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Abstract. The phenomenon of repeated yield drops is extensively studied using computer
simulation. The basic input is the Cottrell-Bilby model for dislocation drag, used in
conjunction with a suitable scenario for work hardening. Stochastic effects associated with
dislocation velocity and density are built in via multiplicative noise. Using the above
scheme for modelling the plastic response and assuming first that the yielding is
homogeneous, the machine equation is solved for successive time steps to obtain complete
stress-strain curves, similar to those obtained in laboratory experiments. Real-life patterns
are well simulated, including several detailed features observed in diverse experiments. The
role of noise in the region of marginal stability is explored. The simulation study is next
extended to the case of inhomogeneous yielding where, in addition to the model earlier
proposed by Penning, we explore one which takes some account of dislocation flow across
the sample. Attention is then drawn to similarities observed in the flow of sand in a sand
pile. Finally, some suggestions are made for further work.
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1. Introduction

The phenomenon of repeated yielding during tensile-test experiments, also known ‘
variously as jerky flow, serrated yielding etc. has been extensively studied (e.g. Keh ‘
et al 1968; Brindley and Worthington 1970; Hall 1970; Baird 1973; Kocks 1981;
Rodriguez 1984; Kocks et al 1985).

Depending upon the material used and its previous history on the one hand, and
the conditions of the experiment on the other, different physical mechanisms might
be responsible for the jerky flow (Rodriguez 1984). Nevertheless, a common i
underlying point is that repeated yielding arises basically due to a “negative-
resistance” feature in the flow stress characteristics. '

In an earlier paper (Neelakantan and Venkataraman 1983) we employed analog
electronic simulation to comprehensively delineate the principal features arising out
of the above mentioned negative resistance, features which are also observed in ol
experiments. We report here the results of further simulation studies, this time f
performed using a digital computer, While such a computer simulation study is in l
itself not new (for example, Kubin et al (1982) have carried out a simulation study
earlier), a significant feature of our work is the incorporation of underlying
stochastic processes intrinsic to yielding. As a result, the yield patterns simulated by
us closely resemble those obtained in many experiments, especially in relation to
irregularities in yielding. In contrast to studies in physics, the role and the relevance o
of stochastic processes in metallurgical phenomena have hitherto been generally
ignored, with the possible exception of anelastic relaxation (-for an introductory
account on the role fluctuations in mechanical relaxation, see Venkataraman 1979

1279




1280 K Neelakantan and G Venkataraman

and 1982). Our work strongly suggests that laboratory experiments on the noise
aspects of yielding would be most rewarding.

It is widely recognized that serrated yielding is a process which is not
homogeneous across the sample. However, barring qualitative and semi-
quantitative remarks concerning the role of inhomogeneity, no serious theoretical
study of it appears to have been carried out so far. This is not surprising since the
concerned equations are rather complex, added to which perhaps is the fact that
reliable models for inhomogeneous yielding are not available. Our work includes a
modest effort in simulation studies in this largely uncharted area; hopefully it would
spur further work by others, especially in modelling.

The plan of the paper is as follows: We begin by first calling attention in § 2 to
the role played by the negative-resistance feature alluded to earlier. We then
describe in § 3 our simulation scheme, following which we present various results.
To start with, we report in § 4 results obtained by assuming (purely for convenience)
that the yielding is homogeneous throughout the sample. These give a feel for how
a wide variety of observed patterns could be easily and conveniently simulated.
More important, the homogeneity assumption permits a ready and convenient
analysis of the statistics of spikes observed during the yielding process.

As already remarked, the assumption that yielding is homogeneous is rather
drastic and accordingly we relax this assumption in § 5. Besides presenting (for the
first time we believe) various simulation results pertaining to inhomogeneous
yielding, we also try to relate our results to recent studies (performed via cellular
automata) on phenomena-like earthquakes and avalanches. Possibilities for future
work and some concluding remarks are made in § 6, wrapping up the paper.

2. The role of the negative-resistance feature

The current-voltage characteristics of many electronic devices have a non-
monotonic behaviour, and it is well-known that such devices can be used to
generate electrical oscillations. In a perceptive study, Franck (1974) has called
attention to the fact that a wide variety of oscillatory phenomena could be traced to
the existence of such nonmonotonic characteristic curves or curves with what we
refer to as a negative-resistance feature (for a convenient paraphrase of Franck’s
work especially in relation to mechanical behaviour, see Venkataraman 1982).

In the context of serrated yielding, the relevant characteristic curve is that which
relates flow stress o to (plastic) strain rate ép or, equivalently, the flow stress-
dislocation velocity (o-v) curve. Starting with the work of Penning (1972), there has
been, a growing appreciation of the role of the so-called negative-resistance feature,
and since it plays such a crucial role in producing serrations it is pertinent to offer a
brief comment on it. One important feature of the o—¢, curve is that unlike in
electronics, it depends on the state of strain of the material. Thus the characteristic
curve may be said to evolve during the course of the experiment, and the
interpretation of observed phenomena must be done against the background of
such an evolutionary process.

A qualitative feel for all this may be had from figures 1 and 2. In figure 1 is
illustrated the usual type of ¢ versus & curve. The load line is determined by the
applied strain rate which, using the jargon of electronics, we sometimes refer to as _
the applied bias. It is well-known there are oscillations when the load line intersects
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Figure 1. Schematic representation of the stress (o) versus strain rate (¢) behaviour. Also
shown is the load line whose position depends on the applied strain rate. If, as indicated
here. the load line intersects in the negative-resistance region. the state of the system
follows the path of the arrows, leading to oscillations. The modification to this picture due
to the evolution of the material characteristic is discussed in the next figure.

the characteristic curve as indicated, with the state of the system moving along the
cyclic path shown by the arrows. In our situation we have to deal with a family of
curves since the material characteristic depends on the state of strain. This then
essentially results in a surface as shown in figure 2. As the tensile testing progresses,
the state of the system criss crosses over this undulating terrain in turn leading to
serrations, provided the bias is in the unstable region. Clearly, the serrations last
only as long as the intersection of the load line with the characteristic curve is in the
negative-resistance region. As a result, serrations occur only for certain range of
parameters (see, for example, Mulford and Kocks 1979; Neelakantan and
Venkataraman 1983; Strudel 1984).

3. The model and the simulation scheme

In this section, we outline the model used in our studies as also the simulation
scheme employed. The present discussion is restricted to homogeneous yielding;
inhomogeneous yielding will be considered in a later section.

The mathematical analysis of the outcome of a tensile-test experiment requires a
combination of the so-called machine equation with one or more equations which
describe the thermomechanical state of the material being studied. The machine
equation is given by

&= (0/Kep) T 1)

where ¢, is the applied strain rate, o the stress developed, Ky an effective stiffness
and ¢, the plastic strain. The above equation must be supplemented by a suitable
one for ¢ and one for T the time rate of change of the temperature T of the
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Figure 2. As the material is strained, the material characteristics evolve resulting in a
surface, two views of which are shown. The x-axis corresponds to ép, the y-axis to ¢, and
the z-axis to . If the system is biased in the negative-resistance region, a looping trajectory
results leading to serrations.

material, that is if temperature effects are important. The equations for ¢ and T
would naturally be coupled. By an appropriate analysis of this trio of equations, the
required stress-strain curve (i.e. the ¢ versus, ¢ curve, where ¢ is the total strain) can
in principle be deduced.
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The models for the physical processes contributing to the yield mainly enter
through the equations for ¢ and T (which in turn may require supplementary
equations of their own). In the present work we shall ignore thermal effects, leaving
us therefore with just an equation for . One form commonly used for the latter is
(e.g Kubin and Estrin 1985)

b= his)i, +oln) g @)

Ep

Here h denotes the strain hardening coefficient which in general could be strain-
dependent. The quantity § defined by

. dF (s '
s=i,(2) | ®

denotes strain rate sensitivity of flow stress. F(&,) is essentially the ¢ versus £, Curve
(at constant ¢,) whence a negative slope of the F (ép) curve implies also a negative
value of S (at a fixed ¢,). Thus it is that some authors associate serrated yielding
with negative values for the strain rate sensitivity.

As is well-known, the microscopic mechanism for serrated yielding involves a
dynamic interaction between mobile dislocations on the one hand and diffusing
point defects on the other (Cottrell 1953; Freidel 1964; Beukel 1975; Kocks 1981).
Our modelling does not go down to such detailed levels. Rather, we deal with
macroscopic variables alone but clearly aspects of microscopic mechanisms must be
reflected in the various quantities introduced above. For example, the curve for F(&,)
for which we have assumed the generic form in figure 1 results from an interplay of
different types of frictional forces experienced by mobile dislocations, and is the
outcome of an analysis of the underlying microscopic processes (e.g. Blanc and
Strudel 1987). Similarly, the strain dependence of the strain hardening h depends on
the mechanics of dislocation density growth and decay (e.g. Bergstrom and Roberts
1971).

As already remarked, the combination of the machine equation with the material
equation (supplemented by others which characterize some of the quantities
entering in the latter equation), is too involved to permit a ready and elegant
analytical solution. Thus hitherto only 2 limited analysis has been performed,
mainly to highlight aspects of the yield phenomena. Penning (1972), for example,
demonstrated how the occurrence of the Portevin-Le Chatelier effect could be readily
explained in terms of the negative values of the strain rate hardening over some
ranges. Kubin et al (1982) have carried out a stability analysis to examine the onset
of instability and the occurrence of regular serrations at low temperatures. If,
however, detailed results concerning the yielding are desired, then numerical
analysis or simulation is the only recourse to be had.

We now present the equations we have used and the simulation scheme we have
adopted. The machine equation (1) is of course mandatory. The material part is
handled by us as follows: Normally this is expressed in the form

0=0(epEp ) G

Equation (4) must, of course, be supplemented with other information like, for
example, whether o is separable in ¢, and ¢,
We do not quite follow this approach. Instead we invert the process and consider

i
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the dislocation velocity v as a function f(o) of the stress ¢. Thus we write

v={(0), ©)

the form of f having the three-segment structure in figure 1 ie. with a negative slope
region (- see also figure 3). To accommodate the effects of work hardening which up
to now we have ignored, we observe that ¢ must be replaced by an effective stress
o* (Nabarro et al 1964) given by

o*=0—a(e,)", (6)

where o is the coefficient of work hardening and m a parameter with value ~ 0-5.
While the model we have chosen for representing work hardening could
conceivably be bettered, we have not attempted such a step since our global
objective is mainly to demonstrate how a multiplicity of factors with a complex
interplay amongst themselves could successfully be interleaved in a simulation
scheme, especially against a stochastic background (as we shall explain presently).

What is the state of plastic strain in the system? This we assume is well described
by the Orowan equation

g =gbpu, (M

where b is the Burger’s vector, p the (mobile) dislocation density and g a suitable
parameter. There remains now the task of describing the evolution of p- Here we
suppose (see Bergstrom and Roberts 1971) that dislocation population dynamics is
governed by a complex array of factors involving not only annihilation but also
unlocking as well as immobilization. Accordingly we write

dp(e)/de,=Q{pf-p(e,)} ~x[p(e,)1> p(©O)=p,. ®)
SLOPE R
> Ymin ke
- |
T |
o |
] |
w |
> |
|
f
S —,
| level |
| |
Q P
STRESS

Figure 3. Three-piece approximation for p = f(o) used in the simulation. If the bias is Just
below the threshold for instability (i.e, v} then noise can take it above the threshold and
cause a sudden yield drop. The barrier to be surmounted is referred to as the level,
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Here p; and p, are the initial and final densities, and Q a constant related to the
remobilization rate. While the first term on the r.h.s. is based on the model of
Bergstrom and Roberts (1971), the second term has been included on the
recommendation of Nabarro (private communication; see also Nabarro et al (1964)).
Once again we add the caveat that no claim is being made as to the use of the best
possible model as regards the evolution of dislocation population. We believe that
for demonstrating the objectives we have in mind, the model proposed is quite
adequate.

So far, all the equations considered are strictly deterministic. Thus it is natural to
expect at best only periodically spaced yield drops, an anticipation which is
corroborated by the earlier findings of Kubin et al (1982) and of Neelakantan and
Venkataraman (1983), where too a deterministic approach was employed and only
regular serrations were obtained. On the other hand, it is a fact of life that
serrations observed in laboratory experiments are often quite irregular both in
terms of their spacings as well as their amplitudes, strongly suggesting the presence
of underlying stochastic effects. Nevertheless, the role of stochastic processes in
metallurgical phenomena seems to have received scant attention. (An exception is
the role of fluctuations in anelastic relaxation, investigated by Balakrishnan et al
1978; see also Venkataraman 1982).

Starting with the classic work of Einstein on Brownian motion, the role of noise
in physical processes has been extensively studied both theoretically and
experimentally. (For an elegant comprehensive introduction to noise in physical
systems, see MacDonald 1962.) In the ultimate analysis, noise such as we are
interested in arises due to random thermal motions of the atoms. However,
considering that we are operating at the level of macroscopic variables, it is

.reasonable to suppose that the medium acts as a heat bath, producing random

effects in the variables of interest. This is not an unreasonable supposition and
indeed in the classic analysis of Einstein alluded to, the topic of investigation was
the random motion of a micron-size object namely a pollen grain, in the heat bath
provided by the atoms. It is pertinent to note that compared to atoms, the pollen
grain itself is “macroscopic” in size. Nevertheless, due to the effects produced by the
heat bath, it (the Brownian particle) executes random motion. In the same spirit, we
suppose that the heat bath (provided by the atoms) generates stochastic effects.

The question now arises as to which variables we should consider as being
stochastic in character. The choice would depend upon what we consider to be the
“primary” variable(s). While many we have discussed with have suggested various
choices, our own preference has been to treat velocity as the random variable. In
microscopic theories where one analyses the frictional forces opposing dislocation
motion, one considers a single dislocation. Plastic flow, on the other hand, is'due to
the collective motion of a large number of dislocations. Thus, the quantity v in
equation (7) really refers to the velocity of group of dislocations.

In our discussion thus far, we have implicitly treated v to be a deterministic
quantity. On the other hand, Einstein’s analysis suggests that it would be fruitful to
regard v as a stochastic variable. Indeed, if one considers the progress of a convoy
of vehicles, the velocity of the convoy may be expected to fluctuate due to various
obstacles like traffic lights, bad roads etc. Thus the choice of v as a stochastic

variable is quite reasonable.
Having made this decision, we now need a quantitative prescription. In the Lan-
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gevin-type analysis of Brownian motion, one tal;es
v=_v)+n, ©)

where (v is the average value and n a fluctuating quantity. We prefer instead the
form :

v(0)=<o(a)>+p(a)n. (10)

Compared to the Langevin form, the noise term proposed by us depends on the
state of stress through the quantity f(¢). Our noise term is thus multiplicative
(Schenzle and Brand 1979). The physical reason for our suggesting multiplicative
noise is based on analogy with noise effects in a diode. To appreciate this analogy,
we first observe that the Orowan equation (7) has the same form and the same
physical content as the familiar conductivity equation j = nev where Jj is the current
per unit area, n the electron density, e the electronic charge and v the velocity. The
shot noise in a diode increases multiplicatively (Ziel 1970), and it is this which
prompted us to adopt a similar model.

One could argue that as in all birth and death processes, the dislocation density
too could be regarded as a stochastic variable. Very true, and indeed if it is so
regarded it might be reasonable to suppose that it also is represented by
multiplicative noise. The question now arises whether both v and p are
independently random or whethér random fluctuations in one influences the other.
This is a tricky question which we have skirted by simply treating v alone

the form in (10) and letting all other quantities “slave” p
concerned.

as having
as far as fluctuations are

We now turn to the simulation process which, as mentioned earlier, is a
convenient line of attack when one has to dea] with complicated and coupled
evolution equations. Time marching done in a computer enables one to have a
“blow by blow” account of the evolution process, and by comparing simulation
results with those of laboratory experiments, one has the possibility of progressively
refining the models entering the simulation. For this, clearly simulation and
laboratory experiments must g0 hand in hand and indeed through this simulation
can even eventually acquire considerable predictive power. as has happened
for example in laser fusion, in aerodynamic design and in automobile accident
analysis.

Our simulation scheme may be briefly described as follows: The process starts
with a specification of the values of the various parameters, as also the initial
conditions, comprising the values of £,(0), o (0) (which is normally taken as zero)
and p(0) (which is set equal to the value of pi assumed).

Time is marched in equal steps At, and at any given time f, the following
computations are performed:

() p(t) is computed using equation (8)

and the values of p(t—A1), g,(t—At) and
¢, (t) which itself is obtained from

g,(t)= g (1= At)+¢,(t-At). At.

(i) <v()) is computed from cquations (5) and (6)
and the approximate three-piece curve in figure 3.
(iii) The velocity is now randomized according to equation (10)

using o (t—At) and &, (t—Al),

to obtain v(1).
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(iv) ¢ () is computed according to
o(t)=o(t—At)+o(t—Ar). At
=g(t—At)+[g,—¢,(t—An]. Kog. At
(V) &,(t) is computed using p(t) and (t) in Orowan’s equation.

All quantities for time t are now determined as also the inputs needed for
calculations at time (t+ At). Some additional remarks are made in the Appendix.

The simulation scheme described above pertains to the case of homogeneous
yielding. The scheme for inhomogeneous yielding is similar and will be described in
a later section.

Based on the above scheme, simulations results for a wide variety of cases have
been obtained. The range of parameters explored is discussed in the Appendix. It is
to be noted that for numerical convenience, scaled parameters were employed in the
actual simulation. It is also worth emphasizing that the fact that we have not made
explicit use of equation (2) does not imply that quantities like strain hardening and
strain-rate hardening do not enter into the simulation. In our scheme they are
implicit parameters but if so desired, the simulation scheme could be altered to
make the role of these widely used parameters more explicit. The approach adopted
here (especially the use of a three-piece curve as in figure 3) seemed simpler in the
context of the extensive survey of the simulation possibilities we were interested in.

4. Results obtained with a homogeneous yielding model

We shall now present some of the results obtained using the model and the
simulation scheme described in the previous section. As a prelude, we present in
figure 4 a global overview of the widely different kinds of patterns we have been
able to simulate. The nomenclature used follows that of Pink and Grinberg (1981).
While the model of homogeneous yielding might be viewed witlh suspicion, it is
nevertheless noteworthy that we have been able to mimic realistic patterns.

4.1 Role of noise

As pointed out earlier, an important aspect of our work is the explicit consideration
(for the first time) of noise in relation to yielding. It seems useful therefore to
understand the role played by noise in influencing the yield curves. This is
illustrated in figure 5. On the extreme left are two patterns, one of which (5a) shows
regular serrations of the B-type while the other (5d) shows no serrations. The
patterns to the right of the above two illustrate the modifications brought about by
the inclusion of the noise effects. In the case of the pattern with type-B serrations,
noise does not seriously affect the spacings between adjacent drops although the
‘amplitudes of the pulses show slight fluctuations. In the other case, the previously
smooth curve is now disturbed by the appearance of spikes; the greater the noise,
the larger the number of spikes. It may also be observed that both the spacings and
the amplitudes of the spikes fluctuate.

The occurrence of the spikes is easy to understand with the help of figure 3. We
have here a situation where the bias curve or the load line intersects the
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Figure 4. Various types of serrations obtained by simulation. The shapes of the curves
obtained compare well with the archetypes described by Pink and Grinberg (1981) and by
Rodriguez (1984).
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Figure 5. Simulated curves to demonstrate the effects of noise on types B and C
serrations. 5(a) and 5(d) refer to yield in the absence of noise. The curves in the middle and
the right are with moderate and high noise amplitudes respectively.

characteristic curve in a normally stable region, If there were no noise effects
associated with the velocity, the yield curve would be smooth, as indeed is observed
in figure 5(d). But on account of the randomization of the velocity, occasionally the
operating point might make an excursion into the unstable region, resulting in a
sudden stress spike or yield drop. From this it is natural to expect that the greater
the amplitude of the noise affecting the dislocation velocity, the more frequently
would the spikes appear. This expectation is borne out both by figures 5(¢) and 5(f).
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Figure 6. Several reruns of a yield curve. Though the parameters used were the same, the
occurrence of the spikes varied from run to run as is to be expected since they are noise
triggered.

The random nature of the spike sequence is further highlighted in figure 6 which
shows several reruns under the same conditions. Spikes appear in every pattern but
in different ways.

A few remarks now about the statistical distribution of the yield drops in figure 6.
Caution is needed in carrying out a statistical analysis for, thanks to work
hardening, we are dealing with a nonstationary situation while riding a yield curve.
However, even though one may have lack of stationarity over extended periods of
time, one could divide the time elapsed into small and convenient intervals At,
assume that processes are stationary during each of these intervals, do numerous
reruns as in figure 6, accumulate sufficient data for all the successive time slices and
then analyse the data for each time slice separately. Indeed, an experimentalist
working with real samples would have to go through such a tedious process if he
wishes to overcome difficulties associated with lack of stationarity. (For him, equal
time slice would translate into equal strain slices since total strain is proportional
to elapsed time.) For us on the other hand there is the convenient alternative of
simply switching off the work-hardening term. Once this is done, there are no longer
any problems with lack of stationarity. Data obtained in this fashion are presented
in figure 7. '

As earlier remarked, spikes appear in figure 6 since the biasing is close to the
threshold for instability. Some of our results can therefore be understood in terms
of the level-crossing problem (Papoulis 1965). The meaning of the level to be
crossed can be found in figure 3, and the question is how often is this level crossed.
Analytical results for this problem are available, and are compared with our results
in figure 8. While there is overall agreement, there is also a systematic deviation at
higher noise levels. This merits further investigation.

In passing it must be mentioned that in our earlier paper we had speculated on
the possibility of chaos contributing to the observed irregularities in yielding. In
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Figure 7. Histogram- of the time separation between adjacent spikes, corresponding to a
fixed noise amplitude.

fact, Ananthakrishna and Valsakumar (1983) discussed an explicit model based on

chaos. In the present work we have not found it necessary to invoke effects due to
chaos. :

4.2 Temperature dependence

Figure 9 shows a family of curves representing a situation where the strain rate is
kept the same but the material is held at different temperatures in the different tests.
As far as our simulation is concerned, this effectively implies varying suitably the
quantities v, and v, indicated in figure 3 (see also figure 8 of Neelakantan and
Venkataraman 1983). Also presented in figure 9 are yield curves at various
temperatures for an Al-Mg alloy, as obtained by Hali (1970). The similarity between
the results of our simulation and those obtained in laboratory experiments is
striking. In presenting this comparison, we emphasize that our effort is directed
mainly towards demonstrating how the sequence of patterns observed in
experiments can be mimicked, especially in relation to the noise effects. Without
noise, spikes do not appear in the simulated yield curves. No particular significance
is attached by us at present to the parameter values used in the simulation vis-a-vis
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Figure 9. On the left are yield curves obtained by simulation (with a suitable choice of
parameters), and with f(¢*) in equations (5) and (6) varied as described by Neelakantan
and Venkataraman (1983), in order to mimic temperature variation. On the right are the L
results for an Al-Mg alloy as reported by Hall (1970). It

those actually pertinent to Al-Mg, especially because we have ignored effects of :
inhomogeneity. At the same time it is evident how simulation results could be made i
to approach closely those obtained in actual experiments. It is this which prompts
the comment that greater emphasis on modelling and simulation coupled with
comparison with experiments could lead to a better understanding of the mechanics
of the yielding process.

4.3 Instrument resolution and pulse shape

It is our view that apart from distribution, the shape of the yield pulse also contains ol
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Figure 10. Effect of instrument time constant on the shape of the yield drop pulses. The
curve (a) is a simulated curve corresponding to a load cell with infinite resolution. The
curve (b) shows the appearance due to finite instrument resolution. Presented for

comparison is (c) which shows a portion of the experimental yield curve for stainless steel
(after Rodriguez 1984).

information. If the shape becomes the object of study, then due consideration must
be given to the instrument response time. Figure 10 gives an example of how
response time can alter the observed yield curves. Generally speaking, when strain
gauges are used as transducers for sensing the load, one has a bandwidth of only
around 100 Hz. Capacitative transducers offer a much higher bandwidth (~ 1—

10kHz) and therefore permit a more careful study of pulse shape (Schwarz and
Funk 1985).

4.4 Effect of interruption
The effect of interrupting the testing has been investigated, and a typical outcome is

illustrated in figure 11. It is gratifying that this curve i strikingly similar to what is
reported in the literature (e.g. Lucke and Mecking 1973)

5. Inhomogeneous yielding
5.1 A preliminary overview

We now relax the rather drastic assumption made in the previous section, namely
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Figure 11. Simulation of the effect of strain ageing. The applied strain rate was made zero
and then reapplied after some time.

that the yielding process is homogeneous. While the assumption of homogeneity
might not be objectionable as long as there are no serrations, there is wide
unanimity that serrations are a clear indication of inhomogeneous yielding. Starting
with the work of Penning (1972), there have been many attempts at mathematical
modelling and analysis but really speaking, none of these have progressed deep
enough. The principal points which have emerged so far are the following:

(i) The specimen may be regarded as being made up of contiguous domains.

(i) The strain is not uniform throughout, and at any given instant yielding occurs
in that domain where the strain is the least. ,

(i) Deformation propagates across the sample, generally sweeping from one end to
the other.

(iv) Deformation bands which propagate are broadly of two types (a) hopping
bands and (b) continuously moving band.

(v) Homogeneous yielding becomes inhomogeneous when the former process
becomes unstable.

We shall now consider some qualitative aspects of the above, so that a better
appreciation may be had of our work (to be described). The discussion is best done
with the help of some three-dimensional plots. For convenience, we shall ignore
stochastic effects for the present.

We consider first the case of hopping bands. In figure 12 is shown the surface
corresponding to the mechanical equation of state. We assume, as does Penning
(1972), that there is present in the material a uniform strain gradient characterized
by a slope m(=4d¢/dx). We now examine the processes happening in the material
at some particular instant of time. As far as the flow stress is concerned, it is
equilibrated across the length of the sample with a velocity close to that of sound
(Kubin and Estrin 1985). Thanks to this, yield now occurs in that region of the
sample where the strain is the least. This region is indicated on the left half of figure.
If d is the width of the region and if f=(d/L) where L is the length of the sample, ¢,
the effective applied strain rate in the small slice is given by

&= (&/f). (11
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Figure 12. Shown on the right is the &,~¢,~ o surface. The labelling of the axes is as in
figure 2. On the left is shown the strain state in the various domains across the sample—at
a particular instant t say. The red portion represents yield that has already occurred, while
the green portion shows the strain in the region where the strain front has yet to
propagate. The region shown in magenta represents the strain Jjump that would occur in
the next time step At. The region of the g, —&,—osurface called into play during this jump
is shown by the same colour. The strain front propagates across the sample, causing such
jumps successively in the various domains, Notice the front climbs a hill. When the end
point shown by the red dot is reached, a new strain front is initiated and propagates across
the sample. The lines in cyan represent the various subsequent sweeps of the strain front.

What happens in this region now under consideration is dictated by (i) the nature of
terrain corresponding to the slice shown in magenta in figure 12 and (ii) the bias &,.
If the latter is in the stable region, then the stress increases smoothly, even as the
strain in the region increases by an amount Ae. If the bias ¢, is in the unstable region,
the increase of strain Ae is accompanied by a yield pulse, precisely as described in
§2. Once the strain in the domain under consideration jumps by the amount Ag, the
domain ceases to be one with the least strain. Deformation activities now shift to
the adjacent domain, where a similar scenario is enacted. In this way, as the strain
front climbs up the strain hill, a series of yield pulses are produced, provided of
course the bias ¢, is in the unstable region. On the other hand if &, is in the stable
region, the yield curve would be smooth. If g, corresponds to a case of marginal
stability (rather as in figure 3), then it is easy to imagine that noise could cause yield
drops to occur during the progress through some domains.

The case of the continuous band model is essentially a limiting case of the one
discussed above, with the domain width — 0. In this case, one can visualize the
growth of strain across the sample as in figure 13. Essentially, strain fronts sweep
across the sample one after the other. The velocity v with which the strain front
advances is determined by material processes. Attention is drawn to the fact (as

i
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Figure 13. Here the x-axis denotes distance across the sample, the y-axis denotes time and

. the z-axis denotes &, The figure essentially summarizes the strain state across the sample at
various instants of time. As can be seen, strain fronts keep sweeping across the sample; the
different fronts are shown in different colours.

has also been done by Kubin and Estrin 1986) that the propagation of the strain
front is analogous to that of the electric field front in the Gunn diode.

The comprehensive and pictorial overview just presented is based on remarks
scattered in many places in the literature, notably the work of Penning (1972). In
our view, there is one important ingredient missing while constructing pictures as
above. It is nice to visualize an advancing strain front but presumably adjacent
regions yield in succession because of a “flow” of mobile dislocations’across the
specimen i.e. essentially from domain to domain. It is natural therefore to expect
something like a continuity equation, familiar in other fields where transport
processes are considered (e.g. neutron diffusion). Since earlier modelling (e.g. by
Penning) was restricted to the simplest possible coupling -scheme linking the
machine equation w1th the mechanical equation of state, processes like dislocation
flow were not glvén explicit consideration, it being tacitly assumed perhaps that
they would suitably influence (implicitly) the parameters entering the analysis. In a
later subsection we suggest how flow could be incorporated.

5.2 Simulations a la Penning

Among the various studies on inhomogeneous yielding we have carried out, we
report first the work done using essentially Penning’s model. We assume the
material is composed of N identical and contiguous regions or segments, each of
which behaves independently of the others. The response of the various segments is
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thus simulated essentially as described in the previous section but with the
difference described below.

Consider the time step ¢, and let £,(j;¢) denote the plastic strain rate in segment j
at that time. The total plastic strain in the material is calculated as

. [y,

Bl0=y L b0
This is then used in the machine equation to obtain o (1) and from it ¢ (1). Implicit in
the above is the assumption that dislocations remain confined to their respective
domains or segments within which, however, they may be mobile, become locked,
annihilated etc.

We have explored the above model under different conditions of applied strain
rate, as well as with and without noise. In all cases, a small strain hill was
introduced as originally considered by Penning.

Figure 14 shows the result obtained with 8 domains. with no noise and a relatively
small applied strain rate, the biasing being in the unstable region. We observe
features described by Penning as the hopping band. It is interesting that there is a
small “dead time” between the cessation of the strain-rate pulse in one segment and
its build up in the next one. Also noteworthy is the fact that apart from the strain-
rate pulses (which are localized), there is a small but nonzero background yielding
that goes on all the time in all the segments,

Hopping bands are produced only under conditions of instability. If the bias is

4
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/\/\J Figure 14, Simulation results as obtained
h‘?—— with Penning’s hopping model for mode-
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Figure 15. Simulation results for the 8-domain
sample obtained with no noise, and low bias but
g applied in the stable region. Observe the marked
%‘. contrast with the previous figure. '
Q —
&
@
<
w
)
TIME

lowered further so as to bring the operating point to the stable region, the yield
curve is smooth as figure 15 shows. On the other hand, if the system is marginally
stable and noise effects are included, the yield becomes jerky as may be seen in
figure 16. When the applied strain rate is high, the results obtained are as in figure 17
and correspond to the case described by Penning as continuously moving bands.
Strain rate pulses occur rather as envisaged by him.

53 Models with dislocation flow

The simulatipns described in the previous subsection are in the spirit of Penning's

carlier work which, as already pointed out does not give any explicit consideration’
to the flow of dislocations across the sample. We have therefore attempted a model
which incorporates, to some extent at least, the notion of such a flow.

Once again we regard the material to be divided into segments, but this time is
not necessarily identical. They could, for example, repres'ent grains of various sizes.
At the start, we specify the density of dislocations in each region and also assign a
weight factor representative of the size of the region.

Consider a particular domain j at time t. Yield in this domain is computed
exactly as described in § 4 with one difference, namely that to the density p(j;t)
computed using equation (8), we add the quantity f.p(J —1;t—At) where f is 2
suitable fraction. Thus the density in j is

p(st)+fp(i—1;6—At)=p* (j30) say-
The second term on the left side mimics inflow. Naturally, once this flow is allowed

for, there must be a corresponding reduction of density in the segment g— 1).
The quantity p* (j; ) is now used in Orowan's equation to compute g,(jst)- The
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Figure 16. This shows the effect of
adding noise to the experiment of
the previous figure. Jerky flow is
now the result,

Figure 17. One example of a
simulation which roughly corres-
ponds to Penning’s continuously
moving band case. In contrast to
the results of figure 14, high yielding
occurs simultaneously in several
domains. This broad region of
yielding spreads across the sample
leading to a front as illustrated in
figure 13.
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overall strain rate ¢,(t) is obtained by taking a weighted average of the &, (j;¢)’s ie.
. 1y .
&) == Y w(i)e(jst),
N &

where w(j) is the weight factor. This value of &, (t) is then used for calculating o, as
described earlier.

The model crucially depends on the initial distribution of the dislocation density
and the weightages given. The yielding of any one region does not necessarily
continue indefinitely. It ends when a sufficient number of dislocations have been
swept away into the next domain, and the remnant dislocations become
immobilized.

We now present a few sample results obtained with this model. Figure 18 shows
two yield curves both obtained with a 12-segment model with equal weightage for
the sections. However, there was a small gradient in the initial dislocation density, it
being the highest in the first segment. In (a) the applied bias was in the unstable
region whereas in (b) it was in the stable region. In the latter case there are no
serrations and in fact, the final plastic strain acquired by the different segments is
the same which suggests homogeneous yielding, effectively. On the other hand,
when the strain rate is somewhat higher there are not only serrations but, further,
the strain acquired by the different segments also fluctuates. Clearly in this case the
yielding is truly inhomogeneous.

Figure 19 presents another result obtained by us, clarifying further aspects of
inhomogeneous yielding. In figure 19 (a) is shown the yield curve while in 19 (b) are
plotted the plastic strain rates in the different segments as a function of time.

Figure 20 shows a comparison with results obtained by Yoshinaga et al (1971) for
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Figure 18. Yield curves obtained with a model simulating inhomogeneous yielding but at
different strain rates. The upper curve (a) is for an applied strain rate in the unstable region
while the lower curve (b) applies when the bias is in the stable region. Shown alongside the
yield curves are the plastic strains in the various segments, at the end of the experiment.
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Figure-19. Shown here is the yield curve for a 12-segment model and the plastic strain
rates in the various regions. The inset depicts the shape of the plastic strain-rate pulse,
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Figure 20. On the top is a portion of a simulated curve using the inhomogeneous model.
The lower curve is a section of the yield curve observed by Yoshinaga er al (1971).

vanadium. The effect of suddenly varying the strain rate is shown in figure 21,
where the results of Leslie and Cuddy (1972) also are shown for comparison,
Occasionally, bunching of spikes is observed in the yield curve as may be seen in
figure 22 (a) which shows some results for austenitic stainless stee] (Rodriguez 1984).
This may be compared with figure 22(b) wherein we show the results of simulation
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Figure 21.  Effect of varying the strain rate. The simulated curve is shown at the top while
at the bottom is shown the result of Leslie and Cuddy (1972)

obtained with a two-segment model, representing the presence of two types of
regions with quite different grain sizes.

The results presented here are representative. Clearly, many ramifications of the
above studies are possible.

5.4 Sandpiles and yielding

Recently, Bak et al (1988) studied a class of extended dissipative dynamical systems
which evolve naturally into a critical stage referred to as the self-organized critical
state (SOCS). By way of exploring the spatial and the temporal features of such
systems, they have studied various models of transport. Following them, we have
performed some studies on a one-dimensional sand pile as it displays features of
interest to the present problem. :

We consider a one-dimensional sand pile of length N, consisting of N units. Th
boundary conditions are such that sand leaves the pile only at x = N. The height in
segment n is denoted by h(n), and

\ Z(n)=h(n)—h(n+1)

represents the height difference between successive positions on the sand pile. Sand
is added randomly to one of the N segments, every such addition to causing the
changes

Z(n)»Z(n)+1,
Z(n—-1)»Z(n—-1)—-1.

Addition of sand does not cause any disturbance, unless the height difference Z(n)
exceeds a critical value Z,, If that happens, one unit of sand tumbles to the lower
level ie.

Z(n)-> Z(n)—2,
Zin—1)>Z(n—1)+1,
Zin+1)->Z(n+1)+1.
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Figure 22. Bunching effects. (a) shows the results for

_ austenitic stainless steel (Rodriguez
1984) while (b) shows the simulated curve along with t

he plastic strain rates,

slope. In the simulation, fresh sand i
8o created have died down.

The quantities monitored are (@)
flowing past the open end. Results
figure 23. Here (a) shows the mass o

It could happen that a disturbance so created could trigger further flow down the

§ not added until the effects of the disturbance

the mass of the pile, and (ii) the amount of sand
obtained with N =30 and Z,=1T7 are shown in
f the sandpile as a function of time. Initially the
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Figure 23. This figure shows the results of our simulation studies on sand flow in a one-
dimensional sandpile. (a) shows the mass of the pile as a function of time while (b) depicts
the outflow. Naturally, the mass of the pile drops abruptly whenever there is outflow. The
rules of the game automatically ensure a built-in randomness. The purpose of this exercise
is mainly to draw attention to the potentiality of the method of cellular automata to
simulate dislocation flow in a strain gradient. That the method is very powerful has

recently become evident from studies on fluid flow.

jerky flow. Nevertheless, one might legitimately wonder about the relevance of sand
flow in a pile to the present studies. We believe that aspects of dislocation
population changes and dynamics could conveniently be studied by the method of
cellular automata (Wolfram 1983) used in the sand pile studies. Indeed, fluid flow
has been similarly studied using massively parallel computers. While in some
respects such a study might appear simplistic vis-a-vis the preserit problem, it is
pertinent to point out that Bak et al (1988) have drawn attention to various features
of universality which obtain not only in sand avalanches but equally so in plate
tectonics and earthquakes, It is the latter which is worthy of note in the present
context. Admittedly, as in two-dimensional sand piles, universality features would
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be seen ouly in idealized circumstances. Even so, methods of cellular automata are
worth a serious try.

5.5 General remarks

In this section we explore, albeit cursorily, the simulation of inhomogeneous
yielding according to various models. To our knowledge, this is the first time such
results have been reported although the importance of inhomogeneity has been
stressed by several authors in the past. At best, only qualitative conclusions have
been drawn earlier, as paraphrased in subsection 5.1.

To start with, some of the qualitative predictions made earlier by Penning have
been verified by us by an appropriately constructed model, However, since this
model does not explicitly allow for dislocation flow, an alternate model was then
explored. Admittedly, our simulation studies have merely scratched the surface,
Once one introduces many domains into the analysis, the degrees of freedom
available increase considerably. Obviously, by manipulating these suitably one can
endeavour to make the simulated yield curves come close in appearance to those
obtained in experiments. We have refrained from such an arduous exercise in this
case because the effort involved is not quite justified by the quality of models of
inhomogeneous yielding currently available. But given a good starting model, there
is no question that simulation can be carefully tuned to achieve agreement with
experiment. We have also studied flow in a one-dimensional sand pile which

suggests that perhaps detailed scenarios of dislocation flow could be investigated
via cellular automata,

6. Summary and conclusions

The essential message of this paper is that relevant information about deformation
mechanics can be suitably codified into a simulation algorithm capable of
predicting yield curves, complete with irregularities. Obviously the algorithm is only
as good as the model on which it is based, While we do not make exaggerated
claims about our model, it is obvious that whatever we have used has been able to
mimic many features observed in experiments. Two significant features of the present
work are (i) the recognition given to stochastic effects and (i) the attempt' to
actually simulate inhomogeneous yielding, albeit with a modest model.

That serrated yielding is basically an inhomogeneous process has been widely
recognized. At the same time, it is frustrating that the details of this inhomogeneous
processes cannot be reconstructed from an analysis of experimental data as
obtained at present. This of course is to be expected. Clearly, the obvious way out is
via computer simulation. As in other areas of science and engineering, computer
simulation can be a valuable too] for refining detailed models and improving our
understanding of inhomogeneous yielding. Some of the present gaps in
understanding vis-a-vis the inhomogeneity of yielding have already been pointed out,. It
is our belief that large scale use of simulation could, in course of time; conceivably
lead to a satisfactory model with good predictive capability. In turn this could be
made use of in material technology to determine in advance the material behaviour

under complex conditions of material processing (meaning complex trajectories in
o —¢&—T space). ) ‘
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In the existing literature, the focus thus far has mostly been on why and when
serrations occur. Thus it is that one finds much discussion on the connection
between serrations and negative strain-rate sensitivity. Without minimizing the
importance of establishing such correlations, we would like to observe that by
contrast scant attention has been paid to details such as (i) the shape of the yield
drop pulses, (ii) the amplitude distribution of the pulses, and (iii) their temporal
spacing ie. power spectra. It is our submission that much information is buried in
these hitherto neglected details also. Examples abound in other branches of science
and engineering wherein such analysis has been exploited to learn details otherwise
not easily accessible.

Our advocacy of simulation is not meant to imply that it is in an activity which
can be carried on in isolation. As earlier indicated, simulation thrives on modelling
and one hopes the power of the computer to unravel the outcome of intricately
linked equations, would act as a spur to modelling. At the same time, it would also
be a good idea to be abreast of related developments such as self-induced criticality.
Even more important, particular attention must be paid to obtaining experimental
information about spatial inhomogeneity of the yielding process, preferably on a
real-time basis (Kubin et al 1986 also have made similar suggestions). Many
schemes for doing this could be envisaged. For example, one could, during the
tensile test, rapidly raster scan the surface of the test specimen using a laser beam
and pickup inhomogeneities in the yielding via fluctuations in the reflected intensity.
It might also be interesting to combine yield experiments with studies on acoustic
emission. It is already known (e.g. Dunegan and Harris 1969), that acoustic
emission rate exhibits a strong peak during the transition from elastic to plastic
deformation, reminiscent of peaks observed during the study of critical phenomena.
Acoustic emission pulses are like earthquake signals and thus it would be
interesting to study the character of their pulses during serrations and look for
correlations with yield drop. Such a study might be fruitful in terms of revealing
more about slippages occurring across the sample, which in turn could be related to

simulation studies a la Bak et al. These are but samples of what could be attempted
in laboratory experiments, and obviously there are many other possibilities.

In conclusion, we observe that serrated yielding is a problem involving spatial
and temporal patterns. As is well-known, such patterns are not unusual when
systems have nonlinearities and are driven far from equilibrium (Haken 1983).
Indeed the occurrence of such patterns has been extensively studied in widely
ranging fields. There has been some appreciation of nonlinearities, instabilities,
pattern formation and the like vis-a-vis deformation (e.g. Ananthakrishna and
Sahoo 1981; Ananthakrishna and Valsakumar 1982; Valsakumar and Anantha-
krishna 1983; Kubin et al 1984), but by and large the effects of inhomogeneity have
largely been ignored in the investigations just cited. In short, the subject has not
received the in-depth investigation it merits, both in terms of spatial dependence

and with respect to the constitutive equations governing the material parameters
entering the mechanical equation of state. In our view, the evolution of the subject
has to be through an intensive interplay of modelling, simulation and laboratory
experiments. The well-known series on synergetics amply demonstrates how fruitful
such an exercise has been in physics, chemistry and biology. It is our hope that with
the widespread availability of workstations with considerable built-in computing
power and graphic capability, material scientists would not lag behind their
counterparts in other disciplines.
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Table A1,

Range of values of sca- Corresponding value/
led variables used in range of values in typi-

Parameter Description simulation cal real materials
p: Initial dislocation density 1-1000 105-108

(annealed metals)

P, Final dislocation density 500-100000 1010 jptt
. (iron)
Q Coefficient related to re. 0-01-1 0-01-0-06
mobilization rate (iron)
o Work hardening coefficient 1-10 0-05E
(E is the elastic
modulus)
m . Work hardening exponent 0:3-07 05
P (see figure 3) Upper critical stresg 6:5-85 45 kg/mm?

(Vanadium-carbon)*
1kg/mm?
(Vanadium-carbon)"‘

Q (see figure 3) Lower critical stress , 3:5-75

* Corresponds roughly to the median value of the range in scaled units,
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