on V', not supported on any proper hyperplane,
is called operator stable (os) if there exist a sequence of nonsingular trans-
formations {A,}, a sequence of points {a,}, and a probability measure A on
V so that A,\" x §(ay,) converges weakly to p.

Sharpe (1969b) shows two key facts:

1) If p is os, then p is id;

2) Every os p admits the following decomposition: there exist indepen-
dent subspaces V1, Vo and measures p1, po os on Vi, Vs such that p;
is Gaussian, uo is Gaussian-free, V=V, @ Vo, and p = p1 * po.

Sharpe (1969b) also characterizes the os measures in terms of the family
of measures {u'},t > 0, where u' is the measure with cf (f1)%, /i being the
cf of p. Further refinements of some of these results may be seen in Hudson
and Mason (1981a,b) and Kucharczak (1975). Characterization of laws in
the domain of attraction of an os law and a series representation akin to
ordinary stable laws are given in Hahn et al. (1989).

3.8.2 C and N decomposibility. Bunge (1996,1997) describes two gener-
alizations of infinite divisibility that have various applications.

A random variable X is called N-divisible if there exist iid random vari-
ables X1, Xo, ... such that X has the same distribution as X; + Xs+...4+ X,
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where N takes positive integral values and is independent of the {X;}. If
the {X;} can be chosen to be scaled copies of X, then X is called N-stable.
Bunge (1996) discusses representations of N-divisible measures and applica-
tions to quantities modelled as random sums.

Bunge (1997) calls X to be C-decomposable for suitable subgroups C
of [0,1] if for every ¢ in C, X has the same distribution as ¢X + Y., where
Y. is independent of X. The relation to infinite divisibility is that the in-
tersection of a nested family of subsets of C'-decomposable laws gives the id
distributions.

3.9. Infinitely divisible laws on group structures. FExtension and repre-
sentation of id laws on group structures more general than R? are discussed
in various works of Parthasarathy, Zolotarev, Heyer, Port and Stone.

In a pioneering article, Parthasarathy and Sazanov (1964) give a formula
for the characteristic function of an id law on locally compact abelian groups.
They show that every id law can be broken down into three components, a
Gaussian, a Poisson and a Haar component. Heyer (1972) discusses exis-
tence and various definitions of Gaussian and Poisson measures on locally
compact abelian groups. He also gives a generalization of the character-
ization of id laws as limits of triangular arrays in the Euclidean case for
compact lie groups. Zolotarev (1975) gives explicit conditions on the spec-
tral measure of an id law P on a locally bicompact abelian group for P to
be discrete, continuous or absolutely continuous. He also gives a series of
interesting examples. See Fisz and Varadarajan (1963) and Tucker (1965)
also for similar results. Id processes on locally compact abelian groups are
discussed in Port and Stone (1969), where they show extensions of various
results on hitting times of transient random walks to the continuous time
case. They also discuss potential theory for the continuous time case.

3.10. Infinitely divisible random sets. Analogous to the theory of id
random variables, there is an elegant set of results on id random sets. A
random compact convex set (in the sense of Matheron, 1975) K is said to be
id if for every n > 1, the law of K is the same as the law of the Minkowski
sum Kj + ... + K, of iid sets K1, ..., K,,. Mase (1979) is a pioneering article.
For the special case of R!, it is shown that an id set containing the origin is
of the form [-X,Y] for X,Y > 0 where (X,Y’) have a joint id distribution.

The restriction that the sets contain the origin is removed in some special
cases in Vitale (1983) and Lyashenko (1983). A Lévy type representation for
the general case is given in Gine and Hahn (1985), where support functions
of convex sets are used to reduce the problems to id laws on certain function
spaces. Tools of probability theory on Banach spaces are then heavily used.
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In a later paper, Gine and Hahn (1985), a lucid review of the topic and some
discussion of the infinite dimensional case are presented. Some practical
applications can be seen in Artstein and Hart (1981).

4. Multivariate id and Stable Laws

Let X be a k-dimensional random vector. Then the definition of infinite
divisibility of X is the same as in one dimension. Many of the results are
similar too, for instance inclusion of the multivariate stable laws, canoni-
cal representations of the characteristic functions, etc. The basic theorems
about id random variables were generalized to id vectors as early as 1954.
Early references in this area are Rvaceva (1954), Takano (1954) and Dwass
and Teicher (1957). See also Stoyanov (1987).

Of course if a random vector is id, then all the lower dimensional com-
ponents are also so. However, interesting things happen when we consider
other aspects. In the subsections below, we discuss some aspects of multi-
variate id laws, such as, independence, Gaussianity, existence of moments
etc.

4.1. Some interesting examples. 'This section is a collection of results
and examples exploring the connection between infinite divisibility of the
full vector and of lower dimensional transformations.

ExXAMPLE 19. It is possible that a random vector X is not id, but all lin-
ear combinations of the coordinates of X are id. Let Z be a standard bivari-
ate normal vector. Define a new bivariate random vector X = (¢'Z,Z2'AZ),
where c is a 2—tuple and A is a 2 X 2 symmetric matrix. If ¢ is not in the
null space of A, the vector X is not id. However, every linear combination
of the two coordinates of X is infinitely divisible.

ExaMPLE 20. Even if X is not id, every lower dimensional projection
may be id. Take Z;, Zs to be iid N (0, 1), and define a new trivariate vector X
as X = (Z2,717Z5,72). Then, it is easily verified that each two dimensional
projection is id, but X itself is not id.

EXAMPLE 21. For iid univariate normal variables, the sample variance
is a scaled chi—square and hence id. However, for iid k—dimensional normal
vectors with nonsingular dispersion matrix, the Wishart matrix of sample
variances and covariances is not id.

ExXAMPLE 22. Let X be an id random vector. Then it is possible that
although X is not multivariate normal, certain linear combinations ¢/ X of
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X are univariate normal. Indeed, ¢/ X is univariate normal if and only if the
Lévy measure corresponding to the distribution of X is supported on the
manifold {z : ¢z = 0}. Of course, such examples of normal projections of
non-normal vectors are well known; but now the full vector itself is id.

ExAMPLE 23. Nonlinear functions of the coordinates of a non-id vector
may be id. Let Z be N(0,1) and write Z = X; X9, where X7, Xo are iid.
This is possible. Let X = (X7, X2). Then X; X5 is id by construction, but
X is not id. To see the latter, note that P(|X;| > z) < P(|Z| > 2?)Y/? =
O(z~! exp(—z*/2)), and from fact (1) listed under moments and tails of id
laws (section 3.2), we see that X cannot be id.

4.2 When are components of an id vector independent? Recall the uni-
versally known fact about Gaussian random vectors: if (X,..., X)) is Gaus-
sian then the components are mutually independent if and only if they are
pairwise independent which in turn happens if and only if Cov(X;, X;) =0
Yi#7.

Now assume that X = (X1,...,X,) is id. A natural question is when
are the components independent? Are there any necessary and sufficient
conditions available as in the normal case? This is discussed in Pierre (1971)
and Veeh (1982).

It turns out that if the id vector has finite fourth moment, then pairwise
independence is still equivalent to total independence.

Since an id vector can, in general, have Poisson components, it is clear
that the covariance condition which is necessary and sufficient for pair-
wise/total independence when X is normal does not remain so when X
is merely id. But interestingly, the addition of one extra condition leads to a
satisfactory solution. Assume that X is id and has a finite fourth moment.
Since total independence is equivalent to pairwise independence, it is enough
to concentrate on the case where X is a 2-vector, X = (X1, X3). To simplify
expressions, assume that F(X;) =0 for i =1, 2.

Let

B = (2,2) cumulant of (X1, Xs) = Cov(X?, X3) — 2(Cov(X1, X9))2.

From the results of Pierre (1971) (see also Sclove, 1981), it is known that
B >0.

In general, the two components X; and Xs are independent if and only if
Cov(X1, Xo) =0 and Cov(X?, X2)=0.

In several special cases, 8 carries the information on independence of
the components. For example, if (X7, X5) has no Gaussian component,
then X; and X5 are independent if and only if 8 = 0. In particular, if X is
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discrete then X; and X5 are independent if and only if 5 = 0. Hence Poisson
components are independent if and only if 5 = 0.

4.3. When are id vectors Gaussian? Suppose X = (Xi,...,X,) is
id. As we have discussed in Example 22, it is possible that certain linear
combinations are normal but X is not normal. What happens if sufficiently
many linear combinations are normal? Indeed, if each X}, is Gaussian, then
X is Gaussian. One can say more. If there is at least one component k£ such
that the 4th cumulant of X}, is zero then also X is Gaussian.

Recall that the regression functions of Gaussian vectors are linear. Fur-
ther, all conditional distributions are homoscedastic. That is, the dispersion
matrix of any sub-vector given any other is free of the conditioning sub-
vector. For characterization of normal vectors using such ideas, see Kagan
et al. (1973).

However, for id X, homoscedasticity and the linearity for vectors up to
a pair guarantees Gaussianity of X:

Suppose X is id and square integrable, linearly independent (to avoid
trivialities) and with pairwise nonzero correlations. Suppose for some i, j, k,

E(Xi|X;) = aiX;+ pij,

Var(Xi|X;) = by,
BE(Xil X5, Xk) = 50 X) + 50Xk + ),
Var(Xi|X;, Xk) = b -

Then X is Gaussian. For more information on such characterizations, see
Wesolowski (1993) and Arnold and Wesolowski (1997).

4.4 Multivariate stable distributions. Multivariate stable laws forms a
subclass of multivariate id laws. While they have not found much applica-
tions in statistical modelling yet, it is believed that this situation will change
in the near future. In particular, they are anticipated to be of much use in
economic data modelling. There are different ways of extending the univari-
ate notion of stability, giving rise to different classes of multivariate stable
laws. A general reference is Press (1972); also see Horn and Steutel (1978).
We will take the following as our definition:

DEFINITION 4. A random vector X = (X7y,..., X) with distribution ¥’
is said to be stable, equivalently F' is said to be stable if for independent
copies XM and X@ of X, and for any positive numbers a and b, there exists
a positive number ¢ and a vector D such that a X + X3 2.x + D. If
D =0, then X is said to be strictly stable.
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As in the univariate case, if X is stable, there is an «, 0 < a < 2, called
the index of X or F', such that for any n > 2, there is a vector D,, such that
XM 4 x®@ 4 4 x0) 2 pllex + D, where XU ... X™) are iid copies
of X. Moreover, this can be taken as the definition of multivariate stability,
equivalent to the one given above.

EXAMPLE 24. Of course, as in the univariate case, if @ = 2, then X is
multivariate normal.

ExAMPLE 25. It is not hard to verify the following: If X is « stable
(respc. strictly stable) then all linear combinations are « stable (respc.
strictly stable).

It turns out that the converse is partially true and we have the following
facts:

(1) If alllinear combinations of the coordinates of X are stable with o > 1,
then X is stable.

(2) If all linear combinations of the coordinates of X are strictly stable,
then X is strictly stable.

(3) If all linear combinations of the coordinates of X are symmetric stable,

then X is symmetric stable. (Here symmetry is defined as X 2 _x )

EXAMPLE 26. The conclusion in (1) is false in general if 0 < o < 1. To
see this take W(t1,t2) = exp{—r® + iprcos(3¢)} where t; = rcos(¢), to =
rsin(¢). Then for sufficiently small p > 0, ¥ is a characteristic function of
a vector X which is not stable. However, it is rather easy to check via the
characteristic function that any linear combination of the two coordinates of
X is stable.

REMARK 16. Actually, in the above example, X is not even id. In
general, if we assume that X is id and all linear combinations are stable
then X is also stable.

The spectral measure of a stable law. If X is stable with 0 < a < 2, then its
characteristic function has the following representation. This representation
can be arrived at starting from the representation of id laws.

Let S denote the unit sphere in k& dimensions and I" a finite measure on
S. Then, with <,> denoting inner product, the cf of a stable law has the
representation:
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if o #£1,

U(t) = exp{i <t p >—/| <t,s>|* x[l—isign<< t, s> tanﬁ)]f’(ds) \
g 2
(9)

if « = 1, then
U(t) = exp{i <t, pu>

2
—/ |<t,s>]|x [1+i;sign(< t, s >log|<t, s >|)]F(ds)}. (10)
s

The pair (I', 1) is unique. The above representation is called the spectral
representation. ' is called the spectral measure.

ExaMPLE 27. The characteristic function of the multivariate Cauchy
random variable X is given by ¥(t) = exp{—(#'St)"/2 +i < t,pu >}. If 2 is
the identity matrix and p = 0, then X is spherically symmetric stable with
I" being the uniform measure. For the bivariate case, its density is given by
flz)=@2n) Y1+ a2 +23) 32 —oo <z, 29 < 0.

ExXAMPLE 28. From the above representation, we can derive a criterion
for the independence of the components of a stable vector. If X is stable,
then its components are independent if and only if the spectral measure I is
discrete and is concentrated on the intersection of the axes with the sphere S.

4.5. Joint moments and linearity of conditional expectations. Recall
that if X is a one dimensional stable variable with index «, then E|X P < co
for all 0 < p < a. The moment of order equal to a need not be finite
as the Cauchy law where o = 1 shows. Thus when we deal with stable
vectors, we must at least assume that o > 1 for the expectation to exist in
general. By using Holder’s inequality, this not only assures the finiteness of
the first moment of every component, it also implies every product moment
of combined order p < « is finite. To be precise, if X is stable with index «,
then

n n
Zpi <a = EH|X¢|’” < 00.
i=1 i=1

The converse is false in general. However if X = (X7, X3) is a stable
vector with only fwo coordinates, and with index o < 2 then, the converse
is indeed true.

What happens to regression functions for stable vectors? In particular,
if X = (Xy,...,X,) is stable, is E(X;|Xq,...,X,) linear in X,,...X,,?
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Again, the answer is yes, if we have a two vector: if X = (X7, Xb)
is stable with index 1 < a < 2, then E(X3|X;) = ¢X; for some con-
stant c¢. If X = (Xq,...,X,), n > 2, then in general it is not true that
E(X1|Xs,...,X,) is linear in (Xo,...,X,).

There are several conditions under which this linearity can be claimed.
We give one which is related to the spectral measure I'.

If X is strictly stable with index 1 < a < 2, and spectral measure T,

n—1
then F(X,|X1,...,X,-1) = Y. a;X; if and only if
i=1
n—1 n—1 a-1
vV, / (xn — Z aixi) <Z rixi> dr (z) =0. (11)
s i=1 i=1

4.6. Point processes and infinite divisibility. Point processes have re-
ceived enormous attention for their numerous applications and there are
several good books in this area: Daley and Vere-Jones (DVJ, 1988), Kallen-
berg (1983) and Karr (1986) are standard references. Here we will give a
very brief exposition of infinitely divisible point processes.

Any probability mechanism by which a random number of points N (A)
is allocated to a Borel subset A of the real line defines a point process on the
real line. We assume that N(A) is finite for every bounded set A. So N is
a random counting measure on R. In general, the real line may be replaced
by any complete separable metric space (c.s.m.s.).

The Poisson process is the simplest example, where for all a, b, N((a, b])
has a Poisson distribution. If E[N((a, b])] = A\(b — a) then it is a stationary
Poisson process. There are several extensions of the Poisson process such as
the compound Poisson process, the mixed Poisson process etc.

A point process N is said to be id if for every k, it is a superposition of
k iid point processes. The stationary Poisson process is clearly id.

A typical finite dimensional distribution (fidi) of a point process is the
distribution of N(A4;), i = 1,2,...k where k is any integer and the A;’s are
any bounded Borel sets. It is an important fact that:

Fact: A point process is id if and only if all its fidi are id.

A widely used class of point processes which has close connections to the
study of structure of id point processes is the cluster process. A point process
N is called a cluster process on the c.s.m.s. Y with center point process N,
on the c.s.m.s. X and component point processes {N(:|z),z € X} if for
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every bounded set A,
N(A) = / N(Az)No(dz) =3 N(Alzs)
X i

is finite almost surely.

REMARK 17. Note that there is no requirement that individual clusters
are almost surely boundedly finite (N(Y|z) < oo). However, this is indeed
the case in most common examples.

The cluster process includes all natural extensions of the basic Poisson
process. Two other general examples of cluster processes are: the Poisson
cluster process (when the cluster center process is Poisson) and the Neyman
Scott process (when the individual cluster members are iid). See DVJ] for
many other examples.

The notion of the probability generating function, so useful for integer
valued random variables, has a natural extension to point processes. For any
suitable function A define

G(h) = Eexp/logh(m)N(dm).

G is called the probability generating functional (p.g.fl.) of the point process
N.
The following is a representation result for the p.g.fl of id point processes:

RESULT. Suppose that the point process N is a.s. finite and id. Then
there exists a uniquely defined a.s. finite point process N* such that P(N*(X)
0) = 0 and a finite positive number a such that

G(h) = exp(a(Gn+(h) — 1))

for all real valued Borel measurable functions h on X which satisfy 0 < h <1
everywhere and 1 — h vanishes outside some bounded set. Conversely, any
functional of the above form represents the p.g.fl. of an a.s. finite id point
process.

Thus N may be regarded as a Poisson randomization of some other point
process N*. The reader may draw a parallel with the Lévy representation
for discrete id variables. There is another interpretation. It can be shown
that G is indeed the p.g.fl. of a Poisson cluster process. See DVJ for details.

When the almost sure finiteness condition made above is relaxed, the
situation gets a little more complicated. However, note that any id point
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process will remain id and will become finite a.s. if it is restricted to any
given bounded set. Thus, locally the above representation holds. This is the
basic idea behind a general representation for id point processes. To describe
this, we need the concept of the KLM measure, so called due to the basic
contributions of Kerstan and Matthes (1964) and Lee (1964, 1967).

Let N x denote the class of boundedly finite counting measures on X and
No(X) = Z/\/\'X\{N(X) = 0}. A boundedly finite measure Q on the Borel sets
of No(X) such that Q{N : N(A) > 0} < oo for any bounded A is a KLM
measure.

Characterizations of id point processes through representability of its
p.g.fl. by means of KLM measures may be seen in DVJ. Additional under-
standing of the structure of id point processes may also be gained through
the KLM measure. We first define the following:

DEFINITION 5. An id point process is regular if its KLM measure is
carried by the set
V., ={N*: N*(X) < co}.

DEFINITION 6. An id point process is singular if its KLM measure is
carried by the complementary set

V, = {N*: N*(X) = ool

Then the following holds:

REsuLT. Every id point process admits the decomposition
N = Np + Ng

where N and Ng are independent id point processes which are respectively
regular and singular.

Finally there are some connections between various classes of KLM mea-
sures and id point processes:
REsULT. Any id process

(i) can be represented as a Poisson randomization if and only if its KLM
measure is totally finite.

(ii) is a.s. finite if and only it is regular and its KLM measure is finite.

(iii) is a Poisson cluster process with a.s. finite clusters if and only if it is
regular.
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For a wealth of further information in this area, we refer the reader to
DVJ and Kallenberg (1983). In particular, stationarity of id point processes
and the connections to the stationarity of random measures is very thor-
oughly discussed in DV J.

5. Lévy processes

Lévy processes provide a conceptually natural generalization of Poisson
processes and Brownian motion and were introduced by Paul Lévy. The
theory of Lévy processes has seen great advances in the last two decades
and numerous serious applications are being made. We recommend Bertoin
(1996), Sato (2001) for a wealth of information, applications, and numerous
references to the literature. The richest single source for applications of Lévy
processes to numerous areas of science and economics is Barndorff-Nielsen
et al. (2001).

5.1. Definitions. Lévy processes can be thought of as strictly stationary
processes with independent increments. X; is a Lévy process on a probability
space (2, B, P) if for all s, > 0, X4 — X; has the same distribution as X
and is independent of o{X, : 0 < u < t}. In particular, Xy = 0 a.s. If for
some a (0 < a <2), X; and téXl have the same law for all ¢ > 0, then the
Lévy process X; is called a stable process with index «.

Lévy processes include Brownian motion and compound Poisson process
as special cases. Stable processes with a = 2 are proportional to Brownian
motion and with & = 1 correspond to the centered Cauchy processes.

5.2. Characteristic Exponents. The function ¢ : R? — ¢ defined by
Eei<XtA> — o=1W(}) ig called the characteristic exponent of the d-dimensional
process X. Lévy processes with the same characteristic exponent are equal
in distribution.

An explicit construction of a Lévy process X with a given characteristic
exponent 9)(.) is possible. Towards this end, let @ be an element of R?, and
IT a measure on RY — {0} such that

/min(l, |z|H)I1(dz) < oo. (12)

Let also Q(.) be a positive semi-definite quadratic form. Define

PY(A) =i <a,A> +M+/ (1 — <P >4 < 2, A >)I{|z] < 1}1(dx);
R?—{0}

2
(13)
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then there exists a unique Lévy process X with characteristic exponent 1)
and with IT as the characteristic measure of the jump process of X. See Ito
(1942).

5.3. Basic properties. Some basic properties of Lévy and Stable pro-
cesses are listed below.

a. If E(X;) =0 then the Strong Law holds, i.e., % — 0 as.
b. Every Lévy process satisfies the Strong Markov property.

c. Appropriate versions of the LIL hold. Thus, define ® : (0, 00) — (0, 00)
by E(e *¥t) = ¢ *®(N) and let ¢ denote the inverse function ® 1. Let

loglog |t
F0) = el
O(t—1loglog |t])
Suppose @ is of regular variation with index p, 0 < p < 1. Then
. ¢ 1=p
ltll)nl()r—ll—fm =p(l—p) » a.s.
For stable processes with a # 2, and for any increasing function ¢ :
(0,00) = (0,00),
X
lim sup M = 0 or co a.s.
-0+ g(t)
according as [;°(g(t))"%dt < oo or = oo.

The same results hold with ¢ — 0+ replaced by t — oco. See Bertoin
(1996) for additional information and Feller (1966), Resnick (1987) for con-
struction and properties of regularly varying functions. For many other sam-
ple path properties, see Zolotarev (1964) and Marcus and Rosen (1992,1993,
1994).

5.4. Recurrence and transience. There is an elegant dichotomy and an
equally elegant integral test to decide recurrence vs. transience of a Lévy
process. Let X be a Lévy process not supported on any proper subgroup
of R?. Then, either neighbourhoods of every point of R? are visited at
arbitrarily large times, a.s., or else | X;| — oo a.s. as t — oo.

The integral test to determine recurrence vs. transience says that a Lévy
process with characteristic exponent v(.) is transient if and only if Ir > 0

such that .
lim sup/ Re (7> d\ < o0 14
q—0 B(0,r) q+ () ()
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see Bertoin (1996). For the special case of R!, a centered Lévy process is
recurrent; if, on the other hand, E(X;) # 0 and E(|X;|) < oo, then X; is
transient.

For Stable processes, one has recurrence for 1 < o < 2 and transience
for 0 < o < 1 on R!, and recurrence for o = 2 and transience otherwise on
R?. On R? for d > 2, one always has transience.

5.5. Local times and Fluctuation theory. Given a Lévy process Xy, let

L = L(tzx) = liﬁ)l Leb(s<t: "E*;;X(s)@“) denote the local time. Biane and
£

Yor (1987) give many results and pretty identities for Brownian local times.
Yor (1982) discusses Hilbert transforms of the local time; recall that the
Hilbert transform #(-) is defined as H(f) = [ f(z—t)Ldt. Time
[t|>e
spent over a given level and fluctuation theory are discussed in Bertoin (1996)
and Doney (2001).

Dvoretzky, Erdos and Kakutani (DEK, 1961) introduced the concept of
an increase time. t is said to be an increase time of X if for some ¢ > 0,
X(t—s)<X(t) < X(t+s) for all s <e.

DEK (1961) proved the fundamental result that Brownian motion never
increases. Generalization of this result to certain types of Lévy processes
can be seen in Bertoin (1991,1995,1996).

lim
e—0+

5.6 Range and Level Sets. (H) = {Xs(w) : s > 0} is called the
Range of X. It was proved by Lévy (1953) that the Hausdorff dimension
of d-dimensional Brownian motion equals 2 a.s. for d > 2 (for d = 1, the
range equals all of R! a.s.). For a stable process with index «, the Hausdorff
dimension equals min («,d) a.s.; this result was first proved by McKean
(1955) and subsequently by many others. As regards level sets, {t: X; = =}
is called the level set of z. For stable processes with a > 1, the Hausdorff
dimension of the level set is 1 — é for any z. In particular, it is % for the

2
Brownian motion. See Sato (1999) for a thorough exposition on this topic.

5.7. Moments of functionals and the Riemann Zeta Function. A number
of functionals of the Brownian motion and the Brownian Bridge are related
to the Riemann Zeta function through their Mellin transforms. Some prop-
erties of the Zeta function and their roots follow from these relations. See
Pitman and Yor (2001), DasGupta and Lalley (2001) and Williams (1990)
for derivations of some of these relations. See also Biane et al. (2001) for a
nice review of this area.

If X(t) denotes a Brownian Bridge on [0,1] and W equals its range
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sup X () — i?fX(t), then M (s), the Mellin transform of W equals
t

s(s = DL(5)<(s)
25/2 ’

M(s) = s> 1 (15)

at s = 1, ((s) has a simple pole and the formula remains valid. In particular,
the first four moments of W are \/g, ¢(2) = 6 , 2\/_§ ) and 3((4) = 33
Various inequalities on the values of the Zeta function at integer arguments
follow from the Mellin transform formula (15); see DasGupta (2002b).
Formula (15) also leads to some properties of the roots of the Zeta func-

tion. Let p, = %—i—itk, ti > 0, be the roots on the critical line with a positive

imaginary part and consider the real function f(s) = Z log (1 + s$ o t2)>’

s > 1. This series converges and it follows from (15) that f is convex. More-
over, if the Riemann hypothesis is true, then (15) and a result in Bach and
Shallit (1996) imply that f’(s) > 2 + v — log(4r) for all s > 1. A proof of
this is given in DasGupta and Lalley (2001); here « is the Euler constant.
If Z = sup|X(t)|, then its Mellin transform equals
t

s(2°71 = DI (3)¢(s)

2%871

M(s) = , s>1; (16)

w2

in particular, the first four moments are \/_ log 2, 5, T \/—C (3) and ;go

Analogous expressions for the Mellin transforms of Z = sup|X(¢)| where
t

X (t) is either the Brownian motion or the Brownian meander are also avail-
able. For the Brownian motion, the first two moments of Z are % and
3\5—6’ where G is the Catalan constant. For the Brownian meander, these

are V2w log 2 and %2 respectively (see DasGupta, 2002b).

6. Simulation of id Laws

To understand the behaviour of different statistical procedures where id
laws are involved, it is important to be able to simulate id and stable laws.
We concentrate here on simulation of id laws in general. The simulation of
stable laws is a significantly more specialized task and will not be discussed
here. The interested reader may consult Adler et al. (1998) for material on
that. We sketch two approaches.

Approach 1: via Poisson processes. Bondesson (1982) noticed an interesting
connection between Poisson processes and id laws as follows.
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Let Z(u), u > 0 be a family of non-negative independent random vari-
ables. Let Tj, i = 1,2... be the points (in increasing order) in an indepen-
dent Poisson point process of rate A on (0, o0). Let X =Y, Z(T;) and let
X1 =) r<r Z(Ti) where T is a truncation point. The Laplace transform
(LT) of X7 is given by

Elexp{—sXr}] = exp {)\/(

(P(s,u) — 1)du}
0, T)

where (s, u) = Elexp{—sZ(u)}]. It follows that X has the LT

?(s) = exp {)\/(0 )(’([)(S,u) - l)du} . (17)

We assume that X < oo almost surely. (Otherwise X = oo almost surely:
this follows from the zero one law and the fact that the process Xy, T >0
has independent increments.) Clearly X is id.

Now let Z(u) have the distribution function H(y,w). Under suitable
regularity conditions on the measure H(dy,u), changing the order of inte-
gration, we may rewrite (17) as

@(s) = exp {)\/[0’ oo)(efsy -1) (/(0’ - H(dy,u)du) } . (18)

Now we consider simulation from an id distribution F’ with Lévy measure
A(dy). Suppose we can find a simple family of distribution functions H (y, u)
on [0, oo) and a A such that on (0, c0),

A/ H(dy,u)du = A(dy)
(0, o0)
or equivalently, for x > 0,
A/ (z, u)du = / Aldy) = N(z)
(0, 00) (, 00)

where H = 1— H. Then simulate points 7} in a Poisson (\) process by for ex-
ample adding independent exponential random numbers and after that, val-
ues Z(T;) from the distribution functions H(z, T;) and set X = >, Z(T;).
Then X has the desired distribution. If the sum converges rapidly, only a
few terms are needed to get a good approximate value of X.
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Bondesson (1982) showed how different classes of H lead to different id
distributions such as, the generalized convolutions of mixtures of exponen-
tials (class 72 of Bondesson, 1981), generalized gamma convolutions (Thorin,

1978a,b) and the generalized negative binomial convolutions (Bondesson,
1979a).

Approach 2: via structural theorem(characterization #4). Recall character-
ization #4 given earlier for id laws as limit of sums of independent Poisson
type random variables. We state this fact again here in the form of a theo-
rem, commonly known as the structural theorem. A proof may be found in
Loeve (1960, p.298).

THEOREM. A characteristic function v is id if and only if it is the limit
of sequences of products of Poisson types. That is there exists ani and by
such that

n
> itank + Ank{exp(—itbpi) — 1} (19)
k=1

P(t) = lim exp

n—0o0

The algorithm of Damien et al. (1995) to generate an observation from
a given id law with characteristic function 1 proceeds as follows:

Let A be the appropriately defined (finite) Lévy-Khintchine measure as-
sociated with .

Let Ay, ..., A, beiid. from the distribution 1dA(z) where k = [*_dA(z).

Let Y; ~ Poi (k(ﬂ??)) yi=1,...,n.

n

Let X, = 3 (AY - %) Then ¢, (1) — $(t) ¥ £, as n — oo.

In particulzarl, they use this algorithm to generate observations from sev-
eral stable distributions and study the accuracy via the Kolmogorov-Smirnov
metric.

This has interesting applications in Bayesian nonparametrics. Consider
the problem of estimating an unknown cdf F' on [0,00) based on n iid ob-
servations (possibly censored) from F. This requires putting a prior distri-
bution on the space of distribution functions F. Viewing F' as a stochastic
process, let F(t) = 1 — exp(—Y;) where {Y;} is a Lévy process. The pos-
terior distribution is also a Lévy process. See Ferguson and Phadia (1979)
for details. The increments of this process, when the jumps are removed,
are id. Using the above approach, these continuous increments can be sim-
ulated. The jump components are independent and hence simulating the
increments corresponding to these jumps is standard. Combining these two
simulations, the total increments of the process are simulated. This implies
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that a complete Bayesian analysis of the posterior distribution is possible.
In particular, the authors show how to implement the idea in estimating the
survival function using the three priors, gamma process, Dirichlet process
and the simple homogeneous process.

Apparently, no results are known regarding the rate of convergence of
the generated samples, but the simulation results of the authors are quite
promising.

Related papers in Bayesian nonparametrics where particular Lévy pro-
cesses have been used are (i) Hjort (1990) who uses beta processes, and (ii)
Ramgopal and Smith (1993) who use extended gamma processes.

7. Stable Laws in Inference

As we have seen earlier, no id law can have tails thinner than the normal
tail. However, the tails of an id law can be quite heavy. As data from a
steadily increasing number of fields have exhibited heavy tailed behaviour,
the importance of id laws in statistical modelling and inference has grown.
See Adler et al. (1998) and DuMouchel (1973b,1975).

We have very briefly mentioned the use of id processes in Bayesian infer-
ence in the previous section. However, since the class of id laws consists of
the weak limits of triangular sums, it is a huge class and is not convenient
for most statistical modelling and inference problems.

On the other hand, any stable law is obtained as the weak limit of sums
of iid random variables. Thus it serves as a very natural model in situations
where aggregation is involved. This explains the importance of the normal
distribution when the observations have finite second moments. But this
leaves out the distributions with heavy tails.

As we have seen in section 3.3, at least one of the tails of a stable law
decreases as the ath power. This offers flexibility in modelling heavy tailed
phenomena by stable laws with an appropriate choice of , 0 < a < 2.
Instances where the stable model holds exactly are not very frequent.

ExXAMPLE 29. As early as 1919, before the concept of stable laws was
introduced by Paul Lévy, Holtsmark found that under certain natural as-
sumptions, the random fluctuation of the gravitational field of stars in space
has a probability density whose cf is given by exp{—A|t|3/2}, ¢ € R? where
A is a positive constant determined by certain physical characteristics. This
is a three dimensional spherically symmetric stable law with o = 3/2 and is
known as the Holtsmark distribution.
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Since we cannot hope to have exact stability of the observations we must
look for approximate stability. This leads to the concept of domain of at-
traction.

7.1. Domain of attraction

DEFINITION 7. A distribution F' is said to belong to the domain of
attraction of a stable law with index « if there exists real sequences {a,, > 0}
and {b,} such that if Xi,... X, ... are iid with distribution F' then b, (X +
...+Xpn—ay,) converges in distribution to this stable law. We write F' € D(«).

ExAMPLE 30. Any stable distribution is in its own domain of attraction.
All distributions with finite second moments are in the domain of attraction
of the normal law.

Plenty of distributions with infinite second moments are also in the do-
main of the normal law. It will be easier to provide such examples after we
give the criteria for checking whether a distribution belongs to D(«).

There are two such simple but powerful criteria. To state these, re-
call that a function L(-) is said to be slowly varying if for every z > 0,
L(tzx)/L(t) — 1 as t — oco. Below, L is any such slowly varying function.

Criterion 1. A distribution F' belongs to the domain of attraction of a stable

law

(i) with index 0 < a < 2, if and only if there exists 0 < p <1 such that,
1— F(x)

T F) + Fex) P (20)

and
2 -«

1—F(x) + F(—z) ~ z “L(x) as £ — 00 (21)

«

(ii) with index @ = 2 (normal law), if and only if

/517 y?dF(y) ~ L(zx) as & — oo. (22)

—T

ExXAMPLE 31. Consider the Pareto law discussed in Example 10 which
has the density f(z) = %(ﬁ)o‘“, xz > 0. Tt is easy to see that it belongs
to D(a).

ExXAMPLE 32. By using the criterion above, it is easy to construct
examples of distributions F' whose second moments are infinite but which
belong to the domain of attraction of the normal law. For instance, the
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distribution F with density f(x) = 2|z|~3 log x for |z| > 1 has infinite second
moment and belongs to the domain of attraction of the normal law. The ¢
distribution with one degree of freedom is the Cauchy law and so is stable.
The ¢ distribution with degrees of freedom three or more has finite second
moment and hence is in the the domain of attraction of the normal law. The ¢
distribution with two degrees of freedom has the density f(z) = c(1+z2)~3/2
where ¢ is a constant. So it does not have finite second moment. However,
it is easy to check that Criterion 1 (ii) is satisfied with L(z) = logz. Hence
the ¢ distribution with two degrees of freedom belongs to the domain of
attraction of the normal law.

EXAMPLE 33. In the definition of domain of attraction, we used sums
of variables. If we use other composition operations, we obtain other no-
tions of stability. We discuss one such alternate notion of stability, ob-
tained by taking mazimums. Suppose that Xi,..., X, are iid F. Let
M, = max{X1,...,X,}. Suppose that {a,, > 0} and {b,, € R} are sequences
such that a,, ' (M,, —by,) converges in distribution to some distribution G. We
write F' € maxD(G). The class of limit distributions obtained in this way
is called the class of extreme walue distributions or maz stable laws. See
Resnick (1987) and Reiss (1989). One subclass of this class consists of the
Frechet distributions defined as:

O, (z) = exp{—z “}, x >0, where a > 0.

From the extreme value theory, F' € maxD(®,) if and only if 1 — F(x) =

x~*L(x). Note that this condition is a part of the condition for F' to belong
to D(«).

We now present the second domain of attraction criterion. An application
to the problem of estimation of @ may be found in section 7.3.

Criterion 2. A distribution F' belongs to the domain of attraction of a stable
law with index 0 < o < 2, if and only if

22[1 — F(z) — F(~x)] 2-a
JZ,y2dF (y) o

as r — 00. (23)

7.2. FEstimation of a, preliminaries. The normal law has a rapidly
decreasing tail and corresponds to @ = 2. For modelling heavy tailed phe-
nomena, we restrict our discussion to the class of stable laws with index
0 < a < 2. This leads to the following basic question:

Question: Suppose we have iid observations from a distribution F' € D(«).
How does one estimate the parameter «?
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Note that even if we assume that F' itself is stable, the problem is still not
easy. As mentioned earlier, except for the three special distributions normal,
Cauchy and Lévy, no closed form expressions are known for the density of
stable laws. This makes the problem of estimating « quite difficult. Possible
approaches to the estimation problem are already offered indirectly in the
discussion of section 7.1:

(i) Example 33 suggests that the extreme order statistics have a role to play.

(ii) Criterion 1 suggests how the sample versions of F', the empirical distri-
bution F, may be used to obtain estimates of . Likewise, Criterion 2 also
suggests estimates for a.

(iii) The cf of stable laws is available in a closed form. Thus the use of the
empirical characteristic function offers another possible approach, at least
when F' is exactly stable. For general theory on estimation of «, see Csorgo
et al. (1985) DuMouchel (1983), Hill (1975), McCullough (1997), Resnick
and Starica (1997b), and de Haan and Peng (1998).

EXAMPLE 34. Consider the one parameter Pareto distribution with pa-
rameter o whose cdf is given by

1—F(z)=z"% z>1. (24)

Assume that Xi,...,X, are iid observations from this Pareto law. Since
the distribution and the density in this case are explicitly known, we can
use the method of mazimum likelihood to estimate «. By writing down the
joint density of Xi,...,X,, it is easily seen that the mazimum likelihood
estimator of v = a~! is given by

n n
Ap =n "1 Z logX; =n! Z log X ;).
i=1 i=1

Above, X(1) <... < X(y) are the order statistics of X; ... X,. We shall use
this notation in our subsequent discussion also.

The nice thing about this estimate is that it involves the random variables
through their logarithms which have finite second moments. Indeed,

E(log X;) =~ and Var(log X;) = 7°. (25)
By using the central limit theorem, we thus have

023 — ) B N(0, 12). (26)
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Suppose now that F' € D(«). Suppose that the right tail is nontrivial so
that equation (20) is satisfied with p > 0. Then Criterion 1 implies that
the right tail behaves like the Pareto tail (24) in Example 34, except for a
slowly changing function. This feature is the basis of many estimators of
« in the literature. In the next few subsections we shall describe some of
the estimators of «. For some comparisons of these estimators based on
simulations, see Pictet et al. (1998). The general recommendation is that
Hill’s estimator, discussed in section 7.3., is the best to use.

7.3. The Hill estimator Assume that F' € D(«) is such that
1 —F(r) =2 %L(z), as = — o0 (27)

where L(+) is a slowly varying function. Note that this implies that if X(n—k)
1s large, then the following approximate relation holds:

1-— F((L‘ X(nfk)) -

x . (28)
1 - F(X(-)
Conditional on X, ), (X)(((i)k) yeees %) is distributed as the order

statistics from a sample of size k from the distribution with tail

L= Plo Xgu_p)
1-— F(X(nfk)) ’

z>1

which, as (27) holds, is approximately the Pareto tail. Thus going back to the
estimate introduced in the special case of the Pareto, it appears intuitively
justified to use the above ratios, for some large value of k, in the same way
as all the observations were used in defining (24) in the exact Pareto case.
This leads to the famous Hill’s estimator (Hill, 1975): choose k < n large in
some appropriate way. Then the Hill estimate of v = o' on the basis of n
iid observations from the distribution F' satisfying (27) is defined as

n

X
ra =k D log @ (29)
i=n—k+1 (n—k)

The Hill estimate uses only the upper (k+1) ordered statistics of the sam-
ple and ignores the rest of the sample. The uneasy aspect is the dependence
on the choice of k. We shall address this issue below. But first let us see a
result which guarantees that this method works, at least asymptotically.

Consistency of the Hill estimator. Suppose that n — oo so that we have a
sample size which increases indefinitely. Let k& = k, be such that ¥ — oo
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but k£/n — 0. This means that we use a very large proportion of the ordered
statistics. It turns out that this guarantees (Mason, 1982)

~ P
Ak — - (30)

Note that no additional assumptions on F' are required for the above result.
So the Hill estimator is consistent under minimal assumptions.

In practice, sometimes one has to deal with data which are not iid. Ex-
tensions of the above consistency to situations where {X;} is a dependent
sequence may be found in Rootzen et al. (1990), Hsing (1991), and Resnick
and Starica (1998).

Asymptotic distribution and confidence interval. In applications, one is not
satisfied with a point estimate and a consistent interval estimate is more
comforting. This requires establishing a non-degenerate (asymptotic) dis-
tribution of the estimator with an appropriate norming and centering. Un-
fortunately, the class of all F' which are in the domain of a stable law with
index « is still too large and such a result is not available. However, under
suitable restrictions on F' the same limit law (26) as in the exact Pareto case
holds. This result is actually true under several different sets of sufficient
conditions. The reader may consult de Haan and Resnick (1998) and the
references contained there for more details. Under suitable conditions on k
and F',

B2 (An — ) — N(0, 7). (31)

It is assuring that the limiting variance involves F' only through . This
makes setting up an approximate confidence interval for - easy. Fix a confi-
dence coefficient 1 — 3 and let ®~1(3/2) be the upper 3/2 percentile of the
standard normal distribution. Then a 100(1 — 8)% asymptotically correct
confidence interval for v is given by:

Iy = Fn{l —k72071B/2)}, Al +5712071(B/2)}].  (32)

The consistency result (30) and the asymptotic normality result (31) together
imply that P{y;, € I,} — 1 —  under the conditions alluded to. The
equivalent statement for the estimate of « is of course obtained by taking
the interval with the end points as the inverses of the end points of I,.

Choice of k: the Hill plot. The consistency and asymptotic normality prop-
erty of the Hill estimator depends on k = k, going to infinity at an appro-
priate rate. In practice, given a sample of size n, one has to decide on the
value of k£ to use. One approach is to use the Hill plot. This is simply a
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plot of the estimator (§4,)”" against k. On this plot we look for a range
of values of k where the plot is flat. This gives a range of possible values
of k which can be used to calculate the estimate. Empirically, it has been
seen that the estimator is quite insensitive to the eventual choice of k in the
chosen range. For more information, see Drees et al. (2000). This article
also carries information on various refinements of the Hill plot.

Bias of the Hill estimator in small samples. Since the Hill estimator is based
on an approximation of the tail of F, it is natural for it to have some bias in
finite samples. The amount of bias is determined by the finer behaviour of
the tail of F'. One possibility in studying the bias is to work with specified
subclasses of F. Here is one such result. Consider the class of F' € D(«)
which satisfy for some a > 0 and 8 > 0,

1—F(z) =az 1+ bz P + o(z 7). (33)

Then if k = k,, — 00, k/n — 0, the asymptotic bias B of the Hill estimator
is given by:

1=

_ P s (BN,
B= e (n> {1+0(1)}. (34)

An asymptotic expression for the variance can also be derived:

. B2b? 2 (k) @ 1
Va'f'(")/k’n) = [WG [ ﬁ + ﬂ

See Goldie and Smith (1987), Hall and Welsh (1985) and Pictet et al.
(1998) for bias expressions in various situations and recommendations for
the choice of k.

+o(1). (35)

Unsatisfactory behaviour near o = 2. While the Hill estimator is one of the
best and popular methods, its unsatisfactory performance is documented in
the literature when « is close to 2. A possible explanation is that while the
tail of a stable law with index o < 2 is like ™%, the tail of the normal law
(o = 2) is exponentially decreasing. Further, a few upper order statistics
cannot be expected to yield good estimators for “near normal” laws.

7.4. de Haan and Pereira’s estimator. de Haan and Pereira (1999)
focussed on the situation where o may be close to 2. Let 8 = Q?TO‘ Note
that if o is close to 2 then (3 is close to zero. In this situation, it appears to be
reasonable to consider Criterion 2 and start with (23) to build an estimator.
Consideration of the sample analogue of Criterion 2 leads to their estimator.
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So suppose we have iid observations on F' € D(«). Let the order statistics
of |X;|, 1 <4 < n be denoted by [X|q) < ... < |X]p). Let G, be the
empirical distribution of {|X;[, 1 < i < n}. Motivated by (23), we may

choose a k = k,, — oo and define the estimator 3, of 5 = Q?TO‘ as
. kIXP?
. (n—k)
n= ) . (36)
> X5
=1

It may be noted that this estimate uses the (n — k) lower order statistics of
the absolute values. The estimate of 3 is easily transformed into an estimate
Gy, of avas &, = 2(1 + Bn)fl.

Under various assumptions on {k,}, and F, the consistency and asymp-
totic normality of Bn hold. However, the norming is not as simple as the
one in the Hill estimator. As with the Hill estimator, in our statement, we
shall leave out the exact assumptions required. For details of the conditions
required, see de Haan and Pereira (1999). To state the asymptotic normality
of B, let

k—1
1
No = 5> {log| X[,y —log | X[t}
=0
k -1 2 1_% -1 2

where G~! is the inverse of G(z) = F(x) — F(—z). Then under appropriate
conditions,

kl/Z Bn D _
A (E — 1) — N(0, 26+ 1)71). (37)

7.5. A moment estimator. In Example 33 we have seen a parametric
subclass of the max-stable laws. Indeed the entire collection of extreme
value distributions can also be parametrized. The approach to estimating
this parameter leads to an estimate for the stability index « as well.

A distribution is an extreme value distribution if and only if up to a scale
and location shift, it is of the form:

Gy(z) =exp(—(1+72) ), yER, z>0. (38)
The case of v = 0 is interpreted as

Go(z) = exp(—e™). (39)
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The parameter v may be called the extreme value index of the distri-
bution. For v > 0, let &« = y~!. Then this parametrization is consistent
with the parametrization of the stable class. That is, F' € D(«) for some
0 < a < 2, if and only if F € maxD(G,). Now consider the problem of
estimating v when it is known that F' € maxD(G,). Suppose that v > 0.
Dekkers et al. (1989) considered the problem of estimation of  and one of
the estimators they consider is obtained by a moment approach. For r =1, 2,

let
n X . r
(r) _ -1 (%)
Hy, =k g (log X ) . (40)

i=n—k+1 (n—F)

Hence, H 1517)1 is Hill’s estimator. Define the estimator 4, of v as

1/2
1 () /a2

Note that the estimator 4, is an estimator of the extreme value index v and
is defined even if F' does not belong to D(«). That is, it is an estimator of v
irrespective of whether & = 1 /7 is in the interval (0, 2). This is an important
aspect: suppose we do not know whether F' has heavy tails. Then we will
be wary of using the Hill estimator since it is specially geared towards the
heavy tailed situation. We can then consider using the current estimator.
The estimator is consistent for all values of v: if F € max D(vy), k — oo and
k/n — 0, then

N P
An — - (42)

So then why use Hill’s estimator at all? This is reflected in the asymptotic
distribution of the estimator. As before we skip the precise conditions, which
can be seen in Dekkers et al. (1990). Under suitable conditions,

(G = 7) =5 N(0,1477), (43)
Recall that the asymptotic variance of the Hill estimator is 42 and so, the

current estimator has a larger asymptotic variance than the Hill estimator.

7.6. Other estimators. There are many other estimators that are avail-
able in the literature. We will not go into a detailed description of these.
Here are some of the more well known ones:

1. Pickands estimator: This is a very quick and easy estimator proposed in
Pickands (1975). It involves calculating the 25%, 50% and 75% quantiles.
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See Dekkers and de Haan (1989) for its strong consistency and asymptotic
normality under appropriate conditions. The estimator is defined as

Ay = (log2) ™' log [(X (k) — Xan)) / (X(an) — X(amy)] - (44)

2. de Haan-Resnick estimator: This estimator is given in de Haan and
Resnick (1980) and involves only the maximum and one other extreme order
statistics. It is thus a simplified version of the Hill estimator.

' = (log X(1) —log X)) / log k. (45)

3. The CD plot estimator. The log-log complementary distribution (CD)
plot estimator also has its genesis in the Pareto expression

1 —F(z) ~z % as z — oo. (46)

This implies that log(1 — F(z)) and x are linearly related for large x with
slope —a. In practice, we plot log(1 — F),(z)) against z and choose a large xg
beyond which the plot looks linear. Estimate the (negative) slope by fitting
a straight line (with equally spaced chosen points on the X-axis) and the
negative of the slope is the estimate for a.

REMARK 18. Even though in practice observations can rarely be as-
sumed to be exactly stable, it is illuminating to consider such a situation
and investigate how the different parameters («, 8 and b) in the correspond-
ing cf representation can be estimated. These estimators can also serve as
preliminary estimators in more complicated procedures which involve obser-
vations which are not exactly stable. The McCulloch estimator is the sim-
plest among these and is designed for the situation when the observations
are from a stable law with « € [0.6, 2]. The main virtue of the estimator is
its simplicity of calculation. It may be termed as the method of five quantiles
and is known to perform remarkably well in practice.

Suppose that F' is stable with the cf given in section 3.3. Let F, denote
the pth quantile of F'. Let

_ Foo5 — Foos

_ _ Fo.95 + Fo.05 — 2Fy 50
Fo.75 — Fo.o5

Fo.95 — Fo.o5

D¢ (a, B) and Ps(a, f) (47)

It turns out that ®; is monotonic in o and ®9 is monotonic in S (for fixed
a) and so we can invert these functions to get

a= U (®, ®g) and = Uy(Py, D). (48)

McCulloch (1986) tabulated these values for various values of ®; and ®,.
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To form the estimators of o and 3, first estimate the five quantiles above
by the respective sample quantiles. Use these to obtain estimates of &4
and ®3. Then use McCulloch’s tables to obtain the estimates of the two
parameters.

Another common approach is to use the representation of the character-
istic functions of stable distributions. The corresponding sample cf is used
to construct these estimators. The reader may consult Kogan and Williams
(1998) and the references contained in that paper for material on this topic.

8. Applications

Stable and id distributions have found the greatest applications in finance
and economics. There have been other applications as well in problems
involving heavy tails; see the recent book by Uchaikin and Zolotarev (1999).
Here we will mention a few applications in the areas of finance and economics.

Benoit Mandelbrot made the first attempt to use stable distributions for
modelling stock returns by questioning the use of normal distributions for
that purpose; see Mandelbrot (1963). Use of stable laws for analysing stock
returns is also made in Officer (1972).

Applications in capital asset pricing are discussed in Gamrowski and
Rachev (1994), and in a very nice review article by McCulloch (1996). Stable
laws have also been used in option pricing and for modelling foreign exchange
rates; see McCulloch (1996) for a comprehensive review of the models.

The finance and economics literature also contain methods for estima-
tion of stable law parameters, and this development has been partially inde-
pendent of the probability and statistics literature. Methods of parameter
estimation are discussed in Arad (1980) in the context of stock returns, and
in Liu and Brorsen (1995) in the context of modelling foreign exchange rates,
in particular. We enthusiastically recommend these references and Adler et
al. (1998) to the readers for all sorts of applications.

Acknowledgements. Tt is a pleasure to acknowledge the detailed com-
ments of Jogesh Babu, P. Diaconis, J. Pitman, B.V. Rao, J. Sethuraman
and M. Sharpe.
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