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Soft modes and structural phase tronsitions®
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Abstract. This paper presents a survey of soft modes and their relationship to
structural phase transitions. After introducing the concept of a soft mode, the origin
of softening is considered rom a lattice-dynamical point. The Landau theory
approach to structural transitions is then discussed, followed by a generalisation of
the soft-mode concept through the usc of the dynamic order-paramster susceptibility.
The relationship of soft modes to broken symmetry is also examined. Experimental
results for several classcs of crystals are next presented, bringing out various features
such as the co-operative Jalin-Teilev effect. The survey concludes with a discussion
of the central peak, touching upon both the experimental results and the theoratical
speculations.

1. Introduction

1 am grateful for this opportunity to discuss soft modes and structural phase transi-
tions. Although T have never worked in this area, I used to keep abreast of this
subject in view of my interest in lattice dynamics, but lately 1 began to lose touch.
The present assignment has enabled me 1o pick up the threads agaln and become
aware of the excitement sweeping the field.

Historically speaking, Raman and Nedungadi (1940) seem to have been the
first to observe a soft mode in a stritctural phase transition. This was not generally
well-known in the past, and I became aware of it when Prof. Chandrasekhar men-
tioned it at the Academy meeting in the year following Prof. Raman’s death. It is
gratifying that this fact has now got into a book (Blinc and Zeks 1974), ensuring
better recognition to Raman’s pioneering contribution. The next important event
in the history of soft modes is undoubtedly the prediction made independently by
Cochran (1959) and Anderson (1960) that phase transitions in certain ferroelectrics
might result from lattice dynamical instability. Great excitement was aroused
when soon after this, Cowley (1962) discovered in his neutron scattering experi-
ments on SrTiO; that one of the ¢ = 0 optic modes showed a softening behaviour
as the temperature was decreased. Unfortunately, there was no concomitant
(ferroelectric) phase transition but a soft mode and a relatéd phase transition were
discovered in srTiO; a little later. The subject of soft modes soon became wide
open, a variety of experimental techniques like NMR, ERR, light scattering,

* Survey presented at the discussion meeting on phase transitions arra nged by the Indian
Academy of Sciences at Bangalore in June 1978.
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neutron scattering, etc. being applied to a study of the problem. In 1971, fresh
excitement was aroused through the discovery of a central peak accompanying the
soft mode, leading to renewed vigour on both the experimental and theoretical
fronts. In view of all this, it is appropriate that we spend some time at this meeting
to catch up with what has transpired in this field.

3. Ceneral aspects of soft modes

Let us begin with the question, ““ what is a soft mode??’. Operationally, one may
define the soft mode as a collective excitation whose frequency decreases anomalo-
ously as the transition point is reached. On account of its historical association,
the term soft mode always brings to mind a lattice dynamical mode but, as we shall
see later, one could have other types of soft modes as well. Further, softening
could ocour not only as one approaches the transition temperature from above but
also from below. In what follows, we shall by and large restrict attention to
lattice dynamical soft modes. Such modes trigger a lattice instability, leading to a
structural phase transition either of a second or first order. ,
Table 1 offers a brief classification of the structural changes that could ensue.
In some cases, such changes are accompanied by the onset of either ferroelectricity
or antiferroelectricity. I shall not be overly concerned with the ferroelectric aspects
of these phase transitions since Prof. Srinivasan will be covering them in his presen-
tation. ‘
Figure 1 shows a schematic of the different kinds of soft modes that have been
observed so far. Of interest is the result for Nb,Sn where a sizable chunk of a whole
branch goes soft. Experience todate regarding the spectral character of the soft
mode is summarised in figure 2 from which one finds that the mode can be either
underdamped or overdamped (depending on the anharmonicity prevailing).
Figure 3 gives a schematic view of the temperature dependence of the soft mode
frequency. It is to be noted that whereas in a second-order transition, the soft

Table 1. Classification of structural phase transitions with typical examiples.

Structural transitions
[

Ferrodistortive ‘ Antiferrodistortive

{no change in (no. of formula

no. of formula units in unit cell

units in unit changes)

cells)

| [ |

displalcive {A) Order-disorder (B) displacive (C) Order-disorder (D)
. (BaTiOy) (NHLCD) (SrTiOy) (NH4Br)

‘Note : 1. A reference to Blinc and Zeks (1974) will show that in category A, only ferroelectrics
seem to occur. In category C, both ferroelectrics and antiferroelectrics are possible

2. Birgeneau et al (1974) mention that there is a third group of transitions in which’

there is a strong coupling between order-disorder and displacive types of variables

Examples cited are KDP and PrAlQ;.
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Figure 1. Schematic drawings of the various kinds of soft modes observed so far.
Notice the softening can cccur anywhere in ihe Brillouin zone. Examples of mate-~

rials exhibiting such behavicur are also given.
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Figare 2. Typical lineshapes of soft modes. (a) corresponds to underdamped,

and (b) to overdamped modes.
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Figure 3. Variation of soft mode frequency with temperature for (@) second-order
and (b) first-order tramsitions, The numbers in parenthesis denote degeneracy.

mode frequency actually vanishes at the transition point, in a first-order transition,
the change of phase occurs before the mode frequency is able to go to zero.

Attention is drawn to the fact that soft modes exist also below T,. This is not
unexpected because if the structural transition is due to the condensation of a soft
mode that exists above T, then correspondingly there must be agencies below T,
which seek to restore the symmetry of the high-temperature phase as temperature
is increased from below T,. Thus it is that as many soft modes appear below T,
as exist above T,.

We next consider the order parameter associated with structural phase transi-
tions, and their relation to the soft modes. The concept of the order parameter
will be formally introduced later but for the moment let us discuss some qualitative
aspects without being too fussy about the definition.

The order parameter, as all of us know, is a measure of the order resulting from
the phase transition. We shall denote it by the symbol y. In all structural phase
transitions, the average value of y denoted by (w ) is non-vanishing below 7T, and
vanishes above T,. The change is continuous across the transition temperature
for a second-order transition, and is discontinuous for a first-order transition
(figure 4). It is important to realise thaty itself is not a static quantity even though
(w)is. Thusy can fluctuate, and in fact these fluctuations are derived by a suitable
superposition of the atomic displacements associated with the soft mode vibrations.
The fluctuations are so organised that { y ) vanishes identically in the high-tempera-
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Figure 4. Variation of the order parameter with temperature for (a) second-order
and (b) first-order transitions.

ture phase but becomes non-vanishing in the low-temperature phase. The ﬂﬁctua-
tions become important near T, and diminish as one moves away from T, on either
side. Correspondingly, the soft modes also become stiffer.

3. Softening from a lattice dynamics point

Having noted the existence of soft modes, the next question obviously is, *“ why
do modes become soft * This can be tackled in a variety of ways and we shall
start with the lattice dynamists’ approach.

Many years ago, Born (see Born and Huang 1954) established that a crystal lattice
will become unstable if one of its normal-mode frequencies becomes purely imagi-
nary. Let us pursue this line of argument. Now the lattice dynamical Hamil-
tonian is usually written in the form (Venkataraman ez al 1975)

RN <q> <-— q) (q) .fq), — g\ |
=z PL)P X X .
H=3 Z{ J i) o)\ 2{ jj}’ )
ai
where the O’s denote the normal coordinates and the P’s the conjugate momenta.

The Hamiltonian of equation (1) is purely harmonic and since anharmonic effects
play a crucial role in the softening process, the above Hamiltonian obviously needs
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to be enlarged. Assuming for simplicity only fourth-order anharmonic effects
(a common practice), the above Hamiltonian may be expanded to an effective
Hamiltonian of the form

et 3 PO 0
<3 Zramwoe@el Dol
2

g JRU—

q. K Jl.ll

In the above, the usual fourth-order term has been replaced by one of the form
(QQ')Q" Q" so as to define an effective quadratic potential for the phonons.
It is possible in principle to diagonalise (2) to the form

hasi 3 (PPC e (DeeC Y o

qj

where & denotes the renormalised mode frequency, and is related to the bare fre-
quency w, by

&2 <q> = wi| q> + 2 4_}, Viin (45 1) \0 <l> < 1 >/

Let (q,/) denote the soft mode, and we further suppose that the forces in the crystal
are su.ch‘as to make @ <(}> negative. However, from experiments we know that

@2 for the soft mode must be positive. This is obviously pdssible only if the =
anharmonic effects represented by the second term on the r.h.s. of (4) overwhelm
the negative contribution from w?. It now becomes conceivable that as tempe- -
rature is lowered, the anharmonic contribution may not be able to counter the
effects of w3 sufficiently. In turn this would lead to @* becoming negative, pro-
ducing in its wake a crystal instability, as required by Born’s theorem, Nature
of course averts this disaster by bestowing a different structure, better conducive
to lattice stability.

An estimate for the transition temperature may be obtained from equation (4)
(Blinc and Zeks 1974). On evaluating the { -+-+ ) term ontke r.h.s., one obtains

'2[(1) —-w(,(q\ +2 fin (4, )
| 2“@)

xooth[zﬁw )_I(ﬂ_kT’ =1). | - (5)

Since the renormalised frequency occurs on both sides, one has obv1ous1y a self-
consistency problem. An approximate solution could however be obtained by
réplacing & by w, on the r.h.s. leading to the result §

ot (V) ot (D) +2 > v 0.0 200 ()] comn L340} ]
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Notice the prime on tbe summation on r.h.s. This implies the exclusion of soft
modes which is necessary as their bare frequencies are purely imaginary. Assum-
ing now that w, <kgT, we can recast the above as

@2 (soft mode) ~ & (T — T.), )

where «a = kg z Viu / W <§> , (®

124

and T, = — [w? (soft mode)/a], (9

denotes the transition temperature. It is worth emphasising that by their very
nature, the soft modes are expected to make substantial contributions to anharmonic
effects which, however, have been carefully excluded in (6)! The above exercise
is therefore not good for quantitative purposes although it serves well as a plausi-
bility argument. Methods are of course available to accommodate the anharmo-
nic effects contributed by the soft modes but we shall not discuss them here.

4. Landau’s theory

There is another way of looking at structural phase transitions, and that is via
Landau’s theory. Landauv and Lifshitz (1959) discuss this at some length in their
classic book on statistical physics—and many of you may already be familiar with
it. So I shall content myself with presenting a bare outline, adequate for the pre-
sent purpose. _

In a second-order phase transition, the change of state is continuous (i.e. order
parameter changes continuously). Taking note of this, Landauv assumed that the
Gibb’s free energy g (T, P,y) in the neighbourhood of the transition point should
be expandable as a series in powers of a certain quantity v, the order parameter.
To arrive at the nature of this expansion, Landau and Lifshitz consider the density
p (x, y, z) which describes the probability distribution of atom positions in the
crystal. p then must evidently reflect the symmetry group of the crystal which
means that for T > T,, p must be consistent with the symmetry group G, of the
high-temperature phase. Likewise, for T < T,,p must be consistent with the
group G, of the low-temperature phase. This enables one to write

P =Po+5p= (10)

where p, corresponds to the symmetry of G, and p to the symmetry of G. It is
clear that 8p has the same symmetry as p. Using group-theoretic arguments,
Landau and Lifshitz then show that §p may be written

5 =2 Cih} (I'y), (11)

where ¢;* are basis functions which transform according to the irreducible repre-
sentation I, of G,. The index i runs over the set of such functions.

Now the Gibb’s free energy g will not only be a function of temperature and
pressure but also of p and hence of the coefficients C,. Introducing the notation

yr =3 C& Ci=r (so that X' 97 =1T), (12
i : .
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the free energy expansion upto fourth order is written in the form*
g =g+ AV’ +yt I Vaft (). (13)

Herey is the order parameter informally introduced earlier and now defined by (12).
The quantity f4 is an invariant of fourth order constructed from y,. Such invari-
ants occur when g is ex»anded in terms of the C;’s because g itself is invariant under
the symmetry group of the crystal. The sum over a in (13) contains as many terms
as there are individual invariants of corresponding order.

The stable state of the crystal is found by minimising g with respect to y and 7,.
The stability conditions are:

dglow =0, 62 gloy? > 0. (14)

Nothing has been said so far about the sign of the coefficients of the w2 and y*
terms. Landau and Lifshitz show that the coefficient of y* must always be posi-
tive; also it is not strongly temperature-dependent. A4 on the other hand varies
rapidly with temperature and can have any sign. The state (y) = 0 (no order) is
stable for 4 >0 whereas when 4 < 0, () is non-vanishing**, Transition from
high symmetry G, to low symmetry G accompanied by the appearance of an order
parameter (y) thus occurs when 4 changes sign.

Figure 5 shows a sketch of g in various sitvations. The appearance of the double
well explains why (y) becomes non-vanishing below T,.

Several footnotes must now be added to the above discussion. Firstly, in the
context of soft modes, the basis functions entering the expansion (11) will be eigen-
vestors of the soft mode of the high symmetry phase. If the wave-vector of the
soft mode is q, then i runs over all the partners corresponding to the irreducible
representation I (@) of the wave-vector group G, (q) and over similar sets corres-
ponding to all other wave-vectors belonging to the star of q.

T<Te : T~Te T>T,

Order parameter

Figure 5. Schematic drawing of the behaviour of the free energy g as a function
of the order parameter in various temperature regimes.

* The odd terms are ruled out by suitable arguments !
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Next we note that (13) is often applied to a first-order phase transition, but for
this a sixth order term must be added with positive coefficient, and the coefficient
of the fourth-order term must be negative.

If the order parameter (which is derived from the soft-mode eigenvectors), trans-
forms like a polar vector, then a non-vanishing value for y could lead to a non-
vanishing value for the polarisation P and hence to ferroelectricity. In this situa-
tion, one could effectively replace by P in the free energy expansion (apart from
scaling factors of course).

Sometimes more than one mode may go soft in which case, the expansion (11)
must extend to all such modes. We shall see one example of this later.

We observed above that in ferroelectrics, y and P are synonymous. This, how-
ever, is not always true. Ferroelectrics are known where the order parameter is
not the spontaneous polarisation. Similarly, there could be other properties like
macroscopic strain which manifest in the low symmetry phase but which do not
constitute the order parameter. Such quantities (which may be regarded as subsi-
diary order parameters) appear on account of coupling withy. To deal with such
cases, the free energy expansion must include these subsidiary parameters also, and
correspondingly, the stability conditions (14) must be augmented. Later I shall
cite an example.

One other point I would like to add concerning (13) is that if all the coefficients
are known (corresponding to a given thermodynamic state), then the soft mode
frequencies may be determined from the secular equation

| Dy — @} 8451l = O, (15)
where D, = 02 g0y, 0y, Wi =WYs. (16)

The derivative in (16) is evaluated around the minimum of g.

Reviewing the theoretical framework as a whole, we see that there are two basic
approaches. The first starts from a model Hamiltonian and focusses attention
on the lattice dynamical aspects. Landau’s theory on the other hand revolves
round an order parameter and emphasises the phase transition aspects. There
have been some attempts (e.g. Pytte 1972) to synthesise the two. Experimentalists,
on the other hand, exploit Landau’s theory extensively because they can in favour-
able cases determine the soft-mode eigenvectors directly from experiments.

5, (Generalisation of the soft-mode concepts

We have so far associated softening behaviour exclusively with lattice vibrational
modes. Schneider et af (1972) generalised this concept to several other situations
by combining the static aspects of phase transitions (as revealed through diver-
gences in appropriate susceptibilities) with the dynamic response of the system
(as manifested via the dynamic susceptibility). To understand their work, a few
definitions are necessary. S
First we consider the static susceptibility X,y with respect to the order parameter
which is defined operationally by considering a small external field Vo, (r) =
V, exp(iq-r) which couples to the local order parameter w (r). Following

Kubo (1966), the response Sy (r) may be expressed as
Sy ()= | Ky (X, 1) Vext (x') A1, , a7
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where Xy (v,1') is the static, order-parameter response function, and may be
expressed in terms of order-parameter correlations (w (r)w (')). For a system that
18 translationally invariant,

Lgp (0, 7) = Lyy (r — 1), -
Near a phase transition
Ty (@ = [ exp (ig°x) Zyy (¥) (18)

diverges for some q. A divergence at g = 0 is associated with the existence of a
long wave-length order parameter while a similar divergence at some mon-zero
wave-vector q, (= zone boundary, for example), implies correspondingly an order
parameter of finite wavelength.
Turning next to the dynamical behaviour of the system, one could consider a
weak time-dependent external field Vi (r, ) = l.;m Vexp(nt)expi(q.r — wt)
->0

switched on adiabatically from r = — oo, The response will be linear in the pertur-
bation and given by
t "
Gp@.h=1m [ d' [ d' Xy (x — 1, t — 1) Vg, (', ). (19)
7->0 ~20
The complex susceptibility Xyy (4, 2) s related to the above response by
o0
) do Ly (q, o)
Tyy (q,2) =P f -y %‘_‘7 . (20)
-0

Schneider ez al (1972) point out that if the total number of degrees of freedom is
large compared to the degrees of freedom associated with ¥, then the latter may
be regarded as an ergodic variable. Using this assumption they show

Yoy (4) = lel_n;l 2 (45 2) Lamies 1)

where y (q) is derived from the static response function defined earlier, and X (g, 2)
is the dynamic respomnse introduced above. In other words, if the order parameter
1s an ergodic variable, then the isothermal susceptibility that one usually considers
in the context of phase transitions can be expressed as above as an appropriate
limit of the dynamic susceptibility, The question now is whether the singular
behaviour of y (¢) near a phase transition can be related to features in the dynamics
through a general consideration of the properties of the dynamic susceptibility.
The answer is obtained if one considers the result

[=2]
- d n
(@) =ty (62 =0)=p | DL &)
-0

and the expression
<0

do .,
| Zor o),
-0 .
for the first moment of Xgy- Schneider e al (1972) remark that ©

) ‘in any equili-
brium phase, the first moment of Xy €Xists and is finite »*, 4

The only way in which
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the area under (z"/) can diverge while that under (¢ y”je;) remains finite is if the
main contribution to the former comes from small @, Le. if (") is peaked for
small @. In other words, for the desired behaviour, at least one of the poles of
1(g, z) has to move 1oy qards the origin (c¢f. figure 6) implying that a collective
mode becomes soft. Note, however, that as per present discussion softening
requires that not only the real part but also the imaginary part of the collective
mode must vanish at the transition point.  Among other things, this opens up the
possibility of viewing diffusive modes (which will have zero centre frequency but a
finite width due to relaxation) as soft modes in appropriate situations.  Schneider
er al (1972) make the further observation that in any given transition between two
phases [ and 11, the same physical quantity might be responsible for the instability
oceurring when one goes from I to 11 as from 1 to 1. However, the manifestation
of the soft modes might be different in the two phases, e.g. diffusive in one and
propagative in the other.  These concepts are applied by Schneider er uf (1972) to
4 number of well-known phase transitions (like spin flop and superfluid transitions),
to identify the corresponding soft modes.®

6. Soft modes and broken symmetry

In my presentation, I have been asked to make some comments on the broken
symmetry aspects of soft modes.

The idea of symmetry-breaking was first introduced in the context of particle
physics by Goldstone (1961) who conjectured that if a continuous symmetry group
Jeaves the Lagrangian invariant but not the vacuum, then there must exist zero

Fplane

Im?

Figure 6. March of the poles of X (g, 2) towards the origin as the temperature is
varied. Such a behaviour for the poles implies the existence of a soft mode subject
to the condition y is ergodic.

* To complete the picture it must be pointed out that Thomas (1974) has expressed doubts aboyt
v being ergodic in the low-symmetry phase,

1
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mass spinless particles. The proof was subsequently given by Goldstone et al
(1962) and extended to non-relativistic case by Lange (1966) and Katz and Frish-
man (1966). A good discussion of the subject in relation to condensed matter
has been given by Forster (1975; see also Anderson 1663).

Let O be a Hermitian operator which is the integral of a local operator q(r, 1), e,
Q= [drg,1).

We assume Q commutes with the Hamiltonian which means that Q is a constant
of motion i.e. a generator of continuous transformations U(¢) = exp (ipQ/%) under
which the Hamiltonian is invariant. Next let us further assume that there exist
two other Hermitian operators 4 (r) and B (r) such that

F0. 4@ =5, (22)
If B, ={([B(r)dr),
= Trp, [ B(r) dr,
#0 (po-density matrix),

then it implies [p,, Q] # 0. In other words, even though the Hamiltonian is invari-
ant under the symmetry transformation Q. a particular realisation of the state of
the system as exemplified by p, is not invariant under Q. In such a situation, the
continuous symmetry Q is said to be broken, and B is referred to as the symmetry-
breaking operator. A on the other hand, is referred to as the symmetry-restoring
operator, and B, is termed the order parameter. The dynamics of 4 is of particular
significance, and the essence of the Goldstone theorem as applied to condensed
matter physics is that there exist collective excitations associated with 4 whose
frequency w — 0 as g — 0 : The excitations corresponding to the g — 0 limit are
usually referred to as Goldstone modes. T heir zero frequency has a direct analogy
with the zero mass of the Goldstone boson of field theory. One assumption which
has tacitly been made in all this is that the effective forces acting in the medium
are of short range.

The standard example cited to illustrate broken symmetry concepts is the (iso-
tropic) ferromagnet. Here the Hamiltonian is invariant under rotations but the
physical realisation of the ferromagnet (in which the Spins are pointing say in the
Z direction), is not; evidently one has a case of symmetry breaking. Since the
symmetry that is broken is continuous, and since the forces are of short range, Gold-
stone modes may be expected. With reference to the formal discussion given a
little earlier, the following identifications can be made in the case of the ferro-
magnet :

0 =S¥, BO) =Mz (), AG) =My () | 23)

where S denotes the total spin and M the magnetisation. The dynamics of A
then leads to the following dispersion law (Forster 1975) - :

© = Dg?, , (24)

which has the correct limiting behaviour expected of Goldstone modes. The branch
as a whole is sometimes referred to as the Goldstone branch. The dispersion
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relation in (24) is of course already familiar to us as that for spin waves. What
the present discussion shows is that the long wavelength spin wave modes can also
be interpreted as Goldstone modes since the transverse spin fluctuation has the
effect of symmetry restoration (equations (22 and 23)).

With regard to the direction of alignment of spins, there is nothing special about
the one assumed by us. Other alignments are also possible as sketched in figure 7,
and the long wavelength spin wave is a mode that essentially takes the system from
one configuration to another, i.e., rotates the spin. This process costs zero energy
implying that the different configurations are energetically equivalent.

The above discussion has glossed over one point, namely, that the dispersion

relation for spin waves is not quite what is given in (24) but has the form (Kittel
1963)

w = Dqg* 4+ CH,

where H, is anisotropy field and C is a suitable constant. The field H, has the
effect of locking the spins in a particular direction. The principal consequence
of the anisotropy field is that a gap appears in the dispersion relations as sketched
in figure 8. 'What is even more interesting is that as T — T;, the gap diminishes,
strongly reminiscent of the soft mode behaviour.

The origin of the gap as due to anisotropic effects is of course the standard expla-
nation. However, there are deeper implications (Anderson 1963). Itis well-known
(Opechowski and Guccione 1965) that the preferred state (i.e. one with specific
spin alignment) is not invariant under time reversal, (which is a discrete symmetry).
Anderson has pointed out that it is the breaking of the discrete symmetry which
results in a favoured energy configuration separated from its neighbours by a finite
gap. At this point, I shall quote Anderson’s words: It is important to mnotice
that in general a continuous broken symmetry—translation, gauge, rotation—Ileads
to w — 0, and usually zero-point amplitude — co as g — 0, whereas a discrete
broken symmetry—such as time reversal in the case of magnets, or interchange of
sublattices for order-disorder—need not have any special consequences for the
collective modes of the condensed system, unless it happens that there is at least

NARRRRRRRN
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i ents for spin alignment in a ferromagnet. These
i, 7. Several possible arrangements .
mg:rrx;ements are all encrgstically equivalent (in the absence of external field and
anisotropy field), and the g = 0 spinwave essentially takes the spin system slowly
through a tour of these configurations.
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Figuwe 8. () Schematic of the spin wave dispersion relations in a ferromagnet at ‘
various ternperatures. Observe the gap at ¢ = 0. This arises due to the breaking
of a discrete symmetry. In (5) is sketched the variation of the gap with temperature,

an approximate continuous symmetry-breaking, as occurs for the magnetic —and
it happens also for the ferroelectric—cases®. The rider above is important,
Breaking of discrete symmetry (a common occurrence in structural phase transi-
tions) must be accompanied by the breaking of continuous symmetry also. Only
then can ome talk of Goldstone modes which become finite frequency modes (on
account of the breaking of some discrete symmetry). Blinc and Zeks (1974) also
touch upon some of these concepts in their book. ,

Before leaving the subject, I would like to make one comment and that is that
broken symmetry concepts are basically applied in the context of continuous sym-
metry-breaking. Anderson’s remarks concerning what happens due to the addi-
tional presence of discrete symmetry-breaking is apparently a conjecture. I do not
believe a formal discussion exists of such a joint symmetry-breaking. So the use

of broken symmetry concepts vis-a-vis soft modes must, I think, be accepted with
some caution, '

. P

¥
I

7. Some experimental results

Itis tim_e we started looking at some experimental results to get a feel for the actual
connection between soft modes and s

. . . tructural phase transitions. We shall begin
with SrTiO; which has become almost a paradigm for displacive phase transitions.
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7.1, SrTi0O,

S$rTiO, has the perovskite structure (figure 9) and as mentioned in my introductory
remarks, a soft mode at ¢ = 0 was discovered by Cowley nearly sixteen years ago.
However, this soft mode produced merely an enhancement of the dielectric constant
and no phase transition. A second order cubic to tetragonal transition at ~ 108 K
was discovered in the substance, and guided by EPR experiments. Unoki ard
Sakudo (1967) suggested that it was presumably driven by an instability in some
optic branch at large wave-ve tor. Based on Raman scattering experiments,
Fleury et al (1968) subsequently made this suggestion into a concrete model and
proposed that the softening. occurred at the point R in the Brillovin zone (see
figure 10). Figure 11 which shows the neutron scattering results of Shirane and
Yamada (1969) confirmed this expectation.

Now the soft mode in the high-temperature phase is triply degenerate and trans-
forms according to the representation R,; of the wave-vector group corresponding
to R. From our earlier discussion we know that there must correspondingly be
three soft modes in the low temperature phase. Indeed there are, and, on account
of the effective doubling of the unit cell, these modes appear at g = 0. Figure 12
shows the temperature dependence of these modes. A pleasing feature is the good
agreement between data obtained with quite different techniques. Figure 13 shows
the temperature variation of the frequency of the 4;, mode and the order para-
meter (deduced from EPR experiments to be discussed later). These results may
be compared with the qualitative curves sketched earlier.

Besides SrTiOs, a number of other crystals having the pervoskite structure exhibit
structural phase transitions. It is obviously not possible to give an exhaustive

TN ®X

O A ‘ ‘\_1‘ B..

Figure 9. Sketch of the perovskite structure ABX, showing the octahedra of the
X atoms.
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Figure 10, Brillouin zones of the cubic and tetragonal lattices,
for the two systems are rotated with respect to each other, In the te
the points X and R of the cubic Brillouin zone become equivalent,

Note the axes
tragonal phase,
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Figure 11, Soft modes in StTiO, above To. (After Shirane and Yamada 1969).
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Figure 12. Soft modes in SrTiO, below T,. (After Shirane and Yamada 1969).
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Figure 13. Temperature dependences of the square of the 4y, soft mode in StTiO,

(as determined from Raman scattering) and the square of the order parameter {as
determined from EPR), (After Steigmeier er al 1974).

discussion of all these here, and I shall choose a few select examples to illustrate
specific points.
7 * 2. LaAl 03

LaAlO; also belongs to the perovskite group, and like strontium titanate, exhibits
a second-order structural phase transition at ~ 800 K. - As in SrTiO;, the transi-
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tion is driven by the condensation of phonons at the point R (Axe et al 1969) but
an important difference is that the low-temperature phase has the rhombohedral
structure rather than tetragonal. An analysis due to Thomas and Muller (1968)
affords an explanation for this difference. To understand their work, a reference
is first necessary to figure 14 which shows the structure of SrTiO; in the low tempe-
rature phase. The feature of interest is the rotation of the oxygen tetrahedra,
The static rotation in the low-temperature phase is a direct consequence of the
fact that the soft mode in the high-temperature phase, i.e. Ry involves rotational
motions of the tetrahedra.

Thomas and Muller (1968) consider a free energy expansion of the form
§=8& + 3 AW +vi+vh) + 3+ Bwi+vi+vh)+
+ 3 Cwiys +wiws +yiyd). N )

Here y, (4 = x, y, z) denotes the rotation of the tetrahedra about one of the cubic
axes. The coefficient A is temperature dependent but B and C are not. By examin-
ing the stability for a range of parameter values, Thomas and Muller conclude that,
depending on the values for B and C, both tetragonal and rhombohedral structures
are feasible as sketched in figure 15.  SrTiO, and LaAlO, provide actual demonstra-
tion of these two possibilities (see also figure 16).

7.3. CsPbCl,

CsPbCI; offers an even more interesting case study. Here there are three phase
transitions, particulars of which are given in table 2. Neutron scattering experi-
ments by Fujii ez a/ (1974) have revealed that the transition at 47° C is triggered by
the non-degenerate phonon M, going soft (fgure 17). The second transition
at 42° C is associated with the condensation of the phonon Z? at the point Z in the
zone boundary along the [001] direction of the tetragonal lattice. Z? is a member
of the degenerate pair (ZZ, Z!) derived from the Ry; mode of the cubic phase

v 14

N

a ' U

Figure 14, Schematic view of the rotated tetrahedra bel T, in SrTiO,

B WY i
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. ,

)

b+2c=0

Figure 15. Stable regions of the tetragonal and rhombohedral phases of perovskite-
type crystals, with respect to parameters occurring in the free energy expanSion
(eq. (25)).

PrAlO4

@'Z.__ Rhombohedral ~ — | @
T oo :#ébb '
._@_gmw rthorhombic T =g

| ‘/‘@J ~— Tetragonal - @ |

Figure 16. Cubic perovskite structure and the various other structures derivable
from it by the rotation of the octahedra (After Birgeneau et al 1974).

Table 2. Phases of CsPbCl, (after Fujii ef al 1974).

Phase I T>47°C Cubic

Phase 1T 47 > T>42°C  Tetragonal I II first order
Driven by M, ,

. Phasc III 42> T>37°C . Orthorhombic  II — III second order
: Driven by Z§ -

Phase 1V 37°C>T Momnoclinic 1L — IV first order
' Driven by Z{.

M.S.—3
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Figure 17, Dispersion relations for CsPbCly at 80°C, The phonon which gocs

soft is of symmetry M, and is at the end of the 5 (T4) branch (After Fujii et af
1974).

(-recall the case ol SrTi0y). The third transition at 37° Cis triggered by the remain-
ing member Z¢ of the degeneraie paic mentioned above,  We thus find that con-
densation of rotational motions (of the oxygen tetrahedra) play a crucial role in
these phase transitions. A beiter insight into the problem can be obtained by
referring to figure 18 which shows the motions associated with the M, and Ry
modes. Both involve rotations of the oxygen,tetrahedra though with different
phases. The structure that results from the successive rotations is shown in
figure 19. Since My and Ry; both go soft, the order parameter in the free energy
expansion must include contributions from both of these. Thus we write
[equation (11)]

Op =2y 1ibs (My) + 271365 (Ras). (26)

M, being nondegenerate, i runs only over all the wave-vectors belonging to the
star of M. In the case of Ry;, the degeneracy is three-fold and accordingly j should
run over the manifold for every vector in the star of R, However, the star of R
contains only one vector (R being on the zone boundary), and accordingly j runs
only over the three components associated with the three-fold degeneracy of Ry
If (26) is used, the frec energy expansion will involve powers of yand #, and suitable
scalar invariant combinations of the s and d/s. PFrom such an analysis, Fujii

et al (1974) are able to obtain an adequate qualitative explanation of the various
transitions observed by them.

7.4. .BaTi05

It is unthinkable to discuss structural transitions in perovskite-type crystals without
a reference to BaTiO;, the most famous of them all ! Figure 20 shows a part of
the phonon dispersion relations for BaTiO, from which it is clear that the soften-

ing occurs at the zone centre (Shirane et al 1967). The phonons in this case are
overdamped.
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(a) (b)

Figure 18. Displacement patterns of the X ion of ABX, for the Rgy and M, modes
(After Fujii et al 1974),

Phase 11 Phase 111

jig ﬂ /
A% /
\("\/ /"S\' 7 o
C_)..:.‘:.:d/,w(_}l ,,,,,,, .45 : '
CMM‘ 6%’3 0 Cs
% . P
(@) (b) (c) o ¢l

Figure 19. Arrangement of the PbClg octahedra in the various phases of CsPhCl;.
All the three phase transitions itvolve the rotations of the octahedra. The concerned
soft phonons are identified in table 2 (After Fujii et al 1974).

The phase transitions in BaTiO; show interesting correspondence to those of
CsPbCl;. In both, the transitions are due to the condensation of a triply degene-
rate mode. However in barium titanate the mode corresponds to the zone centre
and transforms like a polar vector (-contrast with Ry; where it transforms essentially
like an axial vector) making ferroelectricity possible. ’

7.5. Pf‘AZOa

The last perovskite which I shall consider will be PrAlO, where electronic effects -
play an important role. PrAlQ; is in fact claimed to be a classic example of co-
operative John~Teller effect (CIJTE) and since this subject will be covered by another
speaker, I shall confine myself to pointing out the soft mode aspects. .
PrAlO; exhibits several transitions—at 1320, 205 and 151K. ‘The 1320K
transition is due to the condensation of the Ry; phonon, and results as in LaAlQ;,,
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Figure 20, Soft modes in BaTiO; (After Shirane et al 1967).

in a cubic to rhombohedral change. In LaAlQ,, the rhombohedral structure sur-
vives till 0°K but in PrAlOQ; it does not. Based on fluoroscence, Raman scattering
and other data, Harley et al (1973) concluded that the other transitions in PrAlQ,
arose explicitly on account of the coupling of the Pr3+ crystal field split levels to the
Ry; phonon. This last point needs some elaboration.
The Pr3* ion has the 4f2 configuration, and the lowest free ion state 3H, is split
corresponding to various crystal symmetries as shown in figure 21. Electronic
transitions between the levels of an individual ion are possible (subject to selection
- rules), and in the crystal, these transitions can propagate leading to excitons.
Figure 22 shows the dispersion curves for some of these excitons at 77°K. The
coupling of the levels of one ion with those of another arises through the lattice,
meaning that the excitons are hybrids of electronic transitions and phonons.
The lowest exciton in the rhombohedral phase is of particular interest. This
results from a coupling of the A4; — B, transition (fgure 21) with an optical
- phonon of B, symmetry. (Ry; of the cubic phase splits into 4;, B, and 4, in the
rhombohedral phase). If the assertion of Harley er al (1973) is correct, then as
- the temperature is decreased to 151 K, this exciton branch should go soft. - Neutron
scattering experiments by Birgeneau ef al (1974) reveal something slightly different.
They find that it is not the exciton branch but rather an acoustic branch of the same
symmetry which goes soft (figure 23), eventually causing the iransition. The
distortion resulting from the transition no doubt costs strain energy but the crystal
gains in terms of electronic energy (figure 21). The usual JT distortion is local
in character whereas here there is a cooperative effect involving the electrons in all
. the rare-earth ions on the one hand and the phonons on the other.
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Figure 21, Low lying crystal field levels of ®Hy multiplet of Pr®F in the various
principal symmetries of PrAlO;. O, corresponds to the cubic phase, Ds to the

rhombohedral, C,, to the orthorhombic and D, to the tetragonal (After
Birgeneau et al 1974),
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Figure 22. Dispersion relations along [kok] for some of the low frequency excitons
in PrAlO, at 77 K. See also figure 21 (After Birgeneau er al 1974),
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Figwre 23. [101] acoustic phonon of PrAlQ, which couples to the 4; — B, exciton,
Observe the softening of the acoustic branch similar to what happens in Nb.Sa
{After Birgeneau et al 1974),

7'6, sz (M004)3

I shall now move away from perovskites and look at another substance, namely
Tby(MoO,); which also has unusual properties. At 159° C it undergoes a tetra-
gonal to orthorhombic transition. In the low temperature phase, the substance
is ferroelectric, and coupled with the two possible polarisation states - P,, are
the two mechanical configurations (figure 24) described by opposite shears
(4= u,,). Just as the polarisation can be switched by an applied field, one mecha-
nical configuration can be switched into another by an applied stress (ferro-elasti-
city). Further, both ferroelectricity and ferroelasticity are so coupled that P, and
gy Change simultaneously.
Neutron scattering experiments by Dorner et al (1972) revealed that the phonon
‘triggering the transition was at the zone boundary as may be seen from figure 25.
Now a soft mode at the zone boundary usually results in an antiferroelectric struc-
ture [e.g. as in (ND,) D,PO,] and cannot directly produce a spontaneous polari-
- gation. However, the order parameter associated with the soft mode can couple
with shear strain which in turn can produce polarisation by piezoelectric coupling.
The free energy expansion must thus not only involve the order parameter w but
also u,y and P,. The names secondary and tertiary order parameters have been
suggested for the latter two. Other than those associated with the order para-
meter y, one has the additional equilibrium conditions

0g/Otey =03 0g|oP, =0,
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Y PE

FE(+)

Figure 24. Sketch of the configuration of terbium molybdate in the para and ferro-
electric phases. The solid lines in the lower half describe the unit cells of the para-
phase and the dashed lines that of the ferrophase, projected on to the x—y plane.
Observe the opposite ghear of the two FE configurations  (After Dorner et al 1972).
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I ! {
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Temp.{°C)

Figure 25. Temperature dependence of the soft mode at the point M in terbium
molybdate (After Dorner et al 1972). .

By using these, the free energy expansion can be expressed in terms of y alone,
with suitably redefined expansion coefficients. Dorner ez al (1972) have it in the
) form ' ’

g=3% ohy*+ iy fBafi (79)

L 16yt E Wofo(rd +
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where w,, B, and W, are suitably defined coefficients. Having eliminated the
secondary and tertiary order barameters, the analysis can be carried out as usual.
Among other things, knowing the values of the coefficients, the soft mode frequen,,
cies in the two phases can be calculated [recall equation (15)].  Figure 26 shows
a schematic plot of what can result.

1\\ ) ‘}w2
wg/\\\
2
“Z20
82 > O w2
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2
“Mo
2
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= 2_ 2
Bz =0 “0=90
2
“Mo
2

2
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2
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2
w2

Figure 26, Soft-mode frequengies in the para- and ferro-phases of terbjum molyb-

‘date, Depending on the parameter values, varioug situations can arige (After
Dorner et al 1972).

One of the distinguishing features of this experiment is the cloge correspondence
established by Dorner et af (1972) between the displacements of the atoms in the
soft mode vibrations of the high temperature phase, and the Static displacements
of the atoms in the ferroelectric phase with respect to positions occupied in the
paraelectric phase, The displacement amplitudes associated with the soft mode
were determined by resorting to what may be called generalised crystallography
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(Brockhouse 1961). In this, one measures the soft phonon intensity at several
equivalent points in reciprocal space similar to the manner in which crystallogra-
phers measure the intensity of different Bragg reflections. From a study of such
intensities, the eigenvector of the phonon may be determined and hence the vibra-
tion amplitudes. Dorner ez a/ (1972) note that the amplitudes so determined are
close to displacements deduced from a comparison of the (static) structures in the
two phases. There was however no complete agreement; among other things,
this could be due to the soft mode coupling slightly with other phonons to produce
the transition.

7' 7. K2S304

The last example I shall consider in the present series will be that of K,8¢0,. This
substance undergoes two successive phase transitions at 129-5K and 93 K, the
latter being a ferroelectric phase transition, with spontaneous polarisation along
the c axis. In the phase above 129-5 K, the crystal has the orthorhombic structure,
and as the temperature is lowered, a soft mode appears. Interestingly, this is
neither at the zone centre or the zone boundary as in the examples discussed so far.
The softening occurs at a somewhat odd value of ¢ (figure 27), which has impor-
tant consequences to the phase that develops below 129 K which is referred to as
an incommensure phase by lizumi ez al (1977). ,
Let us look at this situation somewhat more closely. Figure 28 shows a portion
of the reciprocal lattice of the orthorhombic phase. On the right hand side is
shown the corresponding lattice for the ferroelectric phase. Referring back to
figure 27, we find that the minimum of the soft X, branch changes with temperature
though it is close to g =(1/3, 0, 0). The displacement § from this point
(figure 28) decreases with temperature in the manner indicated in figure 29. In
the incommensurate phase, a satellite Bragg reflection develops in this region of

) 2.8,
1
i
4.0 '
2 |X2
S 3z,
g 30l :
2 20 175K
in
| | 145K
I\ 130K .
! 0 | S S R T Lo

0.5 10
q (reduced unit) R

Figure 27, Dispersion relation of the Z, soft mode in K,Se04 (After Tizumi er d{;
1977). . c
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g Figure 28. Portion of the (010) plane in the reciprocal lattice of K;SeO4. On the

- Jeft is the lattice for the high temperature phase and on the right that for the ferro-
electric phase. In the high-temperature phase, o softening occurs at a point dis-
placed by § from g = (1/3, 0, 0), shown by cross. In the incommensurate phase,
a satellite reflection developes at X. ¢ is a function of temperature,

reciprocal space and if this satellite reflection is followed as a function of tempera~
ture, it indicates a further decrease of § as may be seen in figure 29. Finally, at
93 K, § becomes zero discontinuously leading to a incommensurate to commensu-
rate phase transition, and a concomitant ferroelectric behaviour. Tizumi et al
(1977) also establish that an interaction term of the form C (w2 (q) +v®(—q)) P,
in the free energy expansion is crucial to an explanation of the two transitions.

1 hope I have given enough of a sampling of experiments to convey the fact that
very interesting and very exciting developments have occurred during the past
decade in the subject of structural phase transitions. I must at this point express
my apologies for projecting mainly the results of neutron scattering experiments
(which should be understandable in view of my earlier background). I assure
~ you however that no slight is intended to the other techniques! I also freely admit
that these techniques too have made important contributions and I shall make
partial amends by referring to some of these in the context of the central peak, to

which 1 now direct attention.

8. Concerning the central peak

At a conference on soft modes held in Geilo, Norway in 1971, Riste et al (1971)
sprung a surprise by announcing that soft modes had a companion in the shape of
a zero-frequency peak. This phenomenon, known. as the central peak, has created
considerable interest. Initially there was some speculation that the central peak
could be due to defects, etc., but since then the existence of this phenomenon has
been confirmed in a number of cases and the possibility of defects producing spuri-
ous effects has been ruled out. Also there are theoretical grounds for believing
in the existence of the central peak in three as well as lower dimensional systems
(Krumhansl and Schrieffer 1975; Schneider and Stoll 1976). ‘There is as yet no
complete understanding of the phenomenon which is why it is continuing to attract
attention,
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(After Tizumi ef al 1977),
fb.Sn
Soft phonon lineshape %
O {102,98,0i

) L O 46°K
20001~ 4 60k
| e 80°K

e (3,0,0)
300

X
< [}
- (%}
E 500 o
=y k4
2 £ 200
z o
o -
3 z
¥ 100 2
@
©
50 = 100
201
10 - o g
-04 =02 0 0-2 a2 46 350 54
Phonon enargy {meV) Temp. {°K)

Figure 30. (q) Spectra of neutrons scattered by soft mode phonons in NbSn at
several temperatures above T,,. Observe the development of the central peak. (&)
The open circles represent the temperature dependence of the intensity of the central
peak while the closed circles show the onsct of the structural phase transition as
monitored by the forbidden (300) reflection (After Axe et al 1974),

Let us first briefly review some of the experircental results concerning the central
peak. Figure 30 ¢ shows the neutron scattering speciruni for NbgSn at severaj
temperatures close to the martensitic transformation temperature T,,. It is quite

clear that as T — T2, a central peak develops whose m’fcnﬁlty rapidly grows a$
brought out in figure 30 b.
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Figure 31 shows some results for KMnF, near the transition at 90°K (which is
associated with a soft mode at the point M in the Brillouin zone). Here the soft
mode is not very evident because it is overdamped. A careful examination of the
broad base however reveals its existence. The point to note in the figure is that
even in the case of overdamped soft modes, there is a central peak.

Figure 32 shows some results on light scattering from SrTiOy. The critica)
opalescence which is reminiscent of scattering from liquids, arises in the present
instance due to the central peak. Of interest is the fact that the central peak exists
both below and above T,.

To analyse the observations in a quantitative way, Shapiro et g (1972) write the
one-phonon cross-section (for neutron scattering) as

$10,0) = L0+ n (@) 1, [2° @ — 0F + 73,0, DI,

n (o) = [exp (AwfkgT) — 1], : @27

They further assume

@0, 1) =100 il (] - 220 )

KMnFy

1501~ G =(0,3/2,1/2)
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Figure 31. Scattered neutron spectra of KMnF, at ¢ = g, at several ‘tenlpqratures_'
above the transition tempersture (After Shapiro et al 1974), = ~ ~ -
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Figure 32. Intensity of light scattering from SrTiO; as a function of temperature
for the three scattering angles (After Stejgmeier ot al 1974),

' Here, the term A produces as usual a frequency shift given by

while I', as usual contributes to damping. The third term on the r.hs. is an addi-
tional contribution to damping due to coupling with (an unspeciﬁed) mode with a

“Debye-type relaxation spectrumni.

Introducing v = w% — &? and taking (kgT/fiw)> 1, I < (82/y) and 0% > 7,
S (g, w) separates into two parts, Seenrat and Sygepange  These are respectively
given by: ‘

keT &° pt ol
Seentrat = ; PP @F -+ piz’ 71 = C—D"g: s (30)
Q

ksT ry
Sido pang = ; (COzoo — wz)og Tt l? (31)

The fractional integrated central peak intensity is

i _ Jeentrar I Seentrat do — _6_2 32
: (q) - Itotal - ISslde band dw CO%O . ( )

Many features emerge from this analysis. First is that when I'> T,, 0 > 6%
whence there is very little manifestation of the central peak. (Note, incidentally

“that @, ~ o, in this sitnation). However, as T - T*, 0, — & and consequently

the central component grows.

The second point is that when T'~ T, different probes see the situation in the
medium differently. Directing attention to Nb,Sn as an example, a high-frequency
probe like neutron scattering sees the mode frequency as o, and correspondingly
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«:v:'(‘wm [4) for the mode propagation velocity. On the other hand,
triment sees the mode frequency as yielding a value v, = (w4/g)

That these two velocities are different is clearly brought out in
From the definition of @, and w, we know that

vao 1 vd -k [8% (g)/g].

By veasurine the ratio p {4) as a function of ¢, Axe et al (1974) were successfully
able v deteriine (8 Yu*), and thereby reconcile the difference between the high and
P Treguen s velocities.

One questin which has often been raised is whether the central peak has a width,
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Prenial confirmation of this as well,  On account of its limited energy
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" Defining
Sgy (6 @) = J exp [ (g — wn)] (y (x, )y (0, 0)) drdt, (35)
and J(@) = {J Syy (4, @)*, , (36)
we obtain,

..3'; J (@) do =2 f J () do,
=(w{, Dy (1)),

wgy
~ 2 J J (w) dow.

Combining (35) and (36) we see that the line width is determined by the extent to
which the measuring system (characterised by a frequency wy) sees the central
peak. _

Figure 34 shows J(w) for two temperatures. When T< T, we observe that -
there are many components in the (g-integrated) central peak with frequencies
higher than wjy which therefore do not contribute to the line width. This is the so-
called fast-motion region where one obtains a relatively narrow line. On the other
- hand when T ~ T,, the situation changes to that in figure 34 b, and the entire central
peak now contributes to the line width. The observed line width as a function of

{a)
T <<Tc
Wit
3 1
” {b)
T~Te
W

pigme 4, Sketch of J (@) for (@ T<T,and ()T~ T,. oy is the measuriog
frequency, '

* In practice, the sum over 4 will range only over 3 small region of gespace since the sentral
peak occurs only when g &2 4 (soft mode).
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temperature is shown in figure 35 where the existence.of the slow- and fast-motion

regions is clearly brought out. From such an analysis, it has been estimated that

for T = T, + 0-8°K, for example, the central peak has a width of 70 MHz which
“is too small to be seen by neutron scattering.

Turning now to the theories concerning the central peak, the basic idea under-
lying all these is existence of two time-scales in the relaxation of the order para-
meter or the soft mode (as the case may be).* The appearance of two time-scales
is visualised as due to coupling with a slowly relaxing variable 4. The latter is
usually chosen to be a conserved quantity since we know from hydrodynamics
(see, for example Forster 1975) that the relaxation time for the ¢ — 0 fluctuations
of such a quantity is very long. This coupling between the slow variable and the
primary quantity then results in a peak at w = 0, which becomes stronger as the
frequency of the soft mode itself starts approaching zero (since the interaction then
becomes easier).

Now for the soft mode to couple with another (slowly changing) variable, one
important requirement is that such a coupling must be permitted by symmetry
i.e. the two entities must transform according to the same irreducible representation
of the symmetry group of the phase under consideration. This restriction is impor-
tant because at first sight one might be tempted to imitate what is done for liquids
where the central peak (usually called the Rayleigh peak) is well-known and arises
due to coupling with temperature fluctuations. On the other hand, symmetry
might forbid such a direct coupling to temperature fluctuations. Further comments

- on this will be made later. °

lne

Figwre 35. EPR linewidth in SrTiO, as a function of temperature (expressed in
terms of = (.'_l"o ~ T)/T). The dots are experimental points. Theoretical curves
i‘;fl 4f)as‘c (solid line) and slow (dotted line) motions are also shown (After Muller

* The analysis of the central peak may be done either in terms of the dynamics of the soft mode
normal coordinates or that of the order parameter itself. Asalready noted [(11) and (12)]
the two are closely linked. Experiments like neutron scattering directly probe the vibrations,
and for this reason theories of central peak are usually formulated using the normal coordinates
of the soft:mode ‘as the dynamical variable,
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First let us try to understand the physics underlying the origin of the central peak
by considering an analogous example from magnetism, namely the case of MnF,
(Heller 1970). As we are all aware, this substance becomes antiferrcmagnetic
below ~ 67-5° K. Figure 36 shows its longitudinal and transverse susceptibility ;
we shall focus attention on the longitudinal part. We imagine now that a staggered
magnetic field (i.e. a spatially varying one) nearly synchronous with the spin alter-
nation is applied parallel to the antiferromagnetic axis, and then switched off after
equilibrium is established. The system will now relax towards a new equilibrium,
Heller has argued that the relaxation of the longitudinal component of the magneti-
sation will have the behaviour shown in figure 37 a, i.e. exhibit two time scales.
What happens is that as soon as the applied field is removed, the different parts

300
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Figure 36, Transverse and longitudinal staggered susceptibilities in MnF, (After
Heller 1970).
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Figare 37. Relaxation of the local staggered magnetisation following the turning
off of the exciting field. Observe the presence of two time scales. This leads At:f’ a
longitudinal scattering func‘aon with a narrow central peak as sketched in (b) (Adter

Heller 1970)
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of the system relax rapidly in an adiabatic fashion. Because of the fact different
parts of the system were initially exposed to different fields (owing to its oscillatory
nature), there would exist after the completion of the first phase, variations in
‘temperature between different parts of the crystal. These temperature fluctuations
then start evening out in a gradual manner producing the second component in the
relaxation. The net result is that the power spectrum will have two distinct compo-
nents as sketched in figure 37b. Essentially a similar thing happens in the case
of the soft mode also; only that here we have to considerthe relaxation of an oscil-
lator, Normally, such an oscillator when excited and let go will exhibit an oscil-
latory decay, and its power spectrum would show a peak at the oscillator frequency,
with a width related to the decay constant. When coupled to a slowly relaxing
variable, the decay characteristic may be expected to be altered as sketched in
ftgure 38 a, leading to a spectrum as in figure 38 b.

An analysis due to Feder (1974) provides substance to the above qualitative
remarks. Feder considers a model Hamiltonian (potential energy terms only)
of the form

1 1 |
5 Z @A+ 5 T odwo | (37)

1

where Q; is a local normal coordinate at lattice site /. For example, one could
think of it as being proportional to the rotation angle of the oxygen octahedra in
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Figure 38. Schematic dré.wing of the time "decay' of the order pacamcfer correla=
tions, and its power spectrum.




