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Spin glass, the travelling salesman problem, neural networks and all that
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Abstract. This paper presents an overview of diverse topics that are seemingly different but
interrelated, 'with strong connections to statistical mechanics on the one hand and spin glass
physics on the other. Written primarily for an inter-disciplinary audience, we start with a
brief recapitulation of the relevant aspects of statistical mechanics, particularly those needed
for understanding the recently-popular simulated-annealing technique used in optimization
studies. Then follows a survey of the spin glass problem, with particular attention to the
consequences of quenched randomness. The travelling-salesman problem is considered next,
as also the impact miade on it by the spin glass problem. Several examples are then
presented of optimization studies wherein the simulated-annealing concept has been
profitably used. Attention is also drawn in this context to the lessons provided by the spin
glass problem. Finally, a brief survey of neural networks is made, essentially from a physicist’s
point of view. The different learning schemes proposed are discussed, and the relevance of spin
models and their statistical mechanics is also discussed.
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1. Introduction

The title of this article is intended to highlight interesting correspondences drawn in
recent times between diverse, seemingly—disconnected fields. An important outcome
has been that physicists have begun to venture into areas not traditionally their
preserve; for their part, non-physicists appear to be drawing useful lessons from
condensed matter physics. If there is one common theme underlying all these
developments, it is optimization.

In condensed matter physics the optimization is with respect to free energy, and
one now has a reasonably good idea of the different states of matter possible under
various conditions. Thus one is familiar with the liquid state, the glassy state prepared
by a rapid quench, and the crystalline state resulting from careful and controlled
slow-cooling. One further knows that while glass represents a metastable state, a
crystal, by contrast, represents a state in equilibrium. A new-comer to this family of
phases is the spin glass on which the spotlight will be turned in a later section.

The requirement of optimization occurs not only in condensed matter physics but
in a variety of other fields like engineering, biology and so on. Frequently, the problems
feature many degrees of freedom (as in condensed matter physics, though not in the
same range of numbers) as well as a conflict of interest, analogous to the frustration
one is familiar with in random systems. Thus it is that spin glass has begun to attract
attention among non-physicists.

The plan of the article is as follows: We start with a few basics of statistical
mechanics, together with a brief discussion of the celebrated Metropolis algorithm
(Metropolis et al 1953) which facilitates numerical simulation of statistical mechanical
systems. Lately, this algorithm has begun to attract wide attention in the context of
optimization problems. Section 3 is devoted to a comprehensive survey of the spin
glass problem and the message it holds. Follows then in § 4 a survey of the Travelling
Salesman Problem (TSP) and the application of the Metropolis algorithm to it. The
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statistical mechanical aspects of the TSP are also surveyed, as well as their relationship
to spin glass. The use of the Metropolis algorithm in various other optimization
problems is briefly reviewed in §5. Nature is perhaps the biggest practitioner of
optimization; a brief contact is therefore made in § 6 with optimization studies in the
biological field. In Nature’s scheme of things, the brain occupies a unique place. The
manner in which it works is fascinating, and numerous have been the efforts to unravel
its mysteries. Engineers try to mimic the brain with electrical circuits referred to as
neural networks. Recently, statistical mechanics has been applied to neural networks,
a development which is surveyed in § 7. The paper concludes with general remarks
arising out of all the recent experience.

2. Statistical mechanics and the Metropolis algorithm

Statistical mechanics is a subject with much intellectual appeal, having its origins in
efforts to provide a microscopic foundation for thermodynamics. It will be recalled
that in the latter, one is interested in the equilibrium state of a macroscopic system
in the presence of various external forces like hydrostatic pressure, magnetic field etc.
The equilibrium state is obtained by minimising an appropriate free energy (the
Helmholtz free energy, the Gibbs free energy etc.). Indeed, chemists and metallurgists
make extensive use of the free energy concept in discussing phase diagrams.

Statistical mechanics teaches us how the thermodynamic free energy F is related
to microscopic physics. Here we will be concerned mainly with the Helmholtz free
energy F = E — TS. At the microscopic level one has a Hamiltonian # with attendant
equations of motion, and F is related to &# by

F=—k;TInZ - (1)
where Z the partition function is given by
Z=Trexp(—p#), B=1/ksT. )

In (2), Tr implies a sum over all the allowed states of the system. We shall be concerned
only with classical systems. If X comprehensively denotes the configuration coordinates
and X, X,--- X those appropriate to the allowed states 1,2, -+ N, then

2= 3, exp{- B (X)) « | o)

~ For discussing phase changes, one usually follows Landau and adopts a pheno-
menological approach. To recall, one supposes that the free energy is given by an
expansion of the form

F=F,+ay? + by*, o @)
where  is the order parameter,

b>1and a=a(T~T,), a>1. | (5)

The curves corresponding to (4) are shown in figure 1 from which it is clear that for
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Figure 1. Curves (a) and (b) depict the familiar Landau free energy curves (see eq. (4) and
the discussion following that). The equilibrium state of the system is that corresponding to

" the minimum of the free energy. A similar plot for spin glass is shown in (c). The abscissa
for case (c) is unspecified, but denotes an appropriate coordinate. As we shall see in §3.8,
there is really an infinity of such variables! Observe the rough terrain. Its nature will receive
attention later.

T > T, the order parameter y = 0 while for T < T, there are two options = £ ;.
The latter states are ordered since the order parameter is non-vanishing,

As in the case of fundamental symmetries in particle physics, one does not know a
priori what the relevant order parameter is for a given phase transition. The problem
is especially acute if the phase transition is of a type not known earlier (as happened
in the case of spin glass). Knowledge of the candidate order parameter set usually
emerges from experimental facts, supplemented by inspired guessing!

The situation for spin glass corresponding to figure 1(b) is shown in 1(c), and we
reserve for later narration the fascinating story about how such a picture emerged.
For the moment let us go back to traditional equilibrium statistical mechanics and
to standard problems where no phase change is involved (like liquid-state properties,
for example). Here statistical mechanics no doubt provides a complete set of formal
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rules, but at the practical level things are a bit disappointing since the calculation
involves the evaluation of horrendous multi-dimensional integrals. For instance, if we
consider a classical gas, the integrals to be performed are of the form

J‘d3di3Nq(”_)

where (d*"pd®"g) is an element of the 6 N-dimensional phase space of the system.
Except for highly idealized models, such integration is impossible to perform even in
supercomputers since N ~ 1023, :

A classic paper by Metropolis et al (1953) showed a way out of this impasse, and
understandably has become a bench mark. There are two important messages in this
paper. First is that one could (at least under certain circumstances) obtain physically
~ meaningful results by considering as few as, say, a thousand particles, instead of an
Avagadro number of them. Secondly, the integration difficulty can be further simplified
by integrating over a random sample of points in phase space rather than over all of it.

At the practical level, the Metropolis algorithm involves the steps outlined below.
Let X denote collectively the configuration coordinates of a system at temperature
T and E(X) the energy associated with it.

Step 0: Change X to X + AX where AX is a small, arbitrary displacement.

Step 1: Calculate E(X + AX).

Step 2: Compute the difference AE = E(X + AX) — E(X).

Step 3: If AE <0, ie, if the move X — X + AX lowers the energy, accept the new
configuration and go back to Step 0; if not, proceed to Step 4.

Step 4: Select a random number ‘R between 0 and 1 and compare it with P=
exp(— AE/kg T). If R < P, accept the new configuration X + AX and go back
to Step 0. If R < P, retain the configuration X and start all over again from
Step 0.

Steps 0 to 3 do not require explantion. Step 4 has the significance that even if the
change X to X + AX costs an increase in energy, it has a certain probability of
occurring. In particular, the acceptance scheme prescribed via the random number
R ensure detailed balance. ' ‘

For obvious reasons, the above algorithm is also frequently referred to as the Monte
Carlo miethod. In its practical implementation, one must allow for a sufficient number
of Monte Carlo steps for the system to settle down to equilibrium (at temperature
T) before extracting results. Thereafter, the point representing the state of the system
wanders in phase space in a manner required by equilibrium statistical mechanics.
All the desired results may be obtained by suitably averaging over this trajectory. A
schematic illustration of this process is given in figure 2. Further elucidation is available
in figure 3 which amplifies the famous ergodic hypothesis of Gibbs.

It is necessary to be clear about the difference between the role played by the free
energy F and the (internal) energy states E,, E,...etc. of the Hamiltonian. At
any given temperature T, the system always tries to minimize F, which is not the
same as finding the lowest energy state in the set {E,, E,...}. In fact, when T #0,
the system continuously wanders amongst all the possible energy states, although it
spends more time amongst the lower energy ones (see figure 4). However, at T=0
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Figure 2. Schematic plot of a two-dimensional energy landscape E(X, X ;). There are hills
and valleys, and the system wanders over this terrain which projects as a random walk in
(X,, X ,) space—see the lower half of the figure.

(a)

(v)

Figure 3. Illustration of the ergodic hypothesis. The time evolution of the system can be
depicted as a trajectory as in (a); recall also the previous figure. If one waits long enough,
the trajectory would cover the whole of phase space. Physical properties may be evaluated
as time averages over this trajectory. In (b), we have several copies of the system, all observed
at the same instant of time. The points represent the state of the system in the various
members of the ensemble at that instant. The ergodic hypothesis states that for a system in
e thermodynamic equilibrium, time average equals the ensemble average. Subtler aspects of
Lo the ergodic hypothesis are discussed by Ma (1975).
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Figure 4. Illustration of the difference in the roles played by the free energy and the internal
energy. The sketches are for a ferromagnetic Ising spin system. At each temperature, the free
energy is always minimized but that is the combined effect of different spin states with
different (internal) energies. The phase space (really a N-dimensional onel!) trajectory depicts
the exploration of all these various possible spin configurations. At 0°K, the system settles
down in the state of lowest internal energy, corresponding to perfect spin alignment. There
is then a one-to-one correspondence between E,,, and F,,,.

the system settles down permanently at the state of lowest energy E,,, and only then
does the distinction between F,;, and E,;. vanish. _

The difference between F and E is stressed because in optimization problems outside
the domain of physics, one does not really have a F (although, lately, statistical
mechanics is being injected into such problems, as we shall see in §4). The
optimization in such problems often boils down to finding the minimum energy state
which, in thermodynamic language, corresponds to a 0°K situation.

One must also put in perspective certain facts related to the technique of quenching
and annealing frequently resorted to by materials scientists (see figure 5). Quenching
involves step cooling, the sudden change in temperature causing the system to rapidly
coast down the free energy landscape, almost invariably getting trapped in a local
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Figure5. In (a)is shown the time-temperature diagram for quench as well as for anneal. In
the latter case, the temperature decrease can be continuous or step-like. The familiar example
of glass formation by rapid quench and devitrification by annealing is illustrated in (b).

valley during the downhill slide. Sometimes quenching endows the material so treated
with beneficial properties, which is why the blacksmith resorts to it. On the other
hand, quenching also leads to defects (if not, at times, total disorder) which may not
be always desirable. In such case one resorts to annealing, a process which provides
an escape route from local valleys, should trapping occur. In a nutshell, annealing can
undo what quenching does. For examples, metallic glasses are prepared by rapid
quenching (Cahn 1980). However, prolonged annealing can convert them into the
crystalline form, a process known as devitrification. This is an example of annealing
assisting the system out of a metastable state (local valley) and enabling it to find a
stable state (global minimum). As we shall see later, this idea has been successfully
applied in many optimization problems (through the use of the Metropolis algorithm).
Interestingly, such problems often have many features in common with spin glass so
that, spurred by developments in the spin glass field, many optimization problems
are being now studied both from the statistical mechanical point of view as well as
the numerical, the latter studies often being for corroborating the results obtained in
the former. It is the objective of this article to highlight some of these recent
developments, an exercise we start by considering first the spin glass problem.

. 3. The spin glass problem

3.1 Introduction

In this section we survey the spin glass problem, keeping in mind the other topics to
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Figure 6. Differences between a paramagnet, ferromagnet and spin glass. Here M = (1/N)Z;m;
and g = (1/N)Z;m}, where m, is the magnetization at site i. Obsérve that q # O for spin glass.
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be discussed later. An early review on this subject is by Ford (1982) while subsequent
developments have been summarized by many, for example, by Southern (1987) and
by Williams (1987). An in-depth analysis can be found in the paper of Binder and
Young (1986). .

As the name itself implies, the term spin glass is applied to a material that exhibits
a magnetic characteristic somewhat analogous to that displayed by its more familiar
counterpart namely, glass. The distinguishing feature of the latter is the presence of
atomic disorder. No doubt the same is also true of a liquid but whereas the atoms are
mobile in a liquid, in a glass their positions are frozen. There is a corresponding
difference between the spins in a paramagnet and those in a spin glass as schematically
illustrated in figure 6. .

Spin glass behaviour is observed in a wide variety of materials, of which AuFe and
CuMn alloys are regarded as archetypal. In substances of the above type, one has
typically 1-10 atomic 9, of a magnetic impurity (e.g. Fe) in a non-magnetic host (e.g.
Au). As the substances is cooled, the (magnetic) susceptibility exhibits a peak (or
rather a cusp) similar to that seen for various properties during an order-disorder
transformation. It is now generally accepted that the above mentioned peak in the
susceptibility signals the onset of a new phase at lower temperatures, the spin glass
phase.

The basic reasons for the occurrence of such a phase are also understood, and
may be appreciated by referring to figure 7. From figure 7(a) we see that since the
magnetic atoms enter the host lattice at random sites, the distances between the spins
also vary in a similar manner. Next, the interaction between the magnetic atoms is
of the famous RKKY (Ruderman-Kittel-Kasuya—Yosida) form, having an oscillatory
nature as in figure 7(b). Together, figures 7(a) and (b) imply that not only does the
magnitude of the nearest-neighbour exchange interaction vary randomly, but also that
its sign fluctuates. The latter is significant, since a positive exchange interaction favours
the parallel alignment of spins while a negative interaction favours the opposite.
Thanks to the inherent randomness, it becomes difficult in these materials to find an
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Figure 7. (a) Schematic representation of a spin glass alloy. The host atoms are shown as
open circles and the magnetic impurities as solid circles. (b) RKKY interaction J(r) between
two magnetic atoms as a function of the separation r between them. At r = OA, OC, OE
and OG, the coupling is antiferromagnetic while for r = OB, OD and OF, it is ferromagnetic.

overall spin alignment that can simultaneously satisfy all the exchange bonds. This is
the famous frustration problem, first highlighted by Anderson. (In his article, Ford
recalls the histoi'y of this terminology.) Thus the two key elements required for spin
glass behaviour are (i) randomness and (ii) frustration. In general, “frustration means
competing interactions and therefore unsatisfactory states, degeneracy, metastability,
and sensitivity to external parameters” (Toulouse 1983). It turns out that some of
these features are important in other optimization problems also, whence the wide
interest in spin glass. '

3.2 A rapid overview -

Theoretical studies on spin glass have yielded a rich harvest, and many landmarks
can be identified. First there is the paper by Edwards and Anderson (1975) which
introduced not only a convenient (though idealized) model but aiso several key
concepts, including a suitable order parameter known as the Edwards-Anderson
parameter. The next major milestone is the attempt of Sherrington and Kirkpatrick
(1975, abbreviated as SK; see also Kirkpatrick and Sherrington 1978) to construct
an exact mean field theory. Though some of the results of SK are unacceptable, their
work nevertheless exposed many subtle questions leading later to important discoveries.
Thouless et al (1977, abbreviated as TAP) found a way of handling the mean field
theory which avoided the pitfalls encountered by SK. Among other things, they
demonstrated the existence of many solutions, implying the existence of many
equivalent or near-equivalent spin configurations. Meanwhile, there was some
uncertainty concerning the nature of the order parameter until Parisi (1979, 1980a,
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b,c, 1983) cleared the fog. He not only formalized a new concept called replica
symmetry breaking (analogous to the breaking of continuous symmetry during the
familiar second-order phase transitions), but also provided an ansatz for implementing
the breaking. Finally, Mezard et al (1984a,b) discovered that the family of spin glass
solutions had a hierarchy of their own, implying in turn a very rugged. free energy
terrain (recall figure 1(c)). We shall now discuss these developments in slightly greater
detail. '

3.3 The Edwards—Anderson model

The Edwards—Anderson (EA) model is described by the Hamiltonian

Ho=Y J;SS; (6)
<y .
where the S;’s are classical vector spins located at the sites i of a regular lattice and
the sum {ij ) is over the nearest-neighbours. The features illustrated in figure 7 are
comprehensively accommodated by making the exchange interaction J;;into a random
variable with the distribution

p(Jy) = (120212 exp (— J3/2J%). ()

The disorder is said to be quenched by which is meant that the values of J;; are frozen.
Notice the idealization introduced by the theorist while modelling the spin glass.
Interestingly, such models yield quite meaningful results.

A quenched system is one in which some degrees of freedom, say {4;;}, are frozen
while others {B;;} are in thermal equilibrium. On the other hand, situations can arise
where the {4;;} are not frozen but annealed. In this case (which is the usual one),
the free energy is given by

— BF = In[Try, 5 exp(— p# {4}, {B})] ®)

i.e., the trace is over both sets of variables. Referring to figure 7, if the magnetic atoms
can diffuse, the exchange interactions will exhibit thermal fluctuations, and one would
evaluate the free energy as in (8). However, if diffusion is negligible, exchange disorder
must be regarded as quenched which is the assumption of the model defined by (6)
and (7). Edwards and Anderson indicate how F must be calculated in such a case.

Consider a system obeying (6) and (7). Here the exchange constants J;; are frozen,
and the set # = {J;} represents one instance of the possibilities available for the
quenched variables. The free energy & (#) of this sample is given by

F(F)= ks T Z(F), ©)

The observed free energy is then given by

F=[F (A = jdfP(f)g’(f) | (10)

where P(#) denotes the probability for the occurrence of the disorder pattern #. The
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averaging in (10) is referred to as configuration averaging, and its significance will be
discussed later.

Reference must now be made to the famous Edward—Anderson order parameter
qg4- The concept is simple and has already been schematically illustrated in figure 6.
More formally,

gea = lim lim g(z) (11a)
t—+oo N->
where g(t) denotes a time average performed over an observation time J o, and is
given by
'g-obs
q(t) = [(1/9' obs)j dt'S;(¢)S:(t + t’)] : (11b)
0

Av

Asin(10),[ ]avintheabove equation implies a configuration averaging. Alternatively,
and this is more common, one defines

dga = [{S>%F]av _ (12)
where ¢ D is the traditional thermal average taken herein a particular configuration

F.

EA have pointed out that the physical picture underlying (11) and (12) have parallels
in polymer science. When 2 solution of very long molecules becomes dense, there
comes a density at which the mobility of a molecule falls essentially to zero and the
system gels. Such a molecule will then appear as the same random coil at various
instants of time i.e., there is a freezing of the form as well as the orientation.

The paper of Edwards and Anderson is also noteworthy for the introduction of
the replica trick, about which more will be said in the following subsection. Here we
just note that using their model EA were able to show that a cusp occurs in the
curves for the specific heat and the susceptibility, and that gga # 0 for temperatures
lower than the cusp temperature.

3.4 Mean field theory of Sherrington and Kirkpatrick

The goal of SK was to construct a mean field theory for spin glass. Mean field theories
enjoy a privileged place in condensed matter physics, thanks to their immense utility
first exhibited in the field of ferromagnetism. They are one of a large class of cluster
approximations in which the interactions of particles within a cluster are treated
exactly while those involving a particle outside are treated in an average fashion. In
the so-called molecular field approximation to the Ising model of ferromagnetism,
the cluster becomes single spin. The outcome is the well-known self-consistency
equation

m = tanh(BJzm) (13)

where m is the magnetization (per spin), J the (nearest neighbour) exchange integral
and z the number of nearest neighbours.

Stanley (1971) has shown that the mean field theory of ferromagnetism becomes
exact in the limit of infinite range i.e., eVery spin interacts with every other spin instead
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of with near neighbours alone. Guided by this, SK proposed that the mean field
theory of spin glass should be the exact solution of the infinite range model similar
to (6). Their Hamiltonian is

H==% JijSiSj_hZSi (14)
i) i
where the spins are of the Ising type i.e., take the values + 1, and the sum (ij) is over
all neighbours. The quantity & denotes a uniform external field. As before,

pUy) = (1/2mJ%) 2 exp[ — (J;; — Jo)2/2J2], (15)

a small difference being that an offset from zero has been added for generality. In
passing we note that with an infinite-range model, questions related to the structure
of the lattice and its dimensionality become irrelevant. The assumption of an infinite
range is clearly unphysical but since it leads to sensible results for a ferromagnet,
there is a case for trying it out for the spin glass as well. We now digress to discuss
the replica trick.

Consider the problem of calculating f(f) the free energy per particle of a
many-particle system. The rule specified by equilibrium statistical mechanics is

fB)= gim Fn(B)/N. (16)
Problems arise, however, if the system has randomness. As discussed earlier, in a
system with quenched random interactions, f(f) has to be obtained by averaging
Fy(B) over the distribution P(#). This average must be computed after taking the
logarithm of the partition function, but before taking the thermodynamic limit i.e.,

—Bf(B)= lim (1/N)[In Z(B)]a (17)

N—o0

where, for convenience, we write Z instead of Zy. Averaging the logarithm of the
partition function is no easy task but there is a way out which is to exploit the identity

Inx = lim (x" — 1)/n. (18)
n=+0 .

The identity is exploited by imagining first that n identical copies or replicas are
made of the given system (making in all (n + 1) systems i.e., one original plus » copies).
As will be seen shortly, this proliferation aids the evaluation of the configuration
average. Once this averging is performed there is no further need for the replicas,
which are then “disposed off” by taking the limit n— 0. Turning to the details, w
first have :

(n Z(B)]av= lij}(I) {[Z"]as—1}/n

n—=0

= lim { 14 J d#P(#) ‘Ii Z“} / . (19)
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where Z, is the partition function of the ath replica. P(,#) is the same as in (10). Now
we can write

I_nl Za=TrRs[exr><—-B Z ffﬂ (20)

where AL, 2, ...... #", denote the Hamiltonians of n replicas of the system. The
trace RS in (20) is over all the nN (replica) spins associated with the n replicas. Blandin
et al (1980) have noted that from a physical point of view, two replicas a and 8 can
also be understood as the same system at two times ¢, and t, with [t; — ;] — 0.

Upon introducing (20) in (19), the configuration averaging is readily performed
~ since the Gaussian integrals can be evaluated, and one obtains

[Z"]a, = Trgsexp {— BH e} (21)

where #.(n) is the effective Hamiltonian of the n-replica system and is given by

BH r(n) = — . {(ﬁJo/Z)ZS?SE‘ +(BJ/2) }_;S?S?S?Sﬁ-’ } (22)
ij o a

Using the results of the above two equations, the n— 0 limit in (19) can be implemented

leading to [In Z(B)], from which f(f) is then obtained via (17).

Let us pause and absorb the import of the above. We started with the nasty problem
of averaging the logarithm of the partition function. We then sought a way out via
the identity (18). Raising the partition function to the power n brought in n replicas -
of the SK Hamiltonian but this proliferation was worth it since the messy # integration
could be got rid off, leaving us with the trace over nN spins of an effective Hamiltonian
H ¢ defined in the space of variables {7} of all the n replicas of the system. Observe
that # . has no elements of randomness left in it and is translationally invariant.
Also, the trace to be performed in (21) represents an annealed average.

One would have thought that the use of (18) in (17) would have swept away all
the difficulties; not quite! Firstly, (17) and (20) together imply that the n—0 limit is
taken before the N — co limit, whereas one must really perform the N — oo limit earlier
in order to properly evaluate Z. This interchange of limits has attracted comments
(e.g, TAP, van Hemmen and Palmer 1979) but now seems to be an acceptable
procedure. More serious is the problem of going from a positive integer n to a real
n in the neighbourhood of n =0, since the replicated Hamiltonian is not well defined
under these circumstnces. This is a sufficiently important issue for us to return to it
later.
~ Resuming our description of the work of SK, the step leading to a mean field theory
is implemented by replacing as usual, S35 by S7<S7) and S¢SeSPS8 by SySP(S3SE).
The averages ¢ » are now over the states of the effective Hamiltonian, and there are
no problems with configuration averaging any longer. The order parameters

m,={8%) and g,z = (SiShy a#p (23)

are to be determined self-consistently. At this stage, SK make the approximation
m,=M and q,;=q (i€, there is no dependence on the replica indices). This then
leads to a relatively simple expression for ff, with attendant self-consistency
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Figure 8. Temperature variation of the spin glass order parameter g (schematic),

requirements on M and g. From a practical point of view, finding Bf involved
minimizing a (nxn) matrix derived from the effective Hamiltonian.

SK calculated the temperature variation of g, with features as in figure 8. No doubt
this conforms to expectations, but the difficulty with the SK solution is that it leads
to negative entropy which is unacceptable. The root cause is that the SK solution is
unstable. The question of how to rectify this problem will be taken up in §3.7.

Notwithstanding the unphysical nature of the SK solution, one firm conclusion to
emerge from their work (which, incidentally, also included numerical simulations), is

jthat in the mean field theory, there is a phase transition to a spin glass phase at a
non-vanishing temperature T, the free energy terrain of this phase consisting of deep
valleys separated by barriers with high activation energies. In the thermodynamic limit,
the phase transition is sharp and the barriers become infinite. Also, their number
increases as a power of N.

3.5 Mean field theory of TAP

Replicas provide a convenient means of performing the average over disorder.
Thouless et al (1977) suggested that one defer this average to the end, and, following
tradition, first wrote down the local-site mean field equations for a given disorder
pattern #. Now for the Ising ferromagnet (with no disorder), the equation is of the form

m,.=tanhl:ﬁ('2J,-j)mi:l. (24
i

Of course m; is the same for all i. More general ordered states (e.g. anti-ferromagnetic)
can be allowed for by having

mi=tanh[[)’ZJ,‘jmj].b (25)

In the case of spin glass TAP recognized that some further modifications are necessary,
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after incorporating which they deduced
J j

It is useful to look upon (26) as the stationarity conditions
oF {m}/om;=0 (27)

where F{m} is the TAP free energy (for a given configuration #). Observe that (26),
(27) finally lead to a set {m} of N site magnetizations which collectively describe the
spin glass state. The message is that to describe the order parameter, a single number
like ¢ (as in the SK model) would not do. This again is a point to which we shall
return later.

Equations (26) and (27) are not particularly easy to handle since J;; is a random
matrix. However, both near the transition temperature and near T =0, some
simplifications are possible. With the aid of these and some numerical work, TAP
were able to assert that physically meaningful results could be obtained from mean
field theory and that the earlier conclusions of EA and SK about a sharp transition
leading to a totally random frozen state were completely valid.

The number of solutions (26) is enormous, being of the order exp [o( T)N] where
a( T) varies from about 0-2 at T'=0 (Bray and Moore 1980; de Dominics et al 1980;
Tanaka and Edwards 1980) to zero at T = T. Notionally the various solutions should
all have the same free energy f, per spin (to leading order in N) whence one speaks
of ground state degeneracy. Now the statistical expectation value of a quantity is the
average of the various values that such a quantity takes in all possible situations.
Guided by the consideration just given, the first suggestion was to calculate average
over all possible TAP states by assigning equal weights to them. This choice calied
white averaging, led to a worse disaster than the pre-Parisi replica solution. It was
then realized that just because all the free energies f; tend to the same value f, (to
leading order in N that is) it does not necessarily mean that all the states s have the
same weight p,. On the contrary, there are O(1/N) differences in the f, which cause
the weight

ps=exp [— fNf;] /ZSXP [—BNf.] (28)

to vary by a significant amount (Bray et al 1984, 1986). It is the totality of all states
whose number varies exponentially with N. However, if f, denotes the minimum free
energy, the numerous states with f » f, exert hardly any influence, and the states of
interest are those with f ~ f,. At T =0, the state with f = f, would represent the global
minimum, though in a notional sense perhaps. This point will be amplified with a
figure shortly.

3.6 The phase diagram '

We can now sketch the phase diagram, and pause to absorb its significance. The
control parameters are the temperature T, the external magnetic field h and those
which characterize the distribution (15) namely, J, and J. In terms of these, the phase
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Figure 9. Schematic phase diagram for spin glass. SK explored along the T-axis and
discovered a transition at T;. However, their solution is unstable below T;. In fact, there
is instability in the shaded region, unless replica symmetry is broken as discussed in §3.8.

diagram may be comprehensively depicted as in figure 9. Considering first the
temperature axis, SK showed that in the mean field theory one should expect a phase
transition to the spin glass phase below T',.. As noted earlier, their solution is unstable;
indeed this instability extends both to the (J, — T) as well as the (h — T) planes, and
is shown by the shaded region. The line marked AT is that predicted by de Almeida
and Thouless (1978), being the boundary separating the stable region from the unstable
in the (h — T) plane. The cure for the instability of the SK solution is our next concern.

3.7 The Parisi solution

Before discussing how Parisi cured the problem of instability, it is useful to recall
first that in a conventional phase transition, symmetry is.said to be broken if the
thermodynamic state lacks the symmetry possessed by the free energy expansion (in
terms of the order parameter). Now while seeking a solution, SK assumed that Qup = 4>
independent of the indices o and B. Effectively this implies that the mean field solution
is symmetric under a permutation of the replica indices, even as the replica
Hamiltonian itself is. This is certainly true for integer n but there is no guarantee
that it also holds when n—0. ‘

The instability of the SK solution prompted a search for others which broke replica
symmetry, culminating in 2 series of papers by Parisi (1979, 1980a, b, ¢, 1983) which
settled the issue.

Parisi realized that a proper description of spin glass requires not one but an infinity
(1) of order parameters, in fact with a hierarchical structure (which will be commented
upon in §3.9). Parisi builds up the required hierarchy as follows: Start with a
(n x n) matrix (temporarily and for convenience, we shall write m, instead of n). Divide
the (m, x m,) matrix into blocks of size (m, x my) as in figure 10. Assign a value g,
to all matrix elements except those in the diagonal boxes. (If this value is also assigned
to the elements of the diagonal boxes, then one would be back to what SK did.) The
diagonal boxes are next divided into boxes of size (m, x m,) (see figure 10(b)), and a
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Figure 10. Hierarchical matrix partitioning scheme of Parisi. For explanations, see text.

value ¢, is assigned everywhere except again in the diagonal boxes. This process is
i repeated say k + 1 times such that

n=me=my Zmy--=2m =1

After the last partitioning, zero is entered in all the diagonal boxes. The order
parameter is now described by the set {qo=1q(me), 41 =4q(my), 42 = g(my), - }.
So far everything is simple and clear. Parisi now lets n—0 and simultaneously
k — 0. This is hard to visualize for it essentially means collapsing the starting (nxn)
matrix into a (0 x 0) matrix, while at the same time endowing it with infinite structure!
Mercifully, what emerges for ordinary mortals is that the order parameter set referred
to above now becomes a continuous function g(x) defined in the interval 0<x<1. .
| (Caution: x here should not be confused with a co-ordinate variable; rather, it is
L descended from m,.) If replica symmetry is unbroken, g(x) is a constant; otherwise it
has'a form which will be sketched presently.
The general solution for g(x) is not known but close to T, one can obtain a

|
|
|
‘ ; Landau-type expansion
i
|

1 x
—Bf =Bfo+ 1/2j dX{IBIqZ(x) + q*(x)/6 — xq° (x)/3 — q(X)f dyqz(y)}
0 0
| \ (29)
where 8= (T — T,)/T,. Figure 11 offers a perspective on g(x) without and with
replica-symmetry breaking. Since g can assume a range of values, it becomes

meaningful to talk of a probability distribution for g namely 2(g), the form of which
is also sketched in the above figure.

3.8 Some implications of the Parisi solution

The Parisi solution came like breath of fresh air and spurred many investigations
which collectively have provided much clarification. We present below a medley of
the ideas which have emerged.
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Figure 11 (a) Shows the behaviour of g(x) without and with replica symmetry breaking.
The corresponding distribution functions 2(g) are shown in (b). For fixing our ideas, 2(q)
for a para and a ferromagnet is shown in (c).

3.8.1 An infinity of order parameters: In the usual order-disorder transformation, one
has a single number (like the magnetization M for example) to characterize the
(perfectly) ordered state. Parisi’s work shows that one needs a whole function q(x)
corresponding to what he refers to as an “infinite number of order parameters” (Parisi
1979). The function itself is deduced by studying the extrema of an expression like
(29). The message about an infinity of order parameter is also implicitly contained
in TAP’s set {m;}. Going back to. figure 1, the curve in 1(c) is really a hypersurface
in the space of all TAP states (of dimensionality ~ exp N). What is shown there is
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highly schematic, the main purpose being to draw attention to the existence of a large
number of valleys with varying depths (as mentioned while discussing the TAP
solutions).

3.8.2 Connection between TAP and Parisi solutions: It would have been noticed that
TAP and Parisi follow somewhat different routes, although towards the same global
objective. Whereas TAP deal in detail with the mean field equations for the ¢
relegating configuration averaging for later consideration, Parisi who takes off from
SK already has the configuration averaging behind him, being left only with the
averaging over replicas (which he then handles in an ingenious manner). The linkages
between the TAP and the Parisi approaches are now available.

Consider a sample corresponding to a given #. Let s,t denote two TAP solutions
ie. s and ¢ correspond to two valleys (or local minima). Within a valley the system
has some freedom for thermal fluctuations, and we denote the thermal average of an
observable A in the valley s as (A%, it is a partial average, being defined by

(A =(1/Z,)Y, Ayexp(— BN, (30)
The Gibbs average {A); which we normally are used to ie.,

<A>T=(1/Z);A},exp("5Nf).) (31)
can be written as

(Adr =2 p{ADT (32)
where

ps=exp(— ﬁNfs)/;eXp(— BNfL)- (33) -

With these definitions, the valley overlap may be expressed as
N
g5 = (1/N) .Zl 8>SO (34)

and the overlap probability function 2 ,(q) as ’

2 ,(q) = ZZ psP:9(q — ds)- | (35)

2 ,(q) is sample dependent and can fluctuate with _#, as a result of which there is a_

probability distribution for the probability distribution! This calls for one more round
of averaging, leading to

2(@)=[2 (@) ]av- (36)

Let ¢, and gm, denote the maximum and minimum values of g (at a given
temperature and a given magnetic field). Obviously,

—1 sqmirl\<~qz'nax< 1.

“
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Define now
q
x(q) = f dq'?(q) (37
-1

which is a cumulative distribution giving the probability of having all overlaps from
— 1 up to a stipulated value ¢q. With x(q) available, one can also define an inverse
function g(x). Interestingly but perhaps not surprisingly, the g(x) so obtained by
starting with TAP solutions is the same as the Parisi function g(x) introduced in
§ 3.6, although the latter was arrived at via the replica route.

Table 1 shows some equivalences, while figure 12 shows the form of 2 (g) as predicted
and as observed in numerical simulations.

3.8.3 Self-averaging: Anderson (1978) has remarked, “No experiment is ever done on
an ensemble of samples.” Very true indeed. An experimentalist might repeat his
experiment with several samples to confirm his result but not for averaging in the
same sense a theorist does (as in (10), for example). In the spin glass case, this might
at first sight be puzzling, considering that a given (experimental) sample might
correspond to one particular realization ¢ of the many patterns of random exchange
interactions possible. However, assuming that the experimentalist works with a sample
that is effectively infinite, such a sample could be visualized as divided into a number
of subvolumes each of which is representative of a particular pattern of quenched
disorder. Thus it is that one assumes that the properties of one large sample differs
negligibly from a configuration average over an ensemble of systems with different
instances of quenched disorder. When such an equivalence obtains, the physical
quantity is said to be self-averaging. Note that in the single large sample, the quantities
Ji; are quenched and not annealed.

Table1. Some quantities as defined in the TAP approach and as defined in the
replica approach.

TAP Replica

1

q=[{S>}1a g = lim - Y up
n—=0 n(n"' l)a;eﬂ

1

1 2

q® =~Z[(ZP;<S.~>‘T<S,~>’T> J q® = lim Y 4%

NiL\g ,,*on(n—-l)a#p
dea = [ZP:((SOIT)ZJ dea = limlim Qup

1] Av n=Q0a=p
1
[<S8:8;>7 1 lim 2(Ssststy
n=Q n(n - l) af
1

2(q) = [Zp;pmé(q - qzm)] 2(g) = lim Y. 84— q.p)
‘ Im Av n—o M n_l)a;e‘g

1
q= f dxq(x)

0

gea=4q(x=1)
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Figure 12. 2(q) for the SK model as determined from numerical studies. The dotted line
is the prediction of theory, and consists of a delta function and a continuous part (after
Young 1983).

Generally speaking, self-averaging applies to extensive variables associated with
systems in which the interactions are short ranged. Prima facie therefore, one would
not expect any quantity in the SK model to be self-averaging since the interactions
are of infinite range. However, it turns out that quantities which are self-averaging in
the short range model are also self-averaging in the SK model.

The existence or the absence of self-averaging can be tested as follows: Let O denote
a physical quantity, {O)r its thermal average corresponding to the configuration ¢,
and [{O)r]a, its configuration average. If O is self-averaging, then the variance

A0 = [(0>r)*1av— ([{O)7]av)? (38)

is zero. Physically observable quantities like the magnetization m and the internal
energy E satisfy (38) and are thus self-averaging. One of the surprises in this field has
been that there exist quantities which are not self-averaging; examples include g and
2 ,(q) (see also figure 13). This is a point requiring comment.

Young et al (1984) have noted that quantities which are not self-averaging are
closely linked to overlap. Physically this seems to imply that for some properties, not
only are the valleys in which the system is resident important, but also their proximity
to other valleys. While the overall valley structure might appear to change marginally
from one £ to another, overlap structure shows considerable variations (as reflected
in the variations of 2 ,). And where overlap is important (as in the case of q), the

R
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Figure 13. Variance A (as defined in eq. (38)) for the overlap parameter g, plotted as a

function of sample size N. The arrow shows predictions from Parisi’s theory (after Young
et al 1984).

corresponding property ceases to be self-averaging. So far no example of this is
available from laboratory experiments but some based on computer simulation have
been reported.

3.8.4 Freezing and ergodicity breaking: Any description of freezing depends crucially
on the observation time scale 7. Figure 14 amplifies the idea (Palmer 1982). Here
the horizontal lines represent the time axis and the shaded patches the time scales of
the relaxation processes. In figure 14(a), 7~ obs > all relaxation times, and the system
may be said to be in equilibrium. This is the classic, text-book situation where averages
are obtained using the Gibb’s prescription, and the system wanders freely over the
whole of phase space “visiting every hamlet” (van Hemmen 1983). Such an ideal
situation does not always obtain, for example in a phase transition. Figure 14(b)
represents the scenario for an Ising ferromagnet which has condensed into one of the
two possible states of ordering, say (M + ). On reasonable times scales of observation,
all the relaxations in the (M +) state would have occurred and the system may be
considered to be in partial equilibrium with its wanderings confined to the pocket
I'(+) of the phase space I". However, relaxations associated with flips + M —» —M
and vice versa are still possible, but to observe these 7 obs Would have to be made
very much larger. If this is doné, one would observe the system randomly jumping
back and forth between the + states. The system can be regarded as being in full
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Figure 14. Schematic illustration of the relaxation times for various systems in relation to
the observation time 7., The time axis is supposed to be on a logarithmic scale. In (a) the
relaxation is fast, and the system is in equilibrium. An Ising ferromagnet is illustrated in (b).
The system is ordered, and on the scale 75, appears to remain in a fixed state of magnetization.
However, magnetization flips are possible [see also (d)], though on a very much longer time
scale. Case (c) pertains to a spin glass.

thermodynamic equilibrium but now (M =0 which is uninteresting. Fortunately,
Nature cooperates by making 7 prp astronomically large whence a system condensing
into a particular ordered state will remain in that state practically for ever (at T=0
certainly, and more reasonably also at non-zero temperatures below the transition
temperature).

The spin glass situation is more complicated, being rather like in figure 14(c) where
there is a continuum of relaxation times. Whatever freezing one observes is with
respect to processes slower than J gs.

A physical system is said to break ergodicity when its behaviour is qualitatively
and quantitatively different from that predicted by equilibrium statistical mechanics.
This happens in situations like in figures 14(b) and (c) where 7 s is less than some
of the relaxation times occurring in the system. Under these circumstances, the phase
space I' becomes divided into disjoint components I'* with I' = u, ™ Depending on
the initial conditions, the system gets trapped into one of these components. This is
a very important feature of spin glass.
~ How does one calculate the properties of such a system? Within I'* there is no

problem since the standard rules of statistical mechanics apply, with the restriction
that they are applied in the domain of I'™. Averages (---)% computed in this manner
[cf. equation (30)] are sometimes referred to as restricted averages. The problem is
that one does not know which I'* the system is trapped in, a difficulty which is
particularly acute in the case of spin glass. Something more than a mere restricted
average is therefore called for. One approach is to calculate the canonical average
(of the observable A) by the standard rule

A, = (A(X))F = Tr[XeT]A(X)exp {— p# (X)}/Z (39)
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where # is the Hamiltonian, and the trace is over the configuration variable X. In
the case of other quantities (like specific heat, for example) A, is computed from the
partition function and its appropriate derivatives. Instead of A, one could also
compute a component average Z defined by

A=Y p.A, (40)

where
A, =AX) s =Tr[Xel*]JA(X)exp{— fH# (X)}/Z,. (41)

The real system is described by p, =1 for some o = «, (say) and p, =0 for all other
values of a. But we do not know a, which is precisely why all the fuss about finding
some kind of an average. Given our ignorance about the initial state, it is natural in
the spirit of statistical mechanics to suppose that.

p.= exp(— BNf,)/Z = Z°/Z. (42)

With these definitions, the following are some of the results which ensue (Palmer 1983):

(i) A, = A for observables like magnetization, interval energy etc.
(i) F=F,+ TI and §=S,— I where

1= —kgy p,Inp, ' : (43)

is the intercomponent entropy and is referred to as complexity. Physically it denotes
the additional information needed to specify a particular state, glven the a priori
probabilities.

There are similar rules for the specific heat, susceptibility etc.

Each component « is associated to a TAP state. Sometimes, the phrase pure state
is also used; thus, 4 is a mixture of pure states. (Thermodynamists may perhaps be
- more comfortable in referring to these pure states as phases). Besides the association
referred to above, there are also some finer details to be taken note of. Figure 15
shows qualitative plots of the free energy hypersurface as T is lowerd. Below T, one
has a rugged terrain with deep valleys. As T decreases, the valley structure becomes
richer and more rugged -essentially with the development of “valleys within valleys
within valleys....... ” (Binder and Young 1986). Averages {---»% are associated to the
wanderings within limited region I"* of spin configuration space: An example of such
confinement has been given earlier in figure 4.

Valley bifurcation as T is lowered can be given a hierarchical representation as in
figure 15(b). A word of caution: Although the (inverted) tree in figure 15(b) is shown
as having one “trunk” just below T, there should in reality be an infinity of them since
even slightly below T there is an infinity of valleys. It has been suggested by Mezard
et al (1984a) that the valley division (merging) that occurs as T is lowered (ralsed)
gives rise to a series of “micro phase transitions”.

3.9 Ultrametricity

The hierarchy idea just mentioned has led to the introduction of a new concept into
physics called ultrametricity (Mezard et al 1984a,b; for a review on the subject, see
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Figure 15. (a) schematic plot of the free energy hypersurface at various temperatures (recall
also figure 1). Observe the development of “fractal structure”i.c., valley within valley etc. There
is a notional minimum free energy state shown by the arrow. The barriers between the
valleys are really infinite. (b) Tree showing valley bifurcation below T,. Observe that the
tree is inverted, with the “leaves” at the bottom.

Rammal et al 1986). The basic concept of ultrametricity belongs to mathematics, and
interestingly it found an application in taxonomy long before being discovered by
physicists.

Metric is a notion associated with distance. 4 metric space is a space endowed
with a distance which in general obeys the triangle inequality i.., if 4, B and C are

P
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three points and if d(A4, B) etc., denote the distances between these points, then
d(A, C) < d(A, B)+ d(B, C). (44)
An ultrametric space is one where the inquality is stronger, being of the‘ form
d(A, C) < max {d(4, B),d(B, C)}. (45)

Accustomed as we are to Euclidean spaces, an ultrametric space can cause severe
problems in visualization. For example, if we consider a ball in an ultrametric space,
then every point inside this ball is at the centre of the ball and the diameter of the
ball is equal to its radius! It-is comforting, however, that problems where the
ultrametricity concept is actually utilized do not require such arduous visualization
exercises, as the example to be presented now will illustrate.

Figure 16 shows a schematic evolution tree at the bottom of which are various
species S1, S2--- etc. The branching points of the evolution are ordered and dated,
and the vertical axis becomes equivalent to a time axis. A natural definition of distance
between two species would be a quantity proportional to the age of the closest

Common

ancestor
of s1 & s3

Distance
between sl1 & s3

Y

Time

Figure 16. Schematic evolution tree showing the species S, S,...... Sg which have evolved
after a time T. The branch points at earlier times show the various ancestors. Distances
between species S; and S; would be proportinal to the time that have elapsed since they
branched off. An example is shown.
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ancestor, that is, the time elapsed since they branched off. Distances measured in this
fashion frequently obey the inequality (45), whence the ‘space of species’ may be regarded
as being ultrametric.

A simple, tree-construction procedure devised by taxonomists is illustrated in figure
17(a), (b), the subject being genetic transformations in vertebrates as gleaned from
differences in the a-hemoglobin chains. Each entry in the 9 x 9 matrix in figure 17(b)
shows the amino acid differences between the a-hemoglobins of the two vertebrates
involved. Starting with the last row, the matrix element 98 is clearly the smallest.
Accordingly, as a first step, the human and the bovine are aggregated into a cluster
and the matrix is renormalized into a (8 x 8) one. Here the entries that do not involve
either human or bovine remain the same as before but where the latter two are
involved, one selects the smaller of the two values. For example, considering the
dog-human and the dog-bovine combinations, the corresponding numbers are
respectively 28 and 23. Selecting the smaller of the two, we now say that the
combination between dog on the one hand and the (human/bovine) cluster on the

HUMAN

~ <oy

CARP ECHIDNA RABBIT BOVINE

17(a)
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Figure 17. (a) This figure based on the work of Kimura (1985 and quoted by Rammal et al
1986) depicts a branching as revealed by amino acid differences between the hemoglobin
chains. (b) The differences are tabulated in matrix form. By systematically decimating the
matrix as described in text, the evolution tree of a (a) can be built up.
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other has a value 23. Likewise, we select 26 as the value for the Kangaroo-(human/
bovine) combination. After the (8 x 8) matrix has been built up in this fashion, one
takes up the next stage of clustering by enlarging the (human/bovine) cluster into the
(human/bovine/dog) cluster leading now to a (7 x7) matrix. In this way, by a
step-by-step decimation procedure, the cluster tree can be built up.

Distance is a dissimilarity index. In many problems, the relationship between objects
is better expressed via overlaps which is a similarity index. Let o, B, v be three objects
and g, 4p,» 4a, their overlaps. In terms of these, one has the metric inequality

Qay = dup + qﬂy ~ 1 (46)
Likewise, the analogue of (45) is the ultrametric inequality

Qay = min {qaﬂi q[i'y}' (47)

In a sense, test for ultrametricity boils down to evaluating triangle statistics. In an

ultrametric space, the triangle (of overlaps) will all be either equilateral or isosceles,
with the third side being larger than the two equal ones. For systems with a large
number of degrees of freedom, ultrametricity is a natural type of organization.

Ultrametricity ideas have been applied both to TAP states/valleys as well as to
replicas (Mezard et al 1984a,b). Naturally the two descriptions are related. Consider
three pure states s, t and u. Mezard et al show that the overlaps gy, 4. and q,, obey
the rule (47), whence the space of TAP states has an ultrametric structure. Now
SUPPOSE ¢,y = o = g < gy- We can then put the states s and t into a cluster and place
u outside of it. The idea is to have groupings such that states within a cluster have
larger overlaps among themselves than with respect to a partner outside the cluster.
Using this guideline one can build up a hierarchy of clusters with an underlying tree
structure—see figure 18.

The replicas can also be given a similar hierarchical structure. It turns out that M,

~ the probability that k states are in the same cluster also describes the probability of

having k different replicas within the same cluster. Naturally this probability would
depend on the overlap scale g chosen. This opens up the possibility of giving a detailed,
quantitative interpretation to the idea of micro phase transitions introduced earlier.
We now observe that as the temperature is varied, the system organizes its states to
achieve overlaps on a progressively varying g scale.

This concludes our survey of the spin glass problem, and we are now ready to turn
to other related topics.

4. The travelling salesman problem

4.1 The statement of the problem

The travelling salesman problem (TSP) may be stated as follows: A list of N cities is
given, together with the distances between all pairs of them. A salesman is required
to perform a tour by starting from any city and returning to the original place of
departure, visiting all the remaining cities en route once and only once. What route
should he choose in order to minimize the total distance travelled? In slightly more
formal terms, one is asking for the shortest closed path through a given set of N
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points, and in this form the problem occurs frequently in several contexts. To put it
in slightly different terms, this is an example of a combinatorial optimization problem.

Mathematically, the TSP can be formulated as follows: Let ;; denote the distance
between cities i and j and L be the length of the tourie., L=ZX,1; ;. {, with(N,N + 1) =
(N,1). Further, let P denote a permutation of the original order of cities, with P(i)
denoting the new position of a city which occupied position i in the original list. With
these definitions, the TSP implies finding the permutation P for which

N
Lp= '21 lP(i),P(i+ 1), P(N +1)=P(1) (48)
i=

is a minimum. The quantity L is sometimes referred to as the cost function, although
in real life the cost of travel between cities i and i + 1 may depend on factors other
than distance e.g. mode of transport. Such complications can and do occur but the
problem stated above is the ‘hydrogen atom’ version, and hence the wide interest in it.

The cost of a tour is the analogue of the energy of a particular configuration in
statistical mechanics, while the counterpart of the phase space is the space of all tours.
In the same language, the optimal tour corresponds to the ground state.

4.2 On exponential-time algorithm

The TSP is a paradigm beloved of workers in Operations Research, providing as it
does a useful test bed for checking out optimization algorithms. This is a convenient
juncture to make a few qualitative remarks on ‘intractability’ and related matters
(Garey and Johnson 1979). For our purposes, a problem may be regarded as a general,
many-parameter question which is to be answered. A specific set of values assigned
to these parameters defines a given instance of the problem. We remind ourselves
that algorithms are step-by-step procedures for solving problems and, in the context
of this paper, simply mean computer programs. An algorithm is said to solve a problem
if it can provide solutions for every instance one can associate with the problem. For
example, in the N-city TSP there are N(N — 1)/2 inter-city distances, and a successful
TSP algorithm must be able to find the optimal solution (i.e. minimal length tour)
for all configurations of the cities. Naturally the time to find this solution would
increase with the “size” n of the problem, a convenient measure of which for the TSP
would be (N — 1)!/2. The time complexity function for an algorithm expressed as a
function of the size n, is the largest amount of time required by the algorithm to solve
the problem.

It is customary to distinguish two cases (i) where the time required for the execution
of the algorithm varies as n, n?, n3,... etc., and (i) where the time variation is like 2"
or 3" or n! etc. The former are called polynomial-time algorithms and the latter as
exponential-time algorithms. The implications of such a classification may be better
appreciated by referring to table 2.

A problem is deemed to be well solved only if a polynomial-time algorithm is
known for it. It is essential that this algorithm works for every conceivable instance
of the problem. It sometimes happens that while the polynomial-type is adequate for
most instances, there are nasty exceptions which require exponential-time algorithms.
In general, a problem is deemed intractable if no polynomial-time algorithm can
possibly solve it. A polynomial-time (P) problem is one which can be solved by a
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Table 2. Size of the problem corresponding to
different levels of complexity which can be handled
by improved computers. The problem size is computed
from the relation (N,/S;)=(N,/S,) where N, and
N, denote the total number of operations performed
by two computers of speeds S; and S,. In all cases,
it is assumed that the size handled by the best present
computers is n.

Largest size Largest size
, with a computer with a computer
Complexity 100 times faster 1000 times faster

n 100n 1000 n

n? 10n 316n

n 4-64n 10n

n 2:5n 398n

A n-+ 664 n+ 997

3" n+4-19 n+ 627
S(n) STHI00f(m] S 7[1000 f(n)]

polynomial algorithm. A NP-complete problem, on the other hand, is one which
cannot be solved in polynomial time. While a more rigorous definition of NP-
completeness is certainly possible, the above is adequate for our present purposes.
Viewed in this light, the TSP is a NP-complete problem.

4.3 Algorithms for tackling the TSP

Although the TSP is a NP-complete problem, many attempts at algorithmic solution
have nevertheless been made. Before describing these, reference is necessary to a
bound given a long time ago by Beardwood et al (1959). They showed that the
asymptotic value of the shortest tour length is given by

lim Lg,,/N'? = ?’\/—f [Culey, x,)]"% dx, dx, (49)

N—-w

where pi(x;,x,) describes the distribution of the N points in the bounded region D,
the distribution of points being assumed to be random. The constant y ~ 0-53.

Turning to the algorithm, we start with one described as greedy. This algorithm
does not in any sense attempt an optimal solution but its virtue is that it is fast. To
implement it, one starts from a city picked at random, moves to the city nearest to
the starting one, makes the next step by going to the closest remaining city, and so
on. The program results in N tours, usually not all distinct. Typically the greedy
algorithm yields tours several times costlier than the optimal one. It is thus useful
for obtaining an order-of-magnitude estimate.

Iterative search is a better strategy. In a sense, it is a heuristic approach Before
describing it, the concept of a A-optimal tour must first be introduced. A tour is said
to be A-optimal (or A-opt), if it is impossible to obtain a tour with smaller cost by
replacing any set of A links by any other set of 4 links. (A link denotes the straight
line path between two specified cities.)

Consider now 2-opt tours. As just noted, the aim is to start from a given tour T
/
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i j+1

i+l ]

(a)

Figure 19. Illustration of the simplest move set. It involves two links.

i i+1

k+1

k j+1

i+l

k| Lo —p— ] |+l k L_Q__X j+1

replacement inversion

(b) ' (c)

Figure 20. Some examples of 3-move set.

say, and then construct another tour T" slightly different from T and less costly. The
simplest move set for going from T to T’ involves 2 links, the change in the linkages
being effected as illustrated in figure 19 (Lin 1965). The change is sometimes referred
to inversion since part of the tour (i.e, that between i + 1 and j) is performed in the
reverse direction. Next in complexity is the 3-move set, two versions of which are
illustrated in figure 20. One of these is a replacement while the other is a reversal (Lin
1965). Further refinements have been suggested by Lin and Kernigan (1973). The Lin
algorithm is essentially iterative, following a tour sequence T, T', T",---steadily
decreasing in cost till no further decrease occurs.
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It should not be assumed from the above that such a strategy automatically leads
to the global minimum. It does not; instead, it usually leads to a local minimum. In
the early eighties, several workers (Bonomi and Lutton 1984; Cerny 1985; Kirkpatrick
1984) almost simultaneously recognized that iterative improvement is rather like rapid
quenching, whence a trapping in a local valley is almost inevitable. ‘A natural cure
is to employ annealing (in conjuction with move sets as in the Lin algorithm), which
is precisely what the Metropolis algorithm facilitates. And thus emerged the simulated
annealing method which has become quite popular in recent years. This naturally
required the association of a temperature with the problem. However, in this case
temperature lacks physical significance, being merely a convenient parameter. It will
of course be noticed that simulated annealing implemented with T set equal to zero
reverts back to the iterative algorithm.

One would naturally like to know how effective simulated annealing technique is
in problems that are NP-complete. Some indications of this are available from
numerical studies on the spin-glass problem. The lowest energy state obtained in
large samples is ~ —0-7, as compared to the ground state energy U(0) = — 0-763
obtained by analytical studies invoking replica-symmetry breaking. In short, while
simulated annealing does produce a low-lying state, one does not know whether the
result is the optimal solution or how far (in general) it is from this solution. However,
in large problems with built-in frustration, one expects the cost landscape to be rather
like that in the spin-glass problem whence, to leading order in N, the solution obtained
via simulated annealing can be approximated to the global minimum.

4.4 Some results obtained using simulated annealing

A simple illustration of the way simulated annealing operates is given in figure 21
which presents results similar to those first reported by Cerny (1985). In this case,
the salesman has to tour 100 cities distributed uniformly on the unit circle. The
optimal tour is trivial, namely the path going round the circle. Nevertheless, to show
how simulated annealing works, we start with a tour as in figure 21(a) and an initial
temperature of 1-0°. Temperature is decreased linearly with time, and tours after every
1000 Monte Carlo steps are plotted. We observe that the simulated annealing
algorithm is able to hunt the optimal solution with ~ 16000 permutations as against
a total of 99!/2. One cannot naturally overplay this example since the greedy algorithm
will yield the optimum tour in a hundred steps; rather, our aim is to illustrate how
annealing produces changes. '

Perhaps a better example is furnished by the results shown in figure 22, the like of
which was first reported by Kirkpatrick (1984). In this figure, we have 100 cities
arranged in a square lattice. One starts with a tour as in (a), an initial temperature
of 1, and employs an exponential cool down. The sequence of pictures in the figure
are very reminiscent of the gas — liquid - solid transition.

In real life, cities are not arranged on a lattice but dispersed somewhat randomly.
Results for random city TSP are shown in figure 23. Once again we have 100 cities,
and an exponential cool down. The low-temperature tour has a respectable appearance
with no bond intersections. By contrast, the high-temperature tour resembles particle
motions in a gas. '

Researchers often study the TSP with large values of N(~ 10,000) in order to expose
the complexities underlying the problem. Of course no salesman ever makes a round
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Figure 21. Optimization of a 100-city circular tour by simulated annealing. The starting
tour is shown in (a). Subsequent frames show the tour after every 1000 Monte Carlo steps.
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Figure 22. TSP on a 10 x 10 grid, as studied by simulated annealing. -
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T = 0.0

Figure 23. Random city tours as studied by simulated annealing,
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Figure 24. A TSP solution for drilling 6406 holes in a PCB (after Kirkpatrick ‘1984).

trip involving thousands of cities! And yet, the analysis of such problems does have
practical relevance, though not with respect to sales tours. One example is the
automated drilling of holes in a printed circuit board (PCB), where the movement of
the drilling element plays the role of tours performed by the salesman. A difficulty
with this application is that the time taken to drill 2 hole usually exceeds the time
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of transit between drilling positions, whence it is not worthwhile to minimize the ‘tour’
duration. However, with the advent of laser drilling, the time to drill a hole is practically
negligible, and the application of combinatorial optimization to PCB drilling begins
to make sense. Figure 24 shows an example of such a result obtained by Kirkpatrick
(1984). In this case there were 6406 holes to be drilled, and the “tour” was obtained by
first applying the greedy algorithm and then simulated annealing.

" In general, simulated annealing is useful in complex optimization problems
characterized by complicated energy (i.e., cost landscape, the main feature of which
is the presence of a large number of local valleys (metastable states)). The algorithm
is reasonably efficient and adequate if the cost associated with the lowest valley
(ground state) is not very much smaller than those of other minima (metastable states).
In problems which have a phase transition, the simulated annealing technique must
be used with care since near the transition temperature T, there would be slowing
down effects analogous to critical slowing down in the phase transition problems of
condensed matter physics.

4.5 Statistical mechanics of the TSP

The application of the simulated annealing technique to TSP has encouraged a study
of the statistical mechanics aspects also. Considering that the introduction of a
temperature has itself the appearance of being artificial, one might wonder what
statistical mechanics means in this case. Hopefully the answer to this would become
clear shortly when we consider the details.

We begin our discussion of the statistical mechanical aspects by noting that the
TSP has elements of frustration, associated with a conflict “between the short-range
requirement that each step of the path be as short’ as possible and the long-range
requirement that every point be visited once and the path be closed” (Kirkpatrick
1981). One would like to know the consequences of this frustration, and this is
accessible only via a statistical mechanical type of discussion. The latter will necessarily
bring in concepts like the partition function, the free energy etc., and it is natural
then to expect a free energy landscape as in figure 1(c), the horizontal axis denoting
the space of all possible tours (associated with a given instance). The valleys are the
analogue of TAP states for this problem, and, depending on the initial conditions,
one would be trapped in one or the other of these valleys. Incidentally, since these
are more or less alike, it is not worth hunting for the lowest, although one among
them may be notionally so. In other words, the worst case is not all that significant,
which is comforting! , ‘ '

We turn now to some of the studies which have been carried out. As formulated
in (48), the TSP is a random-point problem in that the positions of the cities are chosen
at random in a plane (in general in a D-dimensional space). There is also another
version known as the random-link problem where the inter-city length [;;(=1;) is
treated as a random variable having a specified distribution p(). The latter model
has been studied by Kirkpatrick and Toulouse (1985) and by Vannimenus and Mezard
(1984). The former authors assumed p(l) to be constant in the (normalized) interval
0 — 1, whereas the latter assumed.

p()=(e k). (50)
Some results of this model map on to the D-dimensional random point model with
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the identification r — D — 1. The study of Vannimenus and Mezard showed that there
are two regimes of temperature, a high-temperature (#) one and a low-temperature
(&) one. In the s#-regime, the annealed approximation is made to write the partition
function as

[Z]a, = fl:[ p(lij) dlij ; eXp < - ﬂz lP(i). P+ 1)) (1)

The integral over I; gives the same result for every permutation P so that
0 N
[Z]a = N! ( j dlp(l)eXP(-—ﬂl)) =Nlg(B)", ' (52)
0

where g(ﬂ) is the characteristic function of p(J). This then yields the annealed free energy
Fopn=— TNIn(N/e)— TNIng(B) + O(In N), (53)
and the annealed average length
Lona = — NdIng(B)/dp. (54)

The assumption underlying (51) implies certain scaling behaviour for the average
length (L}, the entropy and the energy, when N — oo (T fixed). For example, in the
A —regime, { L) varies as ’

(L)~ Na

~where a is the edge of the D-dimensional cube. This implies that the average bond
length is a and this is what (54) predicts. However, in the Z-regime, the average bond
length will clearly be not that large. Rather one expects it to be (V/N)YP where V = a®
is the volume of the cube. Thus '

(Ly ~aNt~p)

which shows that the annealed approximation will not do.

The signals are clear. Any attempt to deduce analytical results must bear in mind
the fact that (i) optimization implies search for solution in a T =0 situation, and
(ii) on account of inherent frustration (already drawn attention to), the cost landscape
will have characteristic rugged features. The analytical methods employed must
therefore be tuned to these aspects. Thus, Vannimenus and Mezard observe that to
obtain meaningful results one must average the logarithm of the partition function
over all instances i.e., one must perform configurational average. This, however, is a
- formidable task, and they therefore content themselves with placing some bounds on
Lmin'

A very interesting model results when r— oo in (50). One then obtains the
infinite-dimensional random — point model which is soluble, and predicts a phase
transition, - | _ . ‘

Going back to the finite r case, why not use the replica trick? This is precisely
what Orland (1985) did but he was unable to find a (stable) solution. He conjectures

that replica symmetry breaking might be required. No clear phase transition is




40 G Venkataraman and G Athithan

. X
® X 7 e
@ ° )(
® j\ X
® Y
° / \ y ~
1 1y ]

Required to make L = ¥ 1; a minimum

ij
Figure 25. In the BMP, one has two sets of points and they are paired off. The problem
is to find the pairing scheme for which the sum of all bond lengths is a minimum.

predicted (unlike in the r— o0 case) but there are two regimes # and &, and a cross
over between them.

A variant of the TSP is the Bipartite Problem (BMP). In this, one has two (equal)
sets of points {r;} and {p;} ina D-dimensional space, and the problem is to find the
best matching between the sets i.c., one must construct bonds as in figure 25 such
that the total bond length is a minimum. As in the TSP, one can make either the
points {r;} and {p;} random or the inter-set linkages I,; random. In the latter case of
course, one has to specify the distribution p(l;;). Either way, the matrix [;; defines an
instance of the problem. -

Orland (1985) observes that unlike the TSP, the random-point BMP belongs to
the P-class. He speculates that P-class problems would not show replica symmetry
breaking whereas the NP-class problems (e.g. the TSP) would. :

Mezard and Parisi (1985) have investigated the random-link version of the BMP.
The order parameter is now a tensof, much more complicated than in the spin glass
case. Assuming p(J) to be as in (50), Mezard and parisi attempt a replica-symmetric
solution for finite r. They do not observe a phase transition but a freezing nevertheless.

The case r = 0 is interesting, corresponding as it does to a non-vanishing probability
of having infinitely short links. Mezard and Parisi assume that replica symmetry is
not broken but nevertheless find that the solution turns out to be a whole function
G,(l) (rather like Parisi’s g(x)). This immediately raises the question whether there is
ergodicity breaking as in spin glass and, to find the answer, Mezard and Parisi studied
the overlap probability function ﬂ{,‘J}(q), where g now refers to the overlap between
two copies of the system corresponding to the same instance {l;;} but with different
bipartite links. They remark that a nontrivial 2, ,(q) function is possible only with
replica symmetry breaking. Accurate numerical work which can decide whether

ZC) is indeed so, is lacking at present. Meanwhile, the existence of the function -

G,(I) strongly suggests that replica symmetry is broken.

Extensive numerical work related to the statistical mechanics of the TSP has been
carried out by Kirkpatrick and Toulouse (1985) who have studied various features
like overlap, ultrametricity etc. Let us start with overlap. Consider two tours a, B
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Figure 26. (a) and (b) show two 8-city tours « and f say. The common bonds are shown
by double lines. Overlap q,; is computed from the fraction of bonds common to the tours.
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0.0 q : 1.0

Figure 27. Overlap probability distribution 2 (13(q) for a random-link model 50-city tour.
Results are shown for three different instances of the problem. In each case, hundred 2-optimal
tours were generated.

corresponding to the same instance {I;;}. The overlap g, is defined to be the fraction
of bonds common to both tours, without regard to the direction in which they are
traversed (see figure 26). To construct 2 1,(q) for a N-city problem, one first performs
several simulated annealing runs corresponding to different initial conditions. If M
tours have been generated, then ¥C, tour pairs can be formed which can then be
analyzed for overlaps. Typical histograms are shown in figure 27.

Another quantity of interest is the bond frequency distribution p(f). In a given
instance of a N-city tour, N(N — 1)/2 inter-city links or bonds are possible.Ina sample
of M tours say, not all these bonds will make their appearance. Suppose now that
bond i occurs N; times. The relative frequency f; for its occurrence is then (N;/M).
The distribution p(f) is defined as

P() =T/ = 1) | (55)

A typical result from a numerical study is shown in figure 28.
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Figure 28. Bond frequency distribution p( 1) for one instance of a random-link model 50-city
tours. Computation is carried over a set of hundred 2-optimal tours.

The moments of p(f) are related to overlaps. For example,

a=y Sy || A1) (56)

Similar expressions may be written for higher-order overlaps involving, 3,4--- etc,
tours. :
Guided by numerical results, Kirkpatrick and Toulouse (1985) suggest the ansatz

p(f)=Af "+ {N(N = 1)/2— A/ —)}5(f) (57)

where 7 < 1 and A are suitable constants. They remark that this form for p(f) implies
that only a finite number of bonds per city participate in the locally stable solutions
of a TSP, a hypothesis which suggests intriguing heuristics for restricting the search
for an optimal solution of the TSP.

Tests for ultrametricity have also been performed. Basically one generates M
tours corresponding to a given instance, and then computes overlaps q,, for all (,
B) combinations (of course, « # f). If the space of overlaps is ultrametric, then the
triangles formed by ., q;, and q,, will be either equilateral or isosceles (with the
third side being larger than the other two). Representing the shorter overlaps along
the x- and the y-axes, one obtains distributions as in figure 29 from numerical studies.
Certainly there are strong suggestions of ultrametricity.

One can now take stock and summarize as follows: For finding answers to specific
instances of the TSP, we must continue to rely on available algorithms. The injection
of annealing into such algorithms has undoubtedly improved matters compared to
what obtained before. Thus one can not only escape local minima but also converge
to a “reasonably good” solution fairly fast. Of course getting at the truly optimal
solution is a different matter, and it is safe to assume it will elude detection since the
problem belongs to the NP class. On the other hand, given the existence of elements of
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Triangle statistics for hundred 2-optimal 50-city tours. As explained in the text,

overlaps g,, are first computed. Next one considers the middle and the smallest sides of
overlap triangles, and plots their distribution. Perfect ultrametricity would yield a 2-D peak

along a 45° line. Our results show a hump, indicative of partial ultrametricity.

Figure 29,

solution obtained as described above will be only

marginally higher in cost compared to the truly optimal one, and therefore acceptable.

frustration in the TSP, a solution degeneracy is natural, whence it is meaningful to
.Thus, at the practical level, the worst case becomes an academic issue.

claim that a ‘reasonably good’

As far as statistical mechanics is concerned, it enables one to look at the family
of solutions as a whole and get a feel for how the configuration landscape changes

as the parameters defining an instance are varied. For instance, there are the

plasticity” of the landscape, a knowledge of which
gardening is even more important in the design of

3

fluctuations in Py, 1(g) which give some measure of these changes. Kirkpatrick and

Toulouse (1985) refer to this as the
In the examples cited thus fér; there has been a flow of ideas from the spin glass field

to others. We now discuss a case of reverse flow in which an optimization strategy

would permit “gardening”! Indeed,
memories, as we shall find in § 7.

4.6 Feedback to spin glass
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Post office

Street ‘ ij

Figure 30. The Chinese postman’s problem. For explanations, see text.

derived from graph theory has been exploited to obtain a knowledge of the ground
state of spin glass. Two studies of this nature have been reported (Bieche et al 1980;
Barahona et al 1982). In the former, the ground states of a quenched random Ising
system have been studied by mapping into a suitable matching problem of graph
theory. The latter paper also employs a similar strategy, and, being simpler to review,
will be discussed here.

Barahona et al are interested in the ground state of a 2D Ising system (square
lattice) with nearest-neighbour interactions. The exchange coupling J;; has a probability
x for assuming the value — J and (1 — x) for taking on the value + J. Barahona et al
noted that this problem could be mapped onto a problem in graph theory, known
as the Chinese postman’s problem. The latter has been solved, and the algorithm
developed for this is now made use of to obtain results for the spin glass problem.

The Chinese postman’s problem may be stated as follows: A postman delivers mail

" along a set of streets represented by the edges of a connected graph G. He must go

along each street at least once in either direction. He starts from the post office (one
of the nodes of G), and returns to it after delivering mail. If required, he may traverse
the same street twice (see figure 30). The question is: What is the shortest possible
route? The problem was posed by the Chinese mathematician Mei-Ko Kwan (1962)
and solved by Edmonds (1965; see also Edmonds and Johnson 1973).

To proceed further, it is convenient to go back to the 2D spin glass problem posed
earlier and cast it in a form suitable for our present purposes. Let us first introduce
the definitions ‘

W++ = ZJU When Sl'= ‘+‘1 and S]= +1

i

W—":: ZJU When S1=_1 and S_]= "“1
<>

W*~ =Y J,; when S;=+1 and S;=F1. (58)
Giid
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The Hamiltonian

H=—3 JS:S; (59)
<y
" can then be written

H=K-2W*~ (60)
where .
K=Wtt+ W -+ w*- (61)

and is a constant. From (60) we notice that finding the ground state of # reduces
to minimizing W™ ~. This problem is known in graph theory as the problem of finding
a minimum weighted cut. The Chinese Postman’s problem assumes a similar form,
whence our interest in it.

Contact must now be made with graph theory, for which the following example is
useful. Consider a triangle ABC with Ising spins at the vertices. The values of J; are
taken to be as in figure 31. We now regard ABC as a graph G and construct its dual
G', first representing the regions of G by nodes as in figure 30(b). The dual graph G’
is now completed by drawing the appropriate bonds i.e., by connecting the nodes of
G’ such that there is one bond (jj) in G’ for every edge (ij) of G.

Now there are 2° =8 spin configurations possible in the G we have considered,
some of which are shown in figure 32, together with the values of . Declaring an
edge of G to be a cut if it connects anti parallel spins, we also show in the figure the
cuts corresponding to the various cases. A quasi cycle is that part of G’ relevant to
the cuts. These are also shown. The central item of interest is the violated edge which
is an edge ij of G for which the spin alignment is not consistent with that demanded
by the sign of J;;. The violated edges are also shown in figure 32.

Focussing now on the quasi cycle, for a cycle Q, a bond ij of Q is said to be violated if

Ji;;>0 and ijeQ
Ji;;<0 and ij¢Q.

A

-5 +3

G | G’

Figure 31. Three-spin problem in graph theory language. The Ising spins are at the vertices
A, B, C of a graph G. The latter divides the plane into 2 regions, representative points of
which are shown by the open circles. The dual graph G is constructed by linking the open
circle as shown. ‘
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Spin config. Cuts Quasi—cycles H u(Q)

No cuts  No quasi—cycles -4 5

SN

N
NS L

\

D>

Figure 32. Graph-theoretic approach to the optimization of spin configuration. For
explanations, see text. ' ‘

Further, let
x;;(Q)=1if (if) is violated
=0 otherwise.

With these definitions, the problem of minimizing #° can be shown to be equivalent
to minimizing :

U =31yl G

In figure 32 the values of U(Q) are given, and they are found to order the same way
as do the values of # for the various spin configurations. In other words, minimizing
# is the same as finding the minimum weighted quasi cycle in the dual graph G'.
The latter problem can be solved by integer programming, as has been done by
Edmonds. It is this method which has been exploited by Barahona et al for studying

~ the ground state of the 2D Ising lattice. By analyzing the problem as a function- of

the parameter x (related to the probability of the exchange integral being positive),
they have been able to highlight many interesting defect structures in the ground state.

5. Applications of simulated annealing
Besides TSP, simulated annealing has been applied to several other optimization

problems, of which a sample will now be presented.
Earlier we discussed the drilling of holes in a PCB. Siarry and Dreyfus (1984) have
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disordered ordered

Figure 33. Layout of electronic components on a PCB, viewed as an order-disorder
transformation, :

attempted to use simulated annealing for the layout of the PCB. Traditionally, such
layout is done using ECAD (electronic computer-aided design). However, these
methods are wanting in some respects, which provided the motivation for the work
by Siarry and Dreyfus. These authors view the problem as a disorder-order
transformation (see figure 33). The components are treated as particles, and a suitable
energy function is defined which is dependent on the lengths of the connecting strips
and/or the crossing count. The high-temperature phase corresponds to a “liquid” of
components while the low-temperature one corresponds to the properly laid out PCB
wherein two electrically independent connections must not Cross.

A one-shot phase transition as described above and leading to the desired layout
remains at present an ideal; what has presently been achieved is a two-step design
procedure which is conventional but different to the extent simulated annealing has
been built into each step. In the first of these two steps, the components are dispersed
across the PCB area in some sort of an optimal way, while the second step involves
making actual connections between the various components via short, simple and
straight paths. With proper routing, the total wire length would be a minimum.

Figure 34 illustrates how this works. There are twelve components, and these must
- be organized in a 3 x 4 array such that the total interconnection wirelength is a
minimum, One starts with an arbitrary initial configuration. The Manhattan wire
length L between two points (x1,y1) and (x,,y,) of the system is defined as

Lzlxz"xll'*'b’z—.}’l,- | (63)

The energy of the system is defined as an average Manhatten length of all the N wires i.e.
N ,
E=(N)Y L. | (64)
i=1

The aim now is to make E as small as possible which, naturally, helps in keeping
down communication delays. It is in optimising E that simulated annealing is used.
The computational effort required is measured by the number of linkage configurations
explored. Whereas the total number possible is around 5 x 102, the minimum in
figure 34 could be reached in about 22 x 10* attempts. :

Some of the results bbtained by Siarry and Dreyfus are shown in figure 35. Starting
at a high temperature, the system is slowly cooled to the working temperature T.
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Figure 34. Placement of twelve components by minimizing the wire length. (a) shows the
initial placement of the 12 components in an array. The energy corresponding to this is
E = 469. After optimization, the configuration which emerges is shown in (b). Its energy is
about half that of (a) (after Siarry and Dreyfus 1984).
T T T Y T T T
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I 1 1 1 1 1 1
50 100 200 500 1000 2000 5000
TEMPERATURE

Figure 35. Average energy (dots) and minimum energy (arrows) assoicated with circuit
layout, as a function of temperature (after Siarry and Dreyfus 1984).
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the physical circuit design. Parts of the circuits would have to be compacted into
chips and custom built, (apart from the standard, off-the-shelf chips used in the

is some optimization involved, against a background of conflict of interests. After
-considering several illustrative examples of the various problems, they stress (for the
first time) that in optimization problems with built-in frustration, there are always
several, “near-optimal” solutions, all equally good and acceptable; therefore, it is not
very fruitful to search for the notional, absolute minimum,

Several applications of simulated annealing have also been reported from the Los

(which, naturally, would involve several components/subsystems) which would
perform as closely as possible to the originally laid down specifications. Design is

curve. Incidentally, design evaluation ie, evaluating the performance of an already-
designed system, is the converse of design mapping, and is better defined.

The Los Alamos optics group is working towards an intelligent lens design program.
It will have two parts, one dealing with learning from previous experience and the

the usual recipe is employed (Bohachevsky et al 1986) i.e. the Boltzman probability
is modified from P = exp(—Af/T)to P = exp(— Af*|f1¥/T) where T is the temperature
and Af the change in the original cost function /5 consequent to a small displacement.
The quantity g is an arbitrary, negative number. The above modification effectively
decreases the probability of accepting a detrimenta] step, as the random walk
approaches the global minimum (assumed to be zero). The new algorithm is referred
to as generalized simulated annealing.

As application of interest to users of synchrotron radiation has been reported from
Stanford University (Cox and Youngman 1985). This concerns the design of a device
called the undulator in which the electron traverses a wiggly path, and in the process
contributes to enhanced luminosity of the emitted radiation. The undulatory motion
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is effected by a periodic array of (SmCo) permanent magnets. The problem is that
the magnets (numbering 240) are not identical in characteristics, and the question is
how should they be organised so that the electron trajectory through the undulator
is as close to the ideal as possible. Electron trajectory control is crucial, since even a
few percent deviation from the ideal can cause a loss of the photon beam. The problem
has been tackled by defining a suitable cost function and optimizing the design to
minimize the cost, so that minimum cost corresponds to minimum distortion of the
electron trajectory with respect to the ideal. The brute force approach of course is to
try out all the possible magnet configurations which, however, is impossible since

‘there are ~ 103°° possibilities to be scanned. Simulated annealing was therefore

tried, and it gave acceptable results after 15 million tries lasting ~ 3 hours on a VAX
11/780. :

Mention may also be made of a war game application (Bohachevsky et al 1987)
in which an intercontinental ballistic missile attack is assumed to take place and the
defender has to deploy his protection resources so as to maximize the survival of his
assets. The authors remark that evaluations could be performed in ~ 5sec in a “high
performance general-purpose computer. Such a time is sufficiently short to provide
real-time assistance in battle management.” We cite this example merely to point out
that simulated annealing seems to be useful both in peace and in war!

6. Optimization strategies from the biological world

Biological evolution provides perhaps the ultimate example of a complex optimization
problem. In the biological language, the Lin-algorithm may be described as a method
in which one tries random mutations (alteration) of a trial solution and then selects
the outcome if it is a fitter (cheaper) solution. This of course is done repeatedly. In
the same language, simulated annealing may be described as a method which allows
acceptance of unfavourable mutations with a finite probability. Independently, there
has been interest in genetic strategies which address themselves to selecting the fittest
species. Brady (1985) has applied such strategies to the TSP and reported improved
performance over simulated annealing.

Brady found that the best performancé was obtained with a method analogous to
gene swapping during mating. Figure 36 illustrates what gene swapping means in
our context. Here (a) and (b) show two tours, both containing the same segment
(A..... G), though the cities in the segment are visited in different order. Suppose the
distance for the sequence ABCDEFG is smaller than for the sequence ACBDFEG.
This means tour 2 can be shortened by replacing the segment ACBDFEG by
ABCDEFG (see figure 37 (c))- |

Brady has carried out several studies on a 64-city TSP. On a IBM 3081 D, he
found that his strategy after 1sec CPU time yielded a better answer than simulated
annealing after 20,000 Monte Carlo steps (involving 5-9 sec of CPU time). He also
notes that the bio-strategy may be ideally suited for parallel processing. Commenting
on Brady’s work, Bounds (1987) has remarked that there are not enough grounds as
yet to conclude that simulated annealing is inferior to bio-strategies. Even if the latter
appears to perform better for 64 cities, it is not certain that it would continue to do
so for larger problems. '
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7. Neural networks

7.1 About neurons

In the world of popular science, the term electronic brain is often used while referring
to a computer. In reality, computers as we presently know them, work in an entirely
different manner as compared to the human brain. While a modern supercomputer
might execute with dazzling speed a numerical calculation that might take a human
centuries to perform, it cannot, as yet, do some simple things which a three-year old
can, like picking out a tree in a picture. True there are exciting developments like
parallel computers, artificial intelligence etc., but even so, it will be a long time before
the brain can be substantially mimicked.

Before proceeding further, some idea of the neuro-biological system is necessary.
The brain consists of ~ 10'? nerve cells or neurons. A highly schematic picture of a
neuron is shown in figure 37 wherein three regions may be identified: (i) the cell (soma),
(ii) the dendrites and (iii) the axon. The latter is the output channel linking to the
other neurons. The neural network is quite complex, with each neuron having links
with several thousand others through interfaces called synapses. In brief, a neuron
receives inputs into its dendritic arbor from other neurons, and provides an input to
other neurons via synapses on its axon. When a nerve cell “fires”, an action potential
(see figure 38) is produced. Whether a neuron fires or not is determined by the synaptic
potentials which appear at the input end. Thus, neural activity is the result of the
weighted integral of the activities of other cells, the weights being determined by the
synaptic efficiencies. The neuron fires very rapidly emitting many pulses but it turns
out that what is important is the frequency of firing or, equivalently, the average
action potential.

A model is now needed which will not only represent all the above processes but

A

+50

3 time

Action potential (mV)
)

|
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O

Y

Figure 38. Profile of the action potential produced when a neuron fires.
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will, in addition, represent some functions of the brain, like the recognition of
elementary patterns. Three areas of intense activity relating to the modelling of neural
networks pertain to (i) motor control, (ii) visual perception and (iii) pattern recognition.
While the brain is able to accomplish all the above, modellists confine themselves
(understandably) to one or the other aspect alone. Here only the last-mentioned of
the above three will receive attention.

A practical system of interest in’ the context of pattern recognition is the
content-addressible memory (CAM; see Tank and Hopfield 1987). This generally
refers to a system wherein 2 pattern or a collection of them is already stored. When
one of the patterns or even a corrupted version of it is presented to the system, it is
recognized.

A CAM-type memory device must, among other things, have the following
properties: .

i) It must be able to learn.

i) It must recognize a pattern previously learnt,
i) It must be noise tolerant.
iv) It must be robust.

Figure 39 illustrates these attributes. Later we shall illustrate some of these features
using models that have been proposed.

LEARNING

RETRIEVAL

(b)

Figure 39. CAM in the learning mode (a) and in the retrieval mode (b), (c). (b) illustrates
retrieval with a fuzzy input while (c) illustrates robustness,
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7.2 The Hopfield model

From the early forties, electronic engineers have been interested in the neuron as a
logical device. A neural network is an interconnection of such Jogical elements, with
additional features to represent synaptic efficiency etc. The key element of course is
the device itself, for which three different types of input-output characteristics have
been proposed as in figure 40 (see, for example, Lippmann 1987). Of these, that in
(a) is favoured by physicists while VLSI designers have preferred that in 40(c).

In 1982, Hopfield (1982) proposed a model of neural network with the basic element
having an input-output characteristic (i.e. the average neuron potential) as in figure
40(a). The governing rules of the model are as follows:

i) The total input h; to neuron i is given by
j#i |
where V;is the output of neuron j. The element T;; is representative of the synaptic

connection between neurons i and j, and is assumed to be symmetric ie. T;;= Tj.
ii) Neuron i responds to h; according to the rules

V,=0 if h;<0. (66)

inputs Ek; device > output

o

\

output output output
A 4s ﬂx

+1 +1] ' +1]

0 input / 0 input 0 input
— -1 -1 -1

(a) (b) (c)

Figure 40. Three distinct types of input-output characteristics assumed for the electrical
analogue of the neuron. The output denotes the average action potential.

- e
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The above rules are supplemented by the following evolution algorithm.

Step 0: Initialize as V(t =0) = X, say

Step 1: Calculate {V;(t =1)} as per rule (68).

Step 2: Continue, calculating {¥;(2)}, {Vi(3)},-+- etc,, until {Vi(n + 1)} = {Vi(n)} ie.
a steady state is reached.

There is a one-to-one correspondence between the model described above and a
lattice of Ising spins, as we shall see later. For the present we note that the steady
states of the Hopfield model represent the minima associated with the Hamiltonian

H = -—12 T; V.V, (67)
245

In the Hopfield model, neural activity corresponds to the evolution of the neural
circuit towards an appropriate minima, when suitably triggered by an input signal.
Later we shall discuss some of the details, including storage and retrieval.

Hopfield soon moved away from this model to another where the neurons behaved
as analog devices with characteristics as in figure 40(c) (Hopfield 1984). Let g;(u;)
denote the input-output characteristic (gain) of the neuron and g; ' (V;) the inverse.
There are no longer step responses, and u; lags behind the outputs V; of the other
cells because of input capacitances C; and resistances R;. The energy function is now
given by

1 i : Vi

#==-33 Ty V,-Vj+2(1/Ri)J. g7 {(V)dv (68)
i#] i 0

which is to be compared with (67). To understand the second term in (68), let us scale

the gain g replacing

Vi = g:(w;) by V= g,(Au;)
and
w;=g; (V) by u;=(1/2) g7 (Vy).

The variation of the gain curve with the scaling parameter A is shown in figure 41.
We observe that as 41— oo, the sigmoid curve approaches the step function and in
this limit, the second term of (68) becomes negligible.

The difference between using (67) and (68) is highlighted in figure 42. Whereas for
(67) the minirra are located at the corners of the hypercube, in the case of (68) the
minima could be in the interior. The ability to locate an attractor where one wants,
could be a useful feature while designing memories.

Going back to (68), let us assume for simplicity g;=g, R;=R and C;=C,
independent of i. The evolution equations then assume the form

(dug/dt)= —wfr+ Y, Ty | (69)

with ,
t=RC and V;=g(u;). (70)

- The above system works readily as a CAM. The desired patterns are learnt into
the computer by choosing the set {T;;}. The pattern presented to the system for
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V(u)
A
A>>1
A=1
A<l
> u

Figure 41. Variations in V(k) the input-output characteristic, as the gain parameter 1 is
varied.

Figure 42. Attractors with discrete and continuous neurons. If the neurons behave as Ising
spins, the attractors lie at the corners of an appropriate hypercube (in our illustration they
are at A and B). For analog devices, the attractors can be inside, e.g. at A’ and B'.

recognition is defined by the set of u’s at time t = 0. Given the T;;s and the set of
u’s at time t =0, the equations of motion provide a full description of the time
evolution of the network. Basically, they drive the system towards one of the attractors
(see figure 42).

7.3 The TSP on a Hopfield network

Hopfield and Tank (1985, 1986) have used a network as described above to study a
10-city TSP. To understand their work, let us consider a typical solution and represent

e
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it in matrix form as below.

]'—-)

A0OO0OODOOOTI1O0GO0O0

B OOOOOUOOGO OO0 1
C00000O0OGOTO
D1000O0O0O0O0O0 0
E00O0OOT1OO0T 0O x
F0O0O01000000 !
GO0OOOOT10000 0
HO1000000O0O0 0

1 001000000 0

J 0000O0O0O0T1LO00
TOUR:DHIFGEAJCBD (71)

Following Hopefield and Tank, we write the matrix elements as V,; where x labels
the city and j denotes the column index. Matrix (71) has 100 elements, and if each
of these can assume the values 1 or 0, then in all there are 2!°° such matrices possible
labelled by the 100-digit binary numbers ranging from (0,0,...0) to (1,1,...1).
Just as the binary numbers (000), (001),...(111) can be associated to the corners of a
three-dimensional cube (see figure 43), the 2*°° binary numbers introduced above can
be associated to the corners of a 100-dimensional hypercube. The matrix (71) (which
has only one non-vanishing element along any row or along any column) and its
various permutations form a subset of the hypercube corners.

Hopfield and Tank assigned the T;/s appropriate values for executing the TSP
and represented the gain function by

Vi =9g(uy) =3(1 + tanh(u,/u,)) (for all x, i) (72)
011 111
|
001 |
| 101
r
l
|
l
l
1010 | 110
7
re
~
~
000 100

Figure 43. Labelling of cube corners using binary numbers.
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Figure 44. Analog Hopfield network at various stages during the solution of the TSP. For
explanations, see text. ‘

- where u, is a constant (to be chosen suitably). The system is started off by setting
u,; = constant + du,;

where du,; is randomly chosen in the interval
—01ug<uy,; <0 lu,.

The system then evolves according to (69) until it reaches a steady state. Typical
snapshots obtained during such a coast down are shown in figure 44, where the linear
dimensions of the square are proportional to the output of the neurons in the array.
The final result in (71) makes sense since only one neuron is “on” in each row, and the
same is true of each column; such a situation represents a valid tour. With output
patterns as in figure 44(a), (b) and (c) there is a problem. However, although a precise
tour cannot be associated to such states, a qualitative interpretation is nevertheless
possible. For example, in 44(c), row C has appreciable values for both the columns
9 and 10, although a large one for 9 than for 10. One interprets this situation by
saying that at this stage, the network is still deciding whether city C should be in the
9th place or in the 10th. In other words, results for the intermediate stages are given
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a probabilistic interpretation by assigning relative probabilities in proportion to the
sizes of the squares appearing in each row.

7.4 VLSI implementation of neural network

The early version of neural networks was built using discrete devices. A breakthrough
occurred in 1986 when VLSI realizations of neural networks were reported for the
first time (Sivilotti et al 1986; Graf et al 1986). At Caltech, Sivilotti et al designed a
chip with 22 neurons (see figure 45). The size of the chip was around 6 mm x 6 mm
and it was fabricated with 4-micron MOS technology. The authors have reported
that a CAM with 289 neurons is under design. At AT & T Bell Labs, Graf et al have
fabricated a 256 neuron chip, using a combination of analog and digital VLSI
technologies plus a custom microfabrication process. Over a hundred thousand
resistors, each with a value of a few megohms were necessary, and these could not
be implemented with standard CMOS technology.

45(a)
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FRLELIRRRER
45(b)

Figure 45. VLSI designed at Caltech (a) and at AT & T Bell Labs (b) (after Sivilotti et al
1986 and Graf et al 1986).

The Bell Labs chip is a candidate for use in an image processor. The circuit
implemented has a fixed pattern of resistors and therefore the stable states are frozen
in once the fabrication is done. A memory chip with programmable synapses has also
been designed but it was found that the introduction of flexibility drastically reduced
the number of neurons.

7.5 Statistical mechanics and neural networks

The study of neural networks from an electrical engineering point of view is several
decades old. Interest of physicists in this subject is of more recent origin, dating back
to the advent of the Hopfield model. The prime reason for this interest is the strong
similarity (in some respects) to the spin glass, as also the ability to study some of the
equilibrium properties of these networks via a statistical mechanical approach.

As already mentioned, the models of neural networks which physicists have been
considering deal mostly with pattern recognition. The latter involves three stages
namely, (i) learning, (i) storage and (iii) retrieval given an input, which may even be
partial or noisy. Of primary interest are (i) the storage capacity, and (ii) the ability
to retrieve stored information with as little error as possible.

A fair amount of (theoretical) work has been done on these subjects during the last
five years or so, and broadly speaking, they deal with either non hierarchical or
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hierarchical models. Each model centres around a particular learning scheme, and
the objective is to achieve as large a storage capacity as possible, in addition to
minimum corruption while retrieving. In some instances, the learning prescription
has been chosen so as to mimic aspects of biological reality.

7.5.1 The Hopfield model again: We now go back to the Ising version of the Hopfield
model i.e. (67) and, reverting to standard notation, write J;; in place of T;; and S;, §;
instead of V;, 'V;. Understandably, this version has attracted much attention in the
physics community. '

In this model, the Ising spins play the role of neurons and the J;;’s the role of the
synapses. In the virgin system, all J/’s are equal to zero; this is the tabula rasa
condition. Patterns are now learnt by the network using the so-called Hebb learning
rule (Hebb 1949; Cooper 1973). A given pattern {* is described by the states of the
N Ising spins, where N is the number of neurons in the network. Given the tabula
rasa - type initial condition, the J;;'s are obviously all equal to zero to start with. As
patterns are learnt, the J;;’s get progressively modified and in this way the image of
the patterns is stored in the synapses. According to the Hebb rule, when the uth
pattern is learnt, it modifies the (ij)th synapse by an amount ({#¢4). Thus, if p patterns
are learnt, the synapse strength is given by

Ty= 3 00 73

Toretrieve a given pattern, one must feed an input corresponding either to complete
or at least partial information concerning the pattern to be retrieved. One then expects
the desired pattern to be retrieved by the dynamic evolution of the spin systems.
However, the Ising model has no dynamics of its own i.e., the spins have no equations
of motion. It is customary therefore to imagine that the spin system is in contact with
a heat bath capable of flipping spins between the + 1 and the — 1 states (Glauber
1963). The spin state {S;} of the entire system now becomes time dependent, performing
a random walk in the N-dimensional configuration space. The temperature of the
heat bath is a measure of the stochastic noise in the dynamics. In the limit of zero
temperature, the dynamics consists of every spin §; flipping to align itself parallel to
the local field h;(t) i.e.

Si(t + dt) = signhy(t) = sign ) J;;S;(t). o (74)
i
Two possibilities now arise: (i) all the N spins are simultaneously updated according
to (74), or (ii) one spin out of N (chosen randomly), is updated as per (74) in each
step. The former scheme is referred to as parallel dynamics, and the latter as serial
dynamics.
 In the practical implementation of the Hopfield model, one first “teaches” the
patterns to the Ising spin network which is done by setting J;; according to the rule
given in (73). The p patterns are now stored in the exchange couplings. To retrieve
any one of this set, one presents an input set {S;(0)} to the network i.e., one adjusts
the Ising spins to conform to the input pattern and then switches on Glauber dynamics.
The network then evolves according to (74) until it reaches a fixed point wherein

St +dt)=S,(¢), for all i. | (75)




62 G Venkataraman and G Athithan

(d)

(e)

Figure 46. A (20 x 20) neural network of Ising spins was used for storing the pattern in ().
Nine other random-patterns were also stored. Subsequently, a highly corrupted pattern as
in (b) was fed. Using a parallel dynamics algorithm, the system was able to retrieve the
correct pattern in 4 steps.

The persisting pattern is the pattern retrieved. As Amit et al (1987) remark, “The basic
goal of the synaptic modifications is to create attractors for subsequent dynamic
processes, which are to retrieve learnt information”.

Figure 46 provides an example of retrieval carried out in the above fashion. A
pattern corresponding to a hut was stored in 20 x 20 network of Ising spins. Nine
other random patterns were also stored, making p = 10. The pattern in figure 46(b)
was fed as an input to the network, and the latter allowed to evolve according to
(74). Tt is observed that the spin state of the system converges to the learnt pattern
in 4 steps.

Amit et al (1985, 1987; see also Sompolinsky 1988) have explored in detail the
statistical mechanics of the Hopfield model, particularly with a view to assess its
storage and retrieval capabilities. Their results may be summarized as below. Firstly,
Amit et al have noted that the Hopfield model is exactly soluble. Its equilibrium
properties are succintly described by the phase diagram in figure 47. Here the x-axis
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Figure 47. Phase diagram for the Hopfield model. For effective operation of the memory,
the system must be within the shaded region. Further explanations are given in the text.

corresponds to a parameter o = p/N. There are several phase boundaries, implying
the existence of different phases. Of these, that marked Retrieval is an ‘ordered’ phase
and of interest for operating the network as a CAM .

To understand the phase diagram, let us first consider the case « = 0. This is the
unsaturated case i.e. p is finite while N — co. One wants to know whether there is a
phase transition as T is decreased from a high value. To answer this.question, Amit
et al study the free energy density given by

~B(B)= lim (N [ln Trexp(~ A£)1,,} 79

where [---],, stands for an average over the stored patterns {¢¢}. It is a quenched
average. The correlation of the thermodynamic states of the system with the embedded
patterns are the order parameters. The order parameter m is a p-component vector
with components

m = (1/N) Y. <S> ¢ . (77)

where ¢S;) is the thermal average of the spin at site i. Above T= 1, the system is in
the paramagnetic phase with m=0 but below T =1, states with non-zero m are
possible. There are several types of these, of which the most important is of the form

m =m(1,0,0,......0) . - (78)
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i.e. only the first entry is non-zero and all the (p — 1) remaining ones are zero. Obviously
one could also have equivalent solutions obtained by permuting the position of 1 as
also by replacing 1 with — 1; in other words, there are in all 2p solutions of the type
(78). These are called Mattis states, being related to the states known in a model of
magnetism called the Mattis model. Besides the Mattis states, other symmetric
solutions are possible having the form

m=m(1,1,...... 1,0,0,...... 0), (79)

where the first # components are unity and the remaining (p — n) are zero. Naturally,
one must also count the equivalent solutions. In addition, asymmetric solutions like

m = (3/8,3/8, 1/4,1/2,1/4,0,0,......0) | (80)

are also possible.

Amit et al show that between T'=1and T =0-461, Mattis states are the only ones
possible. Below T =0-461, symmetric states like (79) also appear and are dynamically
stable. From the memory storage point of view they are not important since they
represent a mixture of Mattis states (ie. a mixture of stored patterns); in fact they
are spurious states. At very low temperatures, some asymmetric states also appear
which are metastable. Summarizing, one could say that for « = 0, storage is possible
below T=1.

For achieving high storage capacity, one would naturally like to increase o.
However, the case o # 0 is slightly more complicated; but it is also interesting, as it
has linkages with what was discussed earlier. Specifically, the replica method becomes
necessary to handle the problem of configuration averaging, and one has to have
several order parameters. Firstly there is the magnetization defined by

m;=(1/N)[Z_CF<S.">]A , 81)
then the Edwards-Anderson parameter
q,m=(1/N)[Z<S€’SE’>]A (82)

and finally a parameter r,, related to the magnetic correlations [mhmy ], .

At this stage, one would have expected a Parisi kind of approach but Amit et al
prefer to respect replica symmetry since breaking that symmetry brings about only
marginal changes. Thus they suppose

m, =m’
Qpe=9q PFO
Yoo =T pF#0, (83)

and study the mean field equations. The phase diagram shown in figure 47 is the
outcome. Mattis-like states are once again possible, but with m < 1. Such states are
referred to as retrieval states. There are many phase boundaries in figure 47, and they
may be understood as follows. In the region marked retrieval, the states are global
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minima. Between the lines T, and T,, is a region where the retrieval states are
metastable. The spin glass phase is where retrieval states are unstable. Lying above
all these is the paramagnetic phase. T, is a first-order transition, and so is T,,.

1.5.2 Beyond the Hopfield model: The Hopfield model has many limitations, a serious
one being that correlated patterns are difficult to learn. To appreciate this, we first
note that perfect retrieval implies that given an input pattern (¥ to a network wherein
p patterns including {” are stored, the network retrieves {” via dynamical evolution.
In turn, this implies that

Y. J,;{ must equal £
J#i

Let us check if this is true. Using (73) we have |

1 J4 .
ZJUC}‘=1—V~Z Y L
Jj#i jrip=1
N

1 X 1
PR R WA

uEvI=

A upy
~{+ ZC; j;l“N'(CjCj)

n#Ev

={/+ 3, (i C,,(say). (84)

HEY
Here C,, is the matrix which describes the correlation or overlap between the patterns
learnt by the network, and unless this overlap is identically equal to zero, the retrieved
image would always be corrupted by some noise. While C,, vanishes in case the

patterns {* and (¥ are orthogonal, in the case of random patterns it is O(I/ﬁ )- In
practical applications, the stored patterns are seldom orthogonal or random.

Personnaz et al (1985; see also Kanter and Sompolinsky 1987) have suggested a
way of overcoming the above difficulty. They observe that the Hebb learning rule is
local in character i.e. each J;j depends only on the values of {* and ¢%. Locality of
learning certainly makes biological sense but, implemented in an artificial neural
network, it poses unacceptable limitations. Personnaz et al propose getting over this
difficulty by adopting a non local learning prescription. In this model,

p

.__1_ 3 wrvee—1
Jij - N ;42—-:1 ) Ci C_} (C )nv (85)

where C™* is the inverse of the correlation matrix introduced in (84). To see how the
above learning prescription facilitates cleaner retrieval than via (73), we switch to
matrix notation and first write

_Lr _Lio-igr
C=Ft7¢ and =1 (86)

where { is the matrix whose elements are the numbers {* and (7T is the transpose of
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¢. With the above notation we have
1 .
JC=NCC”1CTC=CC"C=C, (87)

showing perfect retrieval.

Learning rule (85) implies that the matrix C~! exists, which in turn implies that the
patterns {*’s are linearly independent. '

One of the desirable qualities of a neural network is perfect memory. This implies
that given an input pattern that has some resemblance to one of the memorized
patterns, the output is the correct and uncorrupted version of the concerned pattern.
It turns out that in the case of the Hopfield model together with the Hebb learning
rule, if the input is not sufficiently near to one of the memorized patterns, the network
can get so confused as to get into an asymptotic state which is far removed from
every memorized pattern. Parisi (1986) has a learning prescription which prevents
the output being in a state of total confusion. Basically, like in the Hebb rule, J;; is
modified everytime a new pattern is learnt. However, unlike in (73), one has

Jriljew — g(‘]?.}ld + C;H—lcgzi—l) ' (88)

where g is an appropriate nonlinear function such that J cannot become arbitrarily
large (or small) i.e. remains within bounds. What happens with (88)is that old memories
fade away i.e. only the last « N patterns are stored and the remaining ones are forgotten.
Thus storage beyond capacity (aN) is avoided, and so also is confusion.

Gardner (1988) also addresses the question of increasing the storage capacity. Her
point is that successful retrieval depends not merely on the existence of fixed points,
but also on the basins of attraction. A parameter k introduced by her dictates the
basin size; the larger the value of k, the greater is the basin size. |

In her scheme, learning is not by a formula but by a small algorithm. Let us assume
that one starts with a network containing no patterns at all, and wishes to store a
pattern {*. Gardner’s algorithm has the following steps. :

(1) Start with arbitrary values for J;’s, subject however to the constraints
(a) J;=0, for all i; (b) Y. J3=N, for all i. (89)
: Jti
| (2) Choose a positive value for k and define a mask
1/2 ‘ .
g = G[k(ZJ?J) -2 Ji,-Cf‘Cj-‘], (50)
j#i j#i

where 6[x] is the Heaviside step function.
(3) Compute '

AJ{§=8§‘C’;C5‘. (91)
(4) Next compute
Joew = JoI8 4 AJE, - 92)

g
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(5) Using the value of J;; as given by (92), go back to step (2) and carry through steps
(2)—(5) till & vanishes for all i.

Pattern {* is now stored. Other patterns can be added in a similar fashion. It may
be noted that when ¢ vanishes, we have

S >k, 93)
j#i
Gardner proves that provided (93) is satisfied, there exists a fixed point for the
pattern {¥.

We now turn to the physical significance of k. By using the replica method, Gardner
studies the dependence of «, the maximum storage capacity on k. The qualitative
behaviour is sketched in figure 48, and it highlights how «, depends on the correlation
between the patterns. For simplicity, it is assumed that all patterns have the same
magnetization m. Perfect correlation corresponds to m = 1 and no correlation at all
to the case m = 0. For sure retrieval, obviously the basin i.e. k must be large. As can
be seen from the figure, k can be made large only by paying a price i.e. by reducing
o, the storage capacity. For small k, Gardner’s prescription seems to do better, the
greater is the correlation between patterns.

As already remarked, the initial state in the Hopfield model is a tabular rasa. If
one takes this seriously vis-a-vis biological neurons, then the organization of the
synapses in an adult is the direct result of learning or as Toulouse et al (1986) refer
to it, the result of “direct instructive prints by the environment.” This seems a bit far
fetched, and it has been argued that the initial state of the synapses is already highly
structured and that subsequent evolution in the adult is mainly the result of suitable
modifications. In other words, learning is by pruning and selection.

A

b
>

Figure 48. Schematic plot of the relationship between storage capacity o, and the basin
size k, as deduced by Gardner.
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Toulouse et al seek to describe learning by selection, by analogy to the spin glass.
An energy function as in (67) is introduced but, unlike in the Hopfield model where
the cost landscape associated with the initial state is flat and featureless, the landscape
is now taken to be a complex one with valleys within valleys etc., as in the case of
the spin glass. Obviously this implies that the starting J;; are random, and indeed
Toulouse et al assume that the synapses have initial strengths of either +J or —J
with a random distribution.

Suppose a pattern is fed to such a system. The initial spin configuration would
then evolve via dynamics towards an attractor ie. towards the bottom of one of the
valleys already existing. In other words, the spin glass-like terrain offers scope for
storage. However, it might not be particularly useful in an “as is” condition but it
could conceivably made so by suitably modifying the synaptic strengths. Thus,
Toulouse et al suggest that the storage of pattern ¢* could by represented by the change
= ~ 94)
JN
The effect of the change (94) is to alter slightly the landscape, at least in so far as the
valley where the pattern (* rests. The basin of attraction is enlarged, probably at the
expense of other neighbouring valleys. Every pattern learnt causes a change a la (94)
and the synaptic strength thus undergoes a random walk with steps of length

~ (&J /\/ﬁ ). Concomitantly, the whole landscape evolves during the learning process.
Thus, starting from a hierarchical distribution of valleys, learning can be likened to
the pruning of a tree. Observe that in this scheme, the already stored information
influences the next event (in terms of the room available for the basin). Thus, a pattern
that is repeatedly learnt, has better retention possibilities compared to one learnt say
just once. ‘

Toulouse et al mention that they have carried out numerical studies to establish
the salient features of their model. No detailed results are reported. However, they
mention that for ¢ > 25 retrieval quality was perfect.

We turn now to hierarchical models (Dotsenko 1985; Parga and Virasoro 1986;
Gidas 1989). Among these, we can distinguish two broad categories: (i) those in which
information is stored and processed (during retrieval) in a hierarchical fashion, and
those in which the patterns stored are themselves hierarchial in character. We consider
first an example belonging to the first category (Gidas 1989).

Gidas does not consider neural networks as such but a problem in image processing.
As he describes it, his method “is based on a combination of renormalization group
ideas, the Markov random field modelling of images, and Metropolis-type Monte
Carlo algorithms. The method is efficiently implementable on parallel architectures,
and provides a unifying procedure for performing hierarchial, multiscale, coarse-to-fine
analysis of image processing tasks such as restoration, texture analysis, coding, motion
analysis etc.” Here we shall present to highlight the above model in our notation.

Basically, learning i.e. storage is done at a hierarchy of levels; naturally, retrieval
is also likewise. Consider a pattern (* that is to be learnt. Let there be (I + 1) levels
0,1,2,....1 associated with the learning process so that ¢#(=(©*) goes through the
sequence -

AJW =

Po Py P2 Pu—-1)
C(O)u__,c(l)u__,c(Z)u_, RN C(l)"- (95)

Each step p; in the above involves a coarsening procedure or what Gidas refers to
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as a renormalization transformation. In each step, there is a reduction in resolution
by a factor k, say. If there are N lattice sites in (%, there would be (n/k) in {™* and
so on. Thus /=1log, N where k is the scale of reduction. The sequence (95) converts
a given pattern into (I 4 1) patterns, and that at the mth level is learnt according to
the rule

T = {1/ fomn g | ‘ ©6)

In this way, patterns can be learnt and stored at a sequence of levels. As for the
coarsening procedure, many possibilities exist and Gidas discusses a few. .

Turning now to retrieval, consider an input ¢/, which could even be noisy. This
too is processed through various levels, the Ith one being given by

0(1)=P1—1P1—~2"'P00(0) | o7

where pg, py,..., etc. refer to the successive coarsening transformations. The Ith level
input ¢ is used to retrieve from among the images stored at the same level. Let the
retrieved pattern be denoted . By a suitable inverse transformation p*, one now
generates (71 je.

-1 = pk 3O,

In this way, by successively applying the inverse transformation, one recovers the
image 2(®. Under ideal circumstances, this would correspond to the uncontaminated
pattern whose noisy representative is ‘. It should be mentioned that issues like
storage capacity, ability to store correlated images, corruption in the retrieved images
etc. are yet to be studied.

Parga and Virasoro (1986) also consider encoding to be implemented in structured
layers. Their idea is that such a learning/storage scheme is advantageous when the
patterns to be learnt have interrelationships. The desirability of such a scheme becomes
evident when one considers say the requirement of identifying one’s pet cat, in a
collection of pictures dealing with other cats, besides those of the tiger, cheeta, leopard
etc.

The model of Parga and Virasoro borrows heavily from spin glass physics. While
they consider the existence of hierarchical relationship between the patterns stored,
they do not, unlike Gidas, store and retrieve in a layer by layer fashion. Instead they
merely renormalize or dress the J;;’s of the Hebb learning rule. The manner in which
this is accomplished is best discussed by considering a specific example.

Consider figure 49 where the “leaves” at the bottom denote the patterns to be learnt.
The tree structure indicates the hierarchical relationship among the patterns in a
notation that is self explanatory. Barring “Adam”, there are three levels. The self
overlap of a leaf with itself is denoted by g¢,; it will be equal to 1. The overlap between
two leaves derived from the same ancestor (in level 2) is denoted g,; g, is defined
similarly.

Given are the patterns corresponding to the leaves. Those corresponding to the
ancestors i.e. patterns {**, {'? etc. must be constructed from the information provided,
and for this a rule is needed. Parga and Virasoro propose that if {!! is the spin of
(' at site i, then

= (@i 4 (2. o 99)
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Similarly,

=+ 022 ©9)

and so on. These expressions can be generalized in a straightforward manner.
In the usual Hebb learning rule, we have '

Jij= Y0y
"
which would correspond to considering only the patternsin level 3. Parga and Virasoro

modify this rule, besides adding contributions from other levels. For the hierarchy of
figure 49 one would have, according to them,

NJy=JR + I + I | (100)
Here,

TP =20/, =123 | (101)

JP={1/qg;—q:)}" %(C?” — P -5, x=1,23 f=1,2 (102)

Jﬁ?’={1/(q3—612)}%(C?’”—C?”)(C?By—ﬁ“% =123 p=127y=12
(103)

Having learnt according to (100)—(102), retrieval is carried out as in the Hopfield model.

ADAM
1 =q 1 @ ¢ ) ¢ ) &
1
1 p ) V. ) .0 ¢ ‘82
{_11 ///% é__xz é,zx (_22 é‘ é.
2

1 =3
» ) OO0O0O0OO0O0O0OO0
=1 2 2 2 21 . 322
3 é.lll (IIZ <.121 {_122 (211 (212 4,2 1 €22 (,311 {31 (3 1 é,. |
Figure 49. An elementary example of a set of patterns with a hierarchical relationship. There
are three levels of relationship, the patterns to be learnt being at the level /= 3. All patterns

are deemed to be derived from “Adam”. g, , g, 45 are overlaps whose meanings are explained
in the text.
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Detailed statistical mechanical results for this model are not available, nor are
numerical results. However, Parga and Virasoro have noted that their system can
distinguish between spurious solutions belonging to well-defined categories of patterns
and spurious solutions that mix categories. The former one is not serious but the
latter one could be. As Parga and Virasoro remark, in the case of living beings,
distinguishing between prey and predators is more vital than dlstlngulshmg among
varieties of predators.

We now present a few illustrations of some of the above results. These are samples
of an extensive study in progress, to benchmark the different learning algorithms.
The detailed results of this study will be reported elsewhere. Most formal analysis,
especially of the Hopfield model, concentrate on random input patterns whereas one
would be more interested in storing and recalling non-random patterns. For this
purpose a method was derived to generate a set of patterns which had some
relationship among themselves.

The patterns were created as follows. To start with, the TSP was setupona 8 x 8
grid, and locally optimal tours were generated for different, randomly chosen starting
tours. These tours are then embedded into a 32 x 32 grid, whereupon the closed
contour corresponding to the tour now encloses many more grid points. The interior
points alone are now retained and the exterior points wiped out, giving a pattern.
One example of how such a pattern is generated is shown in figures 50(a)—(c).
Figure 50(d) shows a sample of a test patterns. In all, 1024 such patterns have been
generated for our experiments. As can be seen, there is considerable overlap among
the patterns.

The performance of the Hopfield model (i.e. with the Hebb/Cooper prescription)
is illustrated in figure 51. Here, all except one pattern stored were random, the
exception being one generated as described above. Results of recall with storage less
than and exceeding critical capacity «, are shown in the figure.

Of maximum interest perhaps are the results shown in figure 52. Unlike in the
previous example, here all the patterns stored were generated via TSP tours, and
therefore were presumably highly correlated. Samples of recalls based on learning
via different rules are shown in the figure. As can be seen, the Hopfield model fares
rather poorly.

7.6 Beyond Hamiltonian models
One feature common to all the models discussed so far is that in all of them,

The merit of this symmetry is that it permits a Hamiltonian to be constructed. There
are, however, strong reasons to believe that Nature favours neuronal asymmetry. It
is in this context that models which relax the requirement (104) are considered. Of
interest here is one due to Little (1975). This also considers a lattice of Ising spins
whose spin state {S;(t)} is monitored at times t =0, 1, 21,... etc. i.e.in time steps of
length . The spin states evolve according to the equation

p{N,(n+ 1)t} =3 W{N,(n+ 1)1|M,nt} p{M, nt} .' (105)

Here M and N are particular spin states, with {M,nt} denoting that M pertains to
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‘ Figure 50. (a) shows a locally-optimal travelling salesman tour over a square lattice of size
o E 8 x 8. This tour is now embedded into a square lattice of 32 x 32 as shown in (b). By retaining
. only the “interior” points, a pattern is created as in (c). A sample of nine such patterns is
shown in (d).

the time ¢t = nt. A similar meahing applies to {N,(n + 1)t}. p{M,n1} is the probability
of finding the system in the state M at time nt, and W{N,(n+ 1)t|M,nt} is the
probability for the system to go to the state N at time (n + 1)7, given that it was in

it
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Figure 51. Results of two recall-experiments, corresponding to two different storage
capacities. The patterns are taught to the network using the Hebb/Cooper learning rule.
Among the stored patterns, one is prepared as described in the previous figure while the
rest are random patterns. (a) shows the stored (non random) pattern. (b) is the noisy, input
test pattern. It has 25% noise. (c) and (d) show the recalls corresponding to a =01 (< a,)
and a =025 (<a,
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Figure 52. Results of recall as obtained with Hebb/Cooper, Toulouse, Personnaz and
Gardner learning rules. Results are shown for o =001 and « = 0-1. All the stored patterns
were generated as described in figure 51. They therefore had considerable overlap. The input
test pattern is the same as in figure 51 (b).
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M at time nt. The W’s obey the stationarity condition

W{N,(n + 1)t|M,nt} = W{N,1|M, 0} ' (106)
and the normalization constraint

3 W{N,t|M,0} =1. (107)

N
The transition probability «(N|M) per unit time for the transition M — N is defined by

W{N,t|M,0

o(N|M) =-—{—{l———l, (108)
and in the Little model it is given by

w(NIM)=eXp[—ﬁﬁ(NlM)]/gexp[—ﬂﬂ’(P|M)] (109)
where ‘ |

H(N|M)= =3 J;S{(N)S;(M). (110)

ij .

The meaning of S;(N) and S;(M) should be clear. Observe that S; and §; refer to
different times.

So far, no Hamiltonian has entered the picture although 5 (N/M) might look like
one. If J;;= J ;, the stationary states of the Little model can indeed be derived from
a Hamiltonian (Peretto 1984) which is of the form ’

Hopge= — (1/13)21{2 cosh(ﬁZJ,-ij)]. (111)

Amit et al (1985) have shown that the thermodynamic properties and the long-term
behaviour of the Little model (as described by (111)) are the same as those of the
(discrete) Hopfield model.

Passing reference may be made here about the relative merits of the digital and
the analog versions of neural networks. Incidentally, Hopfield and Tank have argued
strongly in favour of the latter. Getting back to the question of a comparison, we
have noted that in discrete models there could be a trapping in a spurious valley.
What happens in the case of analog networks? Here also the equations of motion
drive the system to lower energy states. However, the use of “continuous” neurons
smoothens the energy landscape and there are no shallow wells. The system can
therefore roll down to the bottom of a deep valley, with as much facility as can be
provided by simulated annealing to a discretized version of the system. Such a solution
(rolling down a smoothened slope) may not be optimal but “good” and therefore
acceptable. Indeed, biological systems may well be attuned to selecting “good”
solutions rather than optimal ones.

7.7 Neural nets — a parting overview

The subject of neural networks is vast and what we have reviewed is restricted to
areas where physicists have been active lately. Here it is pertinent to cite Grossberg
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(1988) who gives an absorbing summary of how, over the years, physics and physiology
became dissociated although giants like Helmholtz and Maxwell once studied both.
Much later, mathematics and physics began to penetrate physiology once again,
largely through models for various physiological processes. Perhaps the most famous
of these is the Hodgkin-Huxley model for nerve conduction. The point sought to be
stressed in the present paper is that experience in many-body theory and statistical
mechanics now appears to be quite relevant in the study of neural networks. One
anticipates that in the years to come, there would be inputs also from analytical
dynamics where large expertise has been accumulated concerning attractors. In short,
exciting and new vistas are opening up for physicists, wherein their knowledge could
come in handy (see, for example, Haken 1978, 1988) to achieve breakthroughs in a
frontier area like neural networks. In this context, it is interesting to note that the
European Economic Community has launched a multi-million dollar programme
called BRAIN (basic research in adaptive research and neuro computing), to promote
cooperation among biologists, computer scientists and physicists interested in neural
networks.
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