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Dynamics of a crystal containing a molecular impurity—I.
Rigid molecule approximation
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Abstract. The dynamics of a crystal containing a rigid, isolated substitutional
A molecular impurity is discussed using the Green’s function method. The dynamical
matrix for the problem is set up, and the various constraints on the force constants
are pointed out. The application of the matrix partitioning technique is then indi-
cated, and the possibility of a resonance mode arising from molecular librations is
pointed out. Comparison is made with the earlier work of Wagner, and finally the

relevance of the present formalism to the interpretation of a recent neutron scatter-
ing experiment is discussed.
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1. Introduction

During the past decade, extensive studies (both theoretical and experimental) have
been made concerning the dynamics of crystals containing simple point defects
such as substitutional impurity atoms, interstitial atoms and vacancies. As
regards molecular impurities, the situation is somewhat curious. Although a
considerable volume of experimental information exists (obtained mainly by
spectroscopic methods), the data have almost invariably been analysed using a
crystal-field approach, very little work having been done in treating the mole-
cular impurity problem along the lines of that for simple point defects. The
only notable work in this area is that of Wagner (1963, 1964), who has outlined
the basic formalism and applied the scattering technique to discuss some features
arising from the internal degrees of freedom of the molecule. Although Wagner’s
treatment is in a sense formally complete, many of the details are not spelt out,
and the one practical illustration he considers is somewhat oversimplified, be-
sides failing to satisfy some sum rules (as will be explained later). In this paper
we consider afresh the problem of an isolated substitutional molecular impurity
in a crystal, but restrict attention to rigid molecules. The route we shall follow
will be essentially that of Wagner but in terms of practical utility, the present
paper will outline a well-defined scheme for making numerical calculations for
realistic situations. In a companion paper we discuss the consequences of the
non-rigidity of the molecule. The results of this paper are no doubt contained
in the companion work. However in many cases where the internal vibrational
frequencies of the molecular impurity are far removed from those of the extern;il
modes (e.g. NHy* in KCI), the rigid-molecule approximation is adequate, an(.i
we felt it desirable to present these results separately to facilitate their ready

- ™Y -



176 D Sahoo and G Venkataraman

application, especially in view of the somewhat complicated nature of .the_second
paper La’ter we expect to report numerical calculations for a specific system,
and also explore the effects of rotational diffusion.

2. Brief resume of defect dynamics

The methodology for handling the dynamics of cr.ystals with Sir{lple poi_nt defects
is now well established (Maradudin ez a/ 1971) and it suffices to give a brief resume
to establish the basic notation. Our task then will reduce essentially to spec.:lfy-
ing the appropriate dynamical matrix for the problem on hand, and the various
constraints. Let us formally write the dynamical equation for the unperturbed crystal

in matrix form as ‘
LU= 0. ' 2.1
Later we shall amplify the structure of the square real-symmetric matrix L. and the
column vector U describing the particle displacements.  Assume (for simplicity)
that a single defect is introduced; the equations for the perturbed crystal can be
written as
L*U = (L —35L) U = 0, 2.2)

where it is to be noted that the U here is not the same as that in eq. (2.1). The
Green’s function G of the unperturbed crystal is defined by -

G=1L~ 2.3
while that of the perturbed crystal by

G* = L*1, 2.4
Relating the two is the well-known Dyson equation -

G* = G + G3L G*. 2.5

The usually required results for the perturbed crystal are the following:

(i) Frequency of modes which are perturbed by the impurity. Such modes
will comprise not only the out-of-band localized modes, but also in-
band modes including the so-called resonance modes.

(i) Change in the frequency spectrum Ag (w).

(i) The Green's function G* of the perturbed crystal.

(iv) Correlation functions (like the time-dependent displacement-displace-
ment correlation function) which are pertinent to a description of spectra
measured in experiments. Often these correlation functions can be
evaluated if G* is known.

The vibrational modes of the perturbed crystal can formally be classified into
two categories, stationary and non-stationary. Frequencies of the modes of the
former type are obtainable as solutions of the determinental equation

L (08 =[[1—-G3L| =0, (2.6)

and include the out-of-band local-mode frequencies.

. The frequencies of the
non-stationary modes are obtainable from ’

Re L (w* —i0) = Re[I1 — G (w? —i0) 8L (w2 —i0) || — . @.7)
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The change in the frequency distribution is given by

1 d
Ag (w)=Im 3N % In A (w? —10), ‘ (2.8)
where n is the 1.1umber. of atoms in the primitive cell and N the number of cells in
the representative unit chosen for applying cyclic boundary conditions. From
a knowledge of the solutions of eqs (2.6-8), the change in the frequency spectrum
can be calculated and can then be analyzed for 8-function like features associated-
with local modes and Lorentzian features associated with resonance modes
(Maradudin et al 1971).

The Green’s function G* of the perturbed crystal can be obtained by solving
the Dyson equation (2.5).  In practice, this is a difficult task but for the single
impurity problem such as we are considering, the matrix-partitioning technique
can be applied to find a solution. Later we will outline the partition technique
in relation to the present problem, in connection with finding a solution to eq.
(2.2). Theevaluation of G* can be done similarly using the partitioning technique.
Once the Green’s function for the perturbed crystal is known, the various corre- -
lation functions desired can be written down (Maradudin etal 1971).

Returning to eqs (2.6) and (2.7), we have tacitly assumed that the dimensionality
of L and L* are the same. In point of fact, however, two situations can arise
when dealing with simple point defects—one where there is no change in the
number of degrees of freedom on going from the unperturbed to the perturbed
system, and another where there is such a change. The case of an isotopic impu-
rity 1s an example of the former situation, and in this case L and L* will auto-
matically have the same dimensionality. On the other hand, in the case of
a crystal containing an interstitial defect, there is an enhancement in the number
of degrees of freedom over that of the host crystal, and a priori L and L* need not
have the same dimensionality. However, it is possible to define a L of the same
dimension as L*, In other words, one visualizes as a zero-order situation, a
hypothetical composite system consisting of the perfect crystal coexisting but not
interacting with another suitably defined system, the latter having the same
number of degrees of freedom as the extra degrees appearing in the perturbed
crystal. Switching on the interaction then leads to the fully perturbed system.
As we shall presently see, such an approach is:required for molecular impurities
since their introduction always results in an enhancement of the total number
of degrees of freedom.

3. Molecular impurity dynamics

We now address ourselves to the task of spellng out the structure of the matrices
in eqs (2.1) and (2.2) in relation to the present problem. SFarting with the
perfect crystal, we may write the equations of motion in the harmonic approximation

as (Venkataraman et al 1975)

W M (K) Ua (Ik) = 3 dop Uk, 1K) Ug ('K (3.1)
ﬁl’lc’

Here «, B are Cartesian indices, k the sublattice index and / the cell index. M (k)
is the mass of the atom in the kth sublattice, U (/k) is the displacement amplitude.
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In matrix form, eq. (3.1) can be written as
AU =(2M—¢)U =20 (3.1)

where M and ¢ are 3nN dimensional matrices and U is a column matrix with

3nN rows. _ ) ) . 1
Next we consider the perturbed crystal (i.e. crystal with a single substitutiona

impurity). For convenience we shall label the site occupied by the centre of mass
of the molecular impurity as /= 0, k = 1 and choose this site as the origin of co-
ordinates. The dynamical equations are:

Z(w Jap — Pap) Up' (01)—295 01, I'k’) Ug* (I'k’) = 0 3.2 a)
— 2 $45 (lk, 01) U (01) + w? M* (k) Us (1K)

~Z¢f{p(lk1k)U (I'k"y = 0. | (3.2 B)

P
Here the superscripts ¢ and r refer to translation and rotation respectively. Furthe;-
more,
M (k), for all Ik except /=0 and k =1
M (k) = {p, the molecular mass for /=0 and kA =1,

while § denotes the moment-of-inertia tensor of the molecule. Note that the

constants dag (/k, I'k’) could be different from the constants ¢ag (lk, I’k’) of the
unperturbed crystal. We shall write eqs (3.2 a) and (3.2 5) in matrix form as

o [ 2) - (] (5) o

Comparing eqs (3.1) and (3.2 a, b)) we observe that we have three more equations
for the perturbed crystal than for the host lattice, on account of the rotational
degrees of freedom. Referring back to eq. (2.6), we see that if we identify G
with the inverse of 4, then a problem will arise in forming the matrix product
G 5L since 8L like L*, can be expected to have a dimensionality (3zN -+ 3). This
difficulty may be circumvented by defining

L=ot (%) —(* sﬁ) =(* ) (3.3)

L so defined will be regarded as referring to a composite system consisting of a
“caged rotor™ coexisting but not interacting with the perfect crystalt. The
dynamics of the *“caged rotor” is described by the equation

w? QUr — érr Ur

Switching on the interaction results in the perturbed system,
matrix 8L being given by

fL=L—L*= ?L" o) = (3 ) + (2 by -5

D e D

(3.4)
the perturbation

* The extension of the above considerations to an interstitia

! molecular impurity (in which case
one has 3nN + 6 degrees of freedom) is straightforward.

g 4
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where
AM =M —M* (3.6 )
A" = ¢" —4¢, (3.6 b)

The force constants ¢, ¢*, 4 and ¢" as well as ¢ are subject to constraints
arising out of both infinitesimal translational and rotational invariance, and crystal
symmetry (Venkataraman and Sahni 1970, Venkataraman et al 1975). Based on
a systematic examination of these, the following constraints may be written down
for the force constant perturbation:

Apag (I, l'k’) = A ('K, 1), (3.7 a)

ap Uk, 01) = 5 (01, k), (3.7 b)

$ap (01, 01) = $52 (0L, 01). (3.7¢)
Translational invariance:

;"E Abag (lk, I'k'y = 0 for all o, B, /and k (3.8 a)

X dag 0L, 'Ky =0 for all a and B, (3.8 b)

l’kl

Rotational invariance:

dag (Ik,01) +, z Aty (I, I'K') €uguxy (k') = 0 (3.9 a)
for all a,f, ! and &,

¢ag (01, 01) +M§k’ ban O, I'k’) €ugy X, (I'K') = 0 (3.9 b)
for all « and B.

In the above, X (/k) is the equilibrium position of the vibration unit on the kth
sublattice in the /th cell, and «up, is the totally antisymmetric Levi-Civita symbol.
Additional constraints arising from the point group symmetry of the perturbed
crystal are:

A Tk, 1K'y =S Ak, I'k') S (3.104)
$ (01, Tk) = C (S) S¢™ (01, Ik) S* | (3.10 b)
¢ (01, 01) = C (S) S¢™ (01, 01) STC (S) (3.10 ¢)

where S is the matrix corresponding to the point group operation, the superscript
T denotes the transposed matrix, C(S)=] S|, and

Sx (k) = x (Ik)

Sx (I'k") = x (I'K).
From the structure of the matrix given in eq. (3.5), it follows using the above
results that

L™ (01, Tk) = C (S) S 3L (01, Ik) S 3.11a)
LY (Ik, 01) = S 8L (lk, 01) S* C(S) (3.11 b)

\
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LY (I, I'k’) = S 8L (Ik, I'k") ™. . (3.11¢)

The invariances in egs (3.7-11) are quite general and must not be violated by any
physical model assumed while making explicit calculations. In this context we
remark that the simple model proposed by Wagner (1964) of a spherically sym-
metric molecular impurity held in a cubic cage by tangential springs fails to satisfy
the sum rules of egqs (3.8, 9).

Attention can now be given to the solution of eq. (2.2). Remembering the
the definitions of L and 8L as given in eqs (3. 3) and (3.5) respectively, we can write
the Green’s function G of the * unperturbed system ” as

G™ O

G — ( o Gn) | (3.12)
where

G~ — (w‘z o) __(Il)“' —1 (3. 13 a)
and .

G' = A" = (w? M — )L, (3.13 b)
From eq. (3.2') we then obtain ‘

Ur - Grr ért Ut (3 . 14 ﬂ)

Ut — G (SL® 4 8L G 3L UE,  (3.140)

Observe that if the molecule is collapsed into an atomic impurity, then ¢, ¢ and
4™ vanish, upon which the above equations reduce to (Maradudin eral 1971)

Ut= G 3L U - (3.15)
Guided by this result, we write eq. (3.14 b) in the suggestive form

Ut = GU Lt U (3.16)
where

STt — SL¥ 4 SL" G™ L™, 3D

All the equations of the conventional formalism (Maradudin efal/ 1971) can

now be taken over to the present case by the replacement SL* — SL'. The matrix
multiplying U* on the right side of eq. (3.14 b) is of dimension 3nN. In practice
problem of dealing with 3nN simultaneous equations can be circumvented bs;
noting _that the impurity generally interacts only with a finite number of neigh-
bours in its vicinity. This enables one to identify a suitable ° perturbation
space” and employ the so-called matrix-partitioning technique.. Let p be thé
tota.l Izumber of atoms with which the molecular impurity interacts. The nomn-
vanishing region of 8L will be taken to be a sub-block 8l at the top left-hand
corner, having a dimensionality of (3p + 6), i.e. we will have (

d

Ly
SL — dI(S‘ NT,
00 3.184a)

D
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where for brevity we have defined d — 3p+6 and D=3aN+3 in indicating
the dimensions.

In turn, 81 will have the structure

3

ey
170 (ﬁrt
ol = Jy(qﬁ-tr 31“) I d (3.18 b)
<« —

d

where 81 is the reduced portion of SL,

The partitioning scheme of eqgs (3.18) and (3.19) can be applied to G and U also
as below:

d
“—>

d? g G12 1‘ .
G= ¥ G21 Gez) 1D
>
D

(3.19 g)

8

——>
+/G* 0O
g — %(0 gtt)Ta ' (3.19b)

¥
<
d

T

y |
U= ( 1)#; ] (3.20 a)
U2 .l, -

Ur 33
U, = (Ult) 1 s (3.20 5)
Used in conjunction with eqgs (2.6) and (2.7), the above scheme yields the follow-
ing equations for the perturbed frequencies.

(i) Out-of-band local modes and shifted in-band modes:

11 —g" (w?) 1" (w?) | =0 (3.21)
(ii) Resonance modes:

Re || 1 —g" (w? —i0) 81" (w2 —i0) || = 0. (3.22)

Similar application can be made in the evaluation of the perturbed function G*,

4. Discussion

It is obvious that a priori, one cannot comment on the nature of the solution of
eqs (3.21) and (3.22) unless they are supplemented by physical details such as
the values of the force constants, etc. However, as in the case of the atomic
impurity, one may speculate that there will occur an out-of-band local mode asso-
ciated with the centre-of-mass translations of the molecular impurity if the latter
is lighter than the atom it replaces (e.g. methane in solid argon). If, on the
other hand, the molecule is heavier, then most likely there will be an in-band
mode associated with molccular translations. In the case of a molecular
impurity in a diatomic crystal like an alkali halide, for e.)<amp1'e, the molecule may
be expected to perform something like an ““ optic vibration” in the cage provided
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by the neighbours. In addition, librational oscillations may'also;bt? expected,
(in all crystals) and if their frequency (as given by eq. (3.4)) lies within the Eostft;
spectrum, resonance may occur on account of the structure of the matrix g3l
in eq. (3.22). A more explicit demonstration of the occurrence of resonance
between the host frequencies and that of the caged rotor requires an examn.latlon
of the expression for /g (w). The exercise follows that already available in the
literature (Maradudin et a/ 1971), and does not require repetition. Wagner hqs
previously drawn attention to the possibility of such resonances but since in his
formalism the molecular displacement coordinates are not explicitly spelt out,
possible resonances specifically associated with librations cannot be easily identi-
fied. However, Wagner does identify such a resonance for this simple model,
which, as already noted, has some shortcomings.

Recently Walton et a/ (1974) have studied the librations of CN~ ion in KCl by
neutron scattering. In interpreting their data, these authors regard the libra-
tions as oscillators which are coupled to the host lattice vibrations (rather in the
manner in which phonons and photons couple to form polaritons), and plot the
dispersion curves of the “coupled modes”. The “ coupled mode” frequencies
are identified from peaks in the observed scattered neutron spectra which are
measured as a function of ¢, the wave vector transfer, and w, the frequency
transfer.

The librational oscillators considered by these authors are sketched in figure 1.
It may be noted that the frequencies ascribed to the oscillators are really transi-
tion frequencies associated with certain pairs of levels of the rotor which moves
in a highly anharmonic potential. By their treatment, these authors also impli-
citly take account of such effects as splitting of levels due to tunnelling which is
not possible in the classical treatment we have given. However, if one has an ion
which executes harmonic librations, then one can handle it via our formalism.
The latter can be exended to treat coherent neutron scattering along the lines
previously discussed by Elliott and Maradudin (1965) and by Dzyub and Koch-
marsky (1972). Such a calculation will, as noted previously, involve the defect
Green’s function. In this approach one can by pass the questionable concept of
dispersion curves in a crystal with defects and yet make contact with results of
the type quoted by Walton eral (1974). Essentially one would calculate the

scattered neutron spectrum as a function of ¢ and w, and this would have a struc-
ture of the type '

~ T (q, w)/[(102 — 2% (q, w))2 + w? (q) I'? (q, w)]

where w; (q) denotes the host lattice frequency for wave vector q for the jth
branch. Both 2 and I' depend on w, (q) and the defect Green’s function. The
yalue of  for which the scattered spectrum is a maximum for a given ¢ can be
1dentiﬁec¥ with the *“ coupled mode ” frequency. In this way one can analyze the
results rigorously without an appeal to the concept of dispersion relations in
perturbed crystals.

The case of a quantum rotor (which is what CN- appears to be) is more compli-
cated. Presumably in this case one must first construct the wave function for
th§ perturbed crystal by starting with the harmonic oscillator wave functions appro-
Ppriate to the host lattice, and the rigid rotor wave functions appropriate to the
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FREE ROTATION

HINDERED ROTATION

\ /

LIBRATION

Figure 1. Schematic drawing showing the potential experienced by a CN- ion in
KCl, and the energy levels associated with its angular motions. (Energy is given in
units of em™?). Also characterized are the nature of the rotational motions asso-
ciated with various levels. The “ angular oscillators” considered by Walton ef al.
are shown by vertical arrows.

isolated rotor*. The scattered neutron spectrum must then be calculated in terms
of transitions between the various perturbed states. Such a treatment would
enable the incorporation of quantum effects such as tunnelling.

5. Summary

In this paper we have given the explicit equations for the dynamics of a crystal
containing a substitutional molecular impurity. The approach followed is that
of Wagner but unlike him, we restrict attention to a rigid molecule. Further,
by analogy with the treatment used in the study of external modes in complex
crystals (Venkataraman and Sahni, 1970), we deduce the sum rules and other
constraints arising both out of infinitesimal as well as point group invariances,
a point on which Wagner does not dwell. These considerations, however, are
important for numerical work. We have also pointed out, from a consideration
of the solution, that the possibility exists of a resonance mode associated with

* Pandey (1968) has considered such a problem and Pandey and Agrawal (1968) have applied
Pandey’s results to the case of CN- in alkali halides. In our parlance, these authors have essen-
tially considered a crystal-field approximation.
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the molecular librations. Calculations are now in progress for NH,* in KCl, a
system recently studied by neutron scattering (Smith et al 1972), and the results
will be reported later. In the companion paper we relax the assumption of
molecular rigidity, and show how the present results can be obtained as a special

case.
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