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Dynamics of a crystal containing a molecular impurity—II.
Molecular vibrations included
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Abstract. The dynamics of a crystal containing a molecular impurity is discussed
with allowance for the effects of internal vibrations of the molecule. Cartesian co-
ordinates are introduced to describe internal vibrations, angular oscillations and
centre of mass motions of the impurity, and the displacements of the atoms of the
host crystal. Next the Hamiltonian is set up and the equations of motion derived.
In this process, use is made of Dirac brackets when dealing with coordinates having
redundancy and constraints. From the dynamical matrix, some of the familiar
results of the crystal-field approximation are recovered. The application of the

partitioning technique is then discussed, and finally comparison is made with
results of other approaches.

Keywords. Lattice dynamics; molecular impurity; internal vibrations; crystal
field approximation; Dirac bracket.

1. Introduction

This paper is a continuation of the preceding one (Sahoo and Venkataraman
1975, hereafter referred to as I), and addresses itself to the dynamics of a crystal
containing a substitutional molecular impurity with the assumption of molecular
rigidity relaxed. As mentioned in I, the only notable previous work employing
the Green’s function approach is that of Wagner (1963, 1964). Whereas he uses
the centre-of-mass translations and unspecified “ effective masses ” and “ relative
coordinates ” to describe the molecular degrees of freedom, we follow a more
traditional approach and introduce coordinates associated with centre-of-mass
translations and molecular rotations as in 1, and in addition coordinates for
describing molecular vibrations in a manner familiar from molecular spectro-
scopy (Wilson e al 1955, Herzberg, 1945). This results in an enlargement of the
dynamical equation (eq. 3.2) of I, adaptable for practical work. It turns out
incidentally that, in our approach, the formulation of the equations of motion
and thence the dynamical matrix requires a modification of the usual Hamilton’s
equations of motion. More specifically, the Poisson bracket in the equation of
motion has to be replaced by a different algebraic structure known as the Dirac
bracket (Sudarshan and Mukunda 1974, Dirac, 1964). The concept of the Dirac
bracket and its utility in the present problem are outlined in the appendix.
Although the Dirac bracket has been discussed earlier on several occasions in
the context of the formal structure of mechanics, to our knowledge this is the
first time it has been put to practical use.
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An additional objective of the present paper is to show how the well-known
crystal-field approximation can be obtained as a special case of the present formu-
lation.

The plan of the paper will be as follows.
In the next section we explain the notations and conventions introduced here

in addition to those already introduced in 1. Also discussed are the constraints
on some of the coordinates and momenta that arise in our formulation of the
dynamical problem. In section 3 we consider the detailed formulation and the
solution of the dynamical problem. We start with the Hamiltonian and then take
note of the various sum rules. Comparison with corresponding rules of I are
also made where appropriate. The equations of motion are derived next using
Dirac brackets wherever necessary. This is done in section 3.4, and the reader
unfamiliar with Dirac brackets would find it useful to read first the Appendix
before perusing this section. After deducing the equations of motion, a digression
is made and some of the familiar results of the crystal-field approximation are
projected out of the present formulation. The matrix partitioning technique is
then applied and results are obtained which represent a generalisation of those
of I. We conclude with a comparison of the results obtained here, with those
of other workers who have tackled the same problem but by othér methods. The
appendix gives a brief introduction to the subject of Dirac brackets, and illustrates
the methodology proposed with a simple example.

2. Notations, conventions, coordinate, frames, etc.
The notation and conventions to be followed in the present paper will generally
be the same as in 1. Certain additional clarifications are set forth below.

2.1. Notations and definitions

K : index referring to atom in the molecular impurity, « = 1,..., r.

ks : general notation for site index; in reality, « is relevant only
for the site /k = 01, which is the site assigned to the mole-
cular impurity.

m (x) : mass of xth atom in the impurity
po= gjm (x) : mass of the defect
m (lkx) : general notation for mass at site Jk«. Evidently,

m (k) — {m (); for 1=0, k=1
M (k); for I+ 0, and all k.

2.2, Coordinate frames

We will need 'three rectangular coordinate frames, especially for describing the
molecular motions.  Consider first the molecule in its equilibrium configuration
in the host cryst.al. Its centre of mass will then be at x (01), i.e. at the origin as
per the convention in I. During the motion of the molecule, a typical ato;n

n?.z]lly.move frc;m its rest position 4 to a new position B. The net displacement ZE
Wil In general be the sum of three effects - (1) the translation of the centre of mass
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of the molecule, (ii) the rotation of moleculs and (iii) molecular deformation, i.e.

internal vibrations. While the contribution of (i) to E‘l)} can be uniquely speci-
fied, it is not possible to do likewise for (i) and (iii). This is a well-known problem
in molecular spectroscopy (Wilson et al 1955) and we shall follow the established
practice by adopting (shortly) a reasonable scheme for apportioning the rotational
and vibrational contributions. In effect this will require three frames.

The first of these, called the unprimed frame, is the Cartesian system OXYZ
fixed with its origin at the site /k = 01, This is the frame in which all the dis-
placement components of the host atoms will be specified, as also the displace-
ments of the centre of mass of the defect. :

Next we consider the double primed system (see figure 1) 0"X"Y'Z" with its
origin at the instantaneous position of the centre of mass of the molecular
impurity and with its axes oriented parallel to OXYZ.

Lastly we have the primed system O'X'Y'Z’. The origin O’ coincides once
again with the centre of mass of the molecule. However the primed system
differs from the double primed system in that whereas the latter merely trans-
lates with the molecule, the former both translates and rotates.

The conditions defining the latter two frames will be enunciated after introducing
the notation for various equilibrium positions and displacement vectors. Paren-
thetically we may note that the unprimed, double primed and the primed frames
are sometimes referred to respectively as the inertial, space- and body-fixed systems
(Saletan and Cromer, 1971).

2.3.  Position and displacement vectors

Components of vectors in the three frames will be indicated with appropriate super-

v v y"

Aj «. ul(O1K)

x{O1K)

0 ~

Figure 1. Two dimensional representation of the inertial (O”X}/’ZZ, ”space-t{xeg
(0"X"Y”Z") and body-fixed (O’X'Y'Z’) frames. Observe tha't 0 X Y’Z Ixs’dtan’ve.
from OXYZ by a siniple translation (here along the x~dlreCthI.l)'. 'OXTZ” is
derived from O”X”Y”Z’ by a rotation about O°. A denptes the ethbnuxp posfxtl?ln
of a typical atom of the molecular impurity in the undistorted configuration of the

i isplaced position of the atom originally at A. The
crystal. B denotei; typical disp p e atom origially

net displacement AB can be regarded as the sum AA" + {\”A"+ A’B associated
respectively with centre of mass translation, rotation and vibration.
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no primes, single or double primes as required. The Greek indices

scripts, i.e., with .
for labelling the Cartesian components. Thus, for

a, B, g, v ... will be used
example,

ath component of the equilibrium position
of the atom in the site /k in the frame
OXYZ.

Xq (1K)

X4 (O1/K) . ath component of the equilibrium posi-
tion of the «th atom in the defect, in
the frame OXYZ. This quantity can
be written as

Xa (01"‘) = Xq (01) + x, (v) = X (K)-
2.1

Xo" (0lk) = x4" (x) . ath component of the position of the
«th atom in O"X"Y"Z", the position
having been arrived at starting with the
molecule in its equilibrium configuration

—>
and translating it by OO".

x, (01x) = x4' (x) : ath component of the position of the
xth atom in O'X'Y’'Z’, the position
having been arrived at by first trans-
lating the molecule rigidly from O, to O”
and then rigidly rotating it by the same
amount O'X’'Y'Z’ is rotated with respect
to O"X"Y"Z".

Displacements are defined by
Ug (k) = rq (k) — x4 (lkk) (2.2)
g () = 1y’ () — X' () | 2.3)
As in 1, we shall write #* (/k) for the translational displacements. Then

g (Th) = ug® (Ik) + 8,,8;; X (contribution from molecular rotations and
vibrations)

= uat (lk) T 8lﬂskl fu" AX" (K) +u’ (K)]a.’ (2. 4)

where we have written #” instead of #’ to emphasize that the displacement is specifi-
cally due to- molecular deformation. The coordinates in terms of which we shall
be formulating our dynamical problem are {u,’ («)}, {u} and {u,® (lk)}. There

will thus be in all 3 (- + 2N 4+ 1) coordinates; the independent degrees of freedom
howe\{er are only 3(;‘.—{— nN —1) in number so that we have six redundant
coordinates. Constraints of eqs (2.9, 11) in fact specify this redundancy
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2.4. Summation convention

For convenience, we shall, unlike in I, adopt the summation convention, i.c.,
summation over repeated (dummy) indices will be assumed. Exceptions will be

indicated by attaching a hat over the concerned index.
Example :

m (k) W’ (x) 1mplies 5 m («) " (x)
K
m (k) w’ (k) implies no summation over «.

2.5. Time derivatives

Consider a vector s () which is dependent on time. The time derivative (ds/dt)
becomes ambiguous when we are dealing with coordinate frames moving with
respect to each other unless we specify in which frame the time derivative is evalu-
ated. There is in fact a relation connecting these derivatives (Saletan and Cromer
1971, p. 152, Goldstein 1952, p. 132) which is

S¢ =Sz +w A S 2.5)

where the subscripts refer to space- and body-fixed frames, and w is the instan-
taneous angular velocity of the body-fixed frame with respect to the space fixed
frame. This relation will be made use of in section 3.1 while writing down the
expression for the kinetic energy. h

2.6. Conditions defining the two primed frames

The definition of the double primed system is based on the fact that the origin
coincides with the centre of mass of the molecule. This leads to

m (k) X" («) = 0. (2.6)
The origin O’ of the single primed system is defined likewise. ‘We have
m ()’ (1) = 0.

Since

m (1) x' (x) = 0,
we also have

m (k) 0’ (x) = 0. 2.7
Besides loéating the origin, we must also specify the orientation of the axes in thé
case of the frame O'X'Y’'Z’'. This we do by following Wilson ef al (1955) and
imposing the condition

m (<) x' (1) Ar' () =0.

As pointed out by these authors, “this is almost but not quite equal to stating
that there must be no angular momentum with respect to the rotating system of
axes . The above condition can also be written as

m () X' (1) A 0 (k) = 0. 2.8)
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Evaluating the time derivatives of eqs (2.7, 8) in the unprimed frame and using
eq. (2.5), one may derive two more equations:

m (x) [W° ()]s = O,
m () X' (1) A T (1)]g = 0.

Later the subscript B on u’ (x) will be dropped. Denote m (®) [w’ (&)]; as
p’ (x); this represents the momentum of the «th atom in the primed frame. Using
this notation, we now introduce the following functions whose vanishing provides
us with the constraints defining the rotating frame O'X'Y'Z’.

B = m () 0 (), | (2.9)
g Zp (1), (2.10)
07 = m () x' (1) N\ ¥ (%), 2.11)
0 = X' () A B (). 2.12)

As explained in the Appendix, the 8’s defined above allow us to calculate the
Dirac brackets required while writing down the equations of motion. Since we
shall be working in the harmonic approximation, eqs (2.11, 12) can be simpli-
fied further. For instance, introducing

X (k) = X' (1) + W A X7 (1)
into eq. (2.11), we obtain
B = m () X" () A W (<) + O (u A u)
~ m (k) X" (k) \ w0 (x)
= 6" (say). ' (2.13)

The second order term in the displacements is dropped since this would contri-
bute anharmonic terms in the equation of motion. Similarly,

0 ~ X" () A DY () = 67 (say). | 2.14)
2.7. Force constants

On the basis of the coordinates we have chosen to work with, it is clear that the
force constants we would have to use would be of the type daj; (x, x'), Zfﬁ (v, Ik),

$ap («, 01) ... etc. (Remembering that the atom index is pertinent only to the
site 01, we shall frequently write Olx, as simply «; further the x index will often
be dropped with respect to the sites /k = 01 as it is irrelevant). Since in the ulti-
mate analysis all the forces arise from interatomic interactions, one would like
to be able to express the above force constants in terms of the Born-von Karman
constants which we know how to express in terms of two body potentials (see,
for example, Venkataraman et al. 1975), p. 105. The interrelations between our
force constants and the Born-von Karman constants will be given in the next
section. For the present a few comments about force constants need to be made.
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Firstly, the force constants ézp (x, «’) that will enter our calculations will not
be the same as those pertaining to the free molecule. Even if the forces between
the different atoms in the molecule are unchanged upon entry of the molecule
into the crystal, the 3r dimensional matrix ¢V appropriate to the embedded mole-
cule will not be the same as the corresponding matrix ¢‘@" associated with the
free molecule. While the force constants for « == «’ could be the same in both
cases (provided the molecule has not distorted upon entering the crystal), ths
self terms ¢ug (k, «) and $&3"™ (k, ¥) will not be so. This is not difficult to
sec if we recall that the self force constant is essentially determined by the combined
pull on atom x when it alone is displaced from the equilibrium position and all
other atoms are clamped at their respective equilibrium positions. Since upon
embedding the molecule into the crystal the host atoms will also participate in
the combined pull, one would evidently have

dug (i, 1) 7 4™ (x, ).

The second point is that some force constants will enter our dynamical matrix
as linear combinations. Such combined constants will be denoted with a tilde

on top like o3} (see for example, eq. (3.12)).

Thirdly, the constants gb&‘,'g (x, ') can be deduced from the force constants
quoted by spectroscopists provided the molecular structure does not change upon
introduction of the defect into the crystal. Now spectroscopists usually work
with the so-called internal coordinates and the associated valence force constants.
For our molecule there will be 3r-6 internal coordinates S (¢) (assuming the
molecule is non-linear), and these are related to u’ (x) by (Venkataraman et a!/
1975, p. 101)

S (t) = B, (1, ) ug, ().
The force constants F(z, ¢t') associated with internal coordinates are related to
dag (1, ') by

‘.;Vﬁ (¢, ) =B, (t, k) F (2, t') Bg (t', ).
Using this relation, the values of F (¢, t') quoted by Spectrosgopists, can be
converted for our use. Note that this applies only for atom pairs with « 3= «'. The

self terms qS‘&"B («, ©) must be determined via sum rules, which, as remarked above,
are different for the free molecule and the defect even if there are no distortions

in the latter.

3. Formulation of the dynamical problem and its solution

Having settled on the coordinates, the Hamiltonian for the imperfect crystal
can be written down directly. We shall however deduce it by starting with a more
primitive Hamiltonian (or Langrangian) obtained by regarding the entire system
as composed of atoms only rather than of host atoms and a molecular complex.
Following this, the symmetry properties of the force constants over and above
those noted in I will be discussed. The sum rules will then be obtained which will
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be followed by the derivation of the equations of motion. It is here that the
Dirac bracket will be involved. The section will be rounded off with an indication
of how to apply the matrix partitioning technique.

3.1. Kinetic and potential energy

Presently we shall deduce expressions for the harmonic part of the kinetic and
potential energies in terms of the coordinates introduced earlier. The kinetic
energy is given by

T = 3 m (lkee) [ (lk)]2 3.1)
and the potential energy by
V = % o ke, IK'') g, (lhr) ug (I'k'x") (3.2)

where ¢, denotes the Born-von Karman force constants. . Next we would like

LXOE

to express the time derivatives, i.e., u (lkx) in terms of the derivatives of the dis-
placement coordinates chosen. For this purpose, consider first the expression

r (01x) = x (0l«) + u (0lx)
= v (01) + x' (x) + 0’ ().
Evaluating the time derivatives in the unprimed or inertial frame,

[¥ (016)}ger. = [ (01)] e,

= [0 OD]ner, + [X’ (©)liner. + [0 ()]ier. (3.3)

But

d d

(a})iner. - (Et)s’
whence

X (e, = K (s =0 AX (), (0=1)
sinc'e_ _

X (e =0,

Likewise,

[0 (e, = [ ()]s
= o AU (9 + [0 ().
Using the last two results in eq. (3.3),

[0 019 e, = [0 ODlinr, + 0 A ¥ () + [ (), ¢.4)
which can be generalized to

0 (k) = W () + 810051 [ A ¥ () + W ()]
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where the subscripts on the derivatives are to be understood in the sense of eq.
(3.4). We now use the above result and the vector identities '

E‘V () (0 AP () = w . (' () A v ()
W) . (0 AT () =1 (). (1t (1K) A w)
in eq. (3.1). This gives in the harmonic approximation, '
T=3(Zm ) fa* QDI +32 M (k) i (e
+Em() o A X @ +3m () [0 (]2

where the notation X' implies a summation over /k with the term Jk = 0l excluded
The third term on the right side can be expressed in terms of the moment of inertia
of the molecule, ie., we can write

ym () [o A X (12 = Jog 1" U’
Thus*
2T = patgt (O1) ug® (O1) + ' M (k) gt (1K) gt (1K)
+ Qap " g +m (DU ()’ ().

Consider next the harmonic contribution to the potential energy. Using eq. (2.4)
in eq. (3.2), we can write it as ' .

2V = biig (U, I' k') e, (Ik) ul (I' ') + Sip et
55 (e, )k (g (<) + 655 s () o
+ duig (O1, I' ') e wfg (I' ) + i (01, ') 163 w5 ()
+ dug (e, 0D . ()i + G5 (i, 1" k) i () g (1)
+ pig (lk, ') g () wf (<),

provided the following definitions are introduced.

&g (01,01) = X 45 (0lx, 01« ,  (3.50)
Kk, k! . )

i (k,01) = I g (K, 01x); lk#01 (3.55)
K

$ag = i, (01K, O1K) €uapeppots () Xq () 3.5¢)

‘c';Tg (k, &) = g (01, O1x") ' (3.54d)

‘étﬁ (x, O1) = 2 t/laB (0lx, Olx') (3.5¢)
KI

dug (6 I'K) = hag O, I'ky; U'k'+#01 (3.5f)

* Tt is worth noting that the Coriolis term has been dropped. This is generally dome in .the
discussion of external modes in complex crystals (see for example, Venkataraman and Sahniara

1970), but is not explicitly mentioned.
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$5 (01,00) = 5 s (Olx, 01c) €parts () (3.5 2)
$ug OL 'K’y = tup Olie, I k) yany ()5 1" k' 5 01 (3.5 h) |
95279 01, «) = "ﬁ,ll»ﬁ (Olx, Ol«') epavx: () (3.5%) ;

The transposed force constants like 4%, &' etc. are not explicitly given since
they can be written down by exploiting the permutation symmetry of the above

force constants.

3.2. Symmetry properties of the force constants

The symmetry properties of many of the force constants have already been noted
in I. If S denotes a point group operation which when applied about the centre
of mass of the defect brings the pcrturbed crystal into coincidence with itself
(—the set of all such operations constitutes the site group in the parlance of mole-
cular spectroscopists), then the additional propertie; we have to take cognizance

of are:

Q‘W (E’ E’) =S qsvv (Ka K,) ST: ;
87 (7, 01) = S % (, 01)S™ . C (),

¢ (7, lk) = S¢" (x, lk) S,

where
. E
K — K, «
7 s - |
K —> K,
. F
k —— lk.

In addition there are the permutation properties
5 (o 1) =5 (<, ), 3
¥ (s, 01) = g% OL, ), |
$iiz (e, 1K) = $%u (k, x).

3.3, Sum rules

Using the de.ﬁnitiox}s given above, the sum rules obeyed by the force constants
now be readily derived from the corresponding rules for the Born-von Karman

constants. Fixing attention on the site 01, the latter sum rules are given by
(Venkataraman et al. 1975, p. 32)

%' Pap (Olk, Olx’) + %" bap (Olk, Ik) = 0, (3.6)
which arises from infinitesimal translational invariance, and

Yau (0lk, Olx') €uprX, (01c’) + X7 Pau Ole, k) euprXy (Ik) =0, (3.7 1
which arises from infinitesimal rotational invariance,
using eqgs (3.54, D)

From eq. (3.6) we obtain
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2 $ap (i, &) + I d3s (x, Ik) = 0, (3.8)

which defines the self term ag («, ©). It is worth noting that 45;‘,’3 (k, «) is
influenced by the crystalline environment through terms of the type ¢" in contrast
to the case of the free molecule. Next we sum over « on both sides of eq. (3.8)
and use eqs (3.5a,d, e, f) to get

gﬁ’ (01: 01) + D g;ﬁ (01: lk) - O:

which is a special case of the familiar translational sum rule. The above result
is easily generalized to

ag Uk, k) = — 5 &l (Ik, I' k')
VK (k)

for all /, k, o and B

in agreement with the result (eq. 3.8 ¢) quoted in I. A constraint on the (rt) force
constants may be obtained by multiplying eq. (3.6) by €aurXy (x) and summing over
o and x. Noting that x, () = x,” () and further using eqs (3.5 g, 4) we obtain

= $iis ©O1, Ik) = 0,
ik

which too is the same as (eq. 3.8 &) deduced in I. Turning now to the conditions
deduced from rotational invariance, we have from eq. (3.7)

b (), &) eupyXy () + $au (i, Ik) eupyx, (Tk) =0,
after making use of eq. (2.1) and eqs (3.5 4, /). Now using eq. (3.5 i) the above
equation takes an alternative form

pajg (i, 01) + ¢a (i, Ik) cupyx, (k) = 0.
Multiplying by ezoaxn” () and summing over o, A and «, we finally obtain (using
eqs (3.5¢, e, g, 1))

$5g (01, 01) + by (01, Ik) €,p,%, (k) = 0

which again agrees with the result quoted in I. It might be mentioned that if
the force constants ¢%, ¢", 4™ etc. are all expressed in terms of the Born-von
Karman constants, then it is not necessary to employ the above sum rules provided
care has been taken to ensure that the starting Born-von Karman constants fulfil
the constraints appropriate to them. On the other hand, if during numerical
calculations ¢* etc. are not drrived explicitly from two-body pof:entials but are
parameterized, then the above constraints must be explicitly applied.

3.4. Equations of motion
Forming the Lagrangian L = T — V¥, the momentum variables are seen to be

D ~ -~V A
PR = Sy = m (B i @),

r ?_‘;— 7
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3L sm L AR {pﬂ& oD ; k=01
C Ol e ———— = t (k) = N -
pa R = 55y = MR 8 = Uor byt Gy 5 Tk 01

Observe incidentally that pg,° () deduced above is in accord with the definition
introduced earlier. The Hamiltonian is

H= (Pav (%) g (K) +pa” 4"+ pat (lk) Z’.‘a.t (lk)) —L

1 v 2 1 = Y T
=2 5 (v’ () + 5 QapPa’ P8

‘ 1 t 2
+ 3 s (e W) Y

aQ

where § denotes the inverse of 9§ i.e.,

59 =33 =1,

At this point it is suggested that the reader go through the Appendix as it will
facilitate an understanding of the way we derive the equations of motion. As
explained there, the presence of constraints necessitates the use of Dirac brackets

{,}* in place of the usual Poisson brackets {, } in forming the equations of motion,
Thus we have

ba = {pa: H}* == {pm H} —{pa: ea} Cab {eb, H}

where p, can be pg’ (x), p," or pg' (lk). The &s above are the Cartesian compo-
nents of 64 (4 = 1, II, III, IV) defined in eqgs (2.9, 10, 13, 14). The matrix B of

the Poisson brackets will in our case be twelve dimensional. Remembering that
p and g are conjugate variables,

{.q1=0, {p,p}=0, {g,p}= 1.

Using this result and eq. (2.6), it is easy to see that the only non-vanishing
elements of B are the ones given below:

{82, g} = —{0p", 0,7} = KZ,;'WZ () {ua" (1), pg* (<)}
= 5 m (9 Dy Bup = g,

{Ham, gglv} — —-——{3,3“'7 3um}

= m (x) €auy EBpo'xu” () xp" () {17 (), ps” (K')}
= m (x) (x,u.” () x;x” () dap — Xq" () xB” (K))

= Jap
Hence,
( O pls O O
B — —puly O &) 0\
O o0 o0
O o0 —yg o }
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This matrix is nonsingular and its inverse is

o -1, o o
| w

C= _
o) o) o —9
0 o 3 0

Since our constraints do not involve centre of mass translations and molecular
rotations one has

{pat (Zk)’ BBA} == 09 {par: GBA} == 09
for all o, 8 and A4.

Therefore the equations of motion for these degrees of freedom involve only the
standard Poisson bracket, and the Dirac bracket is necessary only for the vibra.
tional degrees of freedom since they alone involve constraints. Considering first
the vibrational coordinates, we have

m (R) dig’ (R) = pg’ (x) = {pa’ (), H}*
= {pa’ (1) H} —{pa’ (), epA} Cﬁ; {6\*, H}

vy, gy ) V. H
= (pa" (9, H} =" ;{pa( ), H)
—m (R) epuacrpyX’ (k) xg" (") O {py’ ("), H}

= Ruy (x, ") {py’ ("), H}, 3.9

where we havq defined

O ay

m
Ra")’ (K, K”) = BQ'YSKK" — IEK)
—m (k) Ep#ae)\ﬁ’yxp/} (R) xg" (") @p?\ (3.10)
Noting that
(P% ("), H}Y = — ¥ (", ) ug () — 3 (<", O) ug
—$%g (¢, k) ug (Ik), (3.11)

introducing the following effective force constants

$u (e, &) = Ray (1, ") S35 (', ), (3.12 a)
Fus (i, 01) = Ray (6, ) 853 (', OD) (3.12B)
(3.12¢)

;‘ZFB (K, lk) — Ra“)’ (K’ K”) d’?}t’y (K’!’ [k),
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and using eq. (3.9), we finally obtain,

m (R) Ui (R) = —$% (6, ) uf () — 55 (e, 01) s

—its (, 1K) s (IR).

The equations of motion for the rotational and translational coordinates are
simpler since they involve only Poisson brackets. Thus,

Pa’ = Sap g’ = {pd’, H}

= — g 1y — &5 (O, 1) iy () —ilp (O, 1K) uss (),
which when compared with the appropriate equation in I (i.e. the time depen-

dent version of eq. (3.24)), reveals an extra contribution associated with vibra-
tions. Similarly for translations we have

pat (k) = m (T k)it () == {pg k), H}
= —dug (k, I'k"y ug (I'k"y —dag (lk, O1) ug
— EVB (lk, x) u}’; (k)

which too, on comparison with I, shows extra contribution associated with vibra-
tions.

The stationary equations of motion of the problem are obtained by putting
ug’ () = Ug" () . el
u = U, . el
ugt (lky = Uy (lk) . &'

This gives in matrix form

T wim —¢” —d¥ (-, 01) —3" (-, 01) —g"t (01, LK)
—¢"” (01, )  «*3—9¢" (01, 01) —¢™ (01, 01) —3" (01, LK)
— 4 (01, -) — 4t (01, 01) wipl —gt (01, 01)  —gt (01, LK)
| —$Y(LK, )  —¢" (LK, 01) — % (LK, 01)  w?M*—¢% (LK, LK)|
3P +—3—— <—3—— «~—(3nN — 3)——
U —1 3r
von |ts
\’
X =0 (3.13)
T )3
| var) 1(3nN—~3)

%f
i
i.

B~
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A few comments to the above matrix equation are necessary, mostly in the naturc
of notational clarifications. In writing the above, we have tried to sort out
specifically the contributions associatied with the internal vibrations, the rotations,
and the centre of mass translations of the molecular defect as well as the transla-
tions of the host atoms. No indices are associated to v, it being understood that
the full range of « is covered. In the case of quantities with LK in parenthesis
it is to be understood that LK ranges over all values taken by /k except 01, This
incidentally will explain why, for example, the matrix ¢* (01, LK) will have a dimen-
sion of 3 x (3Nn —3) as indicated.
The significance of the various mass matrices should be fairly obvious.

3.5. Crystal field approximation

Before proceeding to solve the problem posed in eq. (3.13), let us digress briefly
to discuss the so called crystal-field approximation. In the latter, one does not
consider the defect and the host atom dynamics together, but rather restricts
attention ‘o the former alone, the host being regarded as merely producing a
static perturbing field. Various versions of the crystal-field approximation are
possible. In the simplest, one regards the centre of mass of the defect molecule as
clamped and further does not permit rotations. Under these circumstances only
internal vibrations are possible, and since these are executed in the field provided
by the host atoms, both a shift and a splitting of the free molecular frequencies
are possible (—the latter evidently only in the case of degenerate vibrations).
The group-theoretical analysis of the possible splitting of degenerate vibrations
due to the effective lowering of symmetry when the molecule is introduced into
the crystal has been discussed extensively inthe molecular literature, and draws
essentially from the well known Bethe method (Bethe, 1929). Our treatment enables
one to go even further and calculate the perturbed frequencies. Since the only
motions permissible are those associated with internal vibrations, the secular equa-
tion is particularly simple, being$

A ) =lw?m—g" | =0 (3.14)

A slightly more advanced version would be to consider all possible motions of

the molecule. In this case the secular determinant is

w'm —¢" —$" (-, 01) —§* (-, 01)
—¢7 (01, -) w? 9 —¢" (01, 01) — 4 (01, 01) =(
""d’w (01’ ) 3 ""?"tr (013 01) w2,1L13 '“SI’“ (01, 01)

Incidentally, one can also see from above how the cage rotational frequency intro-
duced in I was defined. This was obtained by merely suppressing all motions
except the rotations giving

w? § = ¢".

§ Strictly speaking, the force constants entering eq. (3-14) must be slightly different from
(}Z c‘[‘édeﬁned in eq. (3-12 a) if one considers the absence of rotations to be due to an infinite
moment of inertia. In that case the third term in the definition of 4R (K, K*) (see eq. (3.10)) will

not contribute,
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3.6. Marrix Partitioning

We now take up the central problem, viz., the solution of eq. (3.13). As in I,
the matrix partitioning technique will be applied. Let us first write eq. (3.13)
in the form: .

L*% L* L [ O
L*¥U = | L*v L %t U
L*tv Lt Ikt Ut
n g\ ] (o
= | w2 9 — | ¢V 4T g U =0 (3.15)
M* PO G Ut

It is worth emphasizing that the dynamical matrix in eq. (3.15) has a dimension
of 3 (nN -~ r + 1) which is six more than the number of independent degrees of
freedom. This implies that when solved, eq. (3.15) will yield six zero frequencies.
This is illustrated with a specific example in the appendix. The reader will per-
haps recall in this context that when the vibrations of the free molecule are dis-
cussed using Cartesian displacement coordinates, then too one has zero frequencies
arising for the same reason. Turning to the unperturbed form of the L matrix,
we take this as

L m ;vv
L= L = w? 0 _ g‘l)rr
A M ¢

The perturbation to the L matrix is then

o 8LV SL"
W=L—-L*~ [ sLv O L™
SLY  SL¥ L
0O O o O 37 g
et 0O 0 O )+(g¢® o g (3.16)
0 0 aMm $¥  $7 Ad™

The effective force constants ¢ v " ; |
. , and ¢" automatically fulfil the requirements
of translational and rotational invaria d 1 :

¢ . nce since these constraints are alread uil
into the starting force constants. cady bull

To apply the matrix partitioning technique,

. A we suppose as in 1 that the defect
Interacts with just p atoms of the host lattice, o :

The matrix SL then has the form:

R

e
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d- —><(D-d)
0 2 L T
LY 0 a1 0 | d
t r
) B 81t oIt !
—————————————— _r_ —— ——
0 O

where d=3(r +p +2) and D=3®mN +r+1). The above matrix is to be
compared with that given in eqs (3.18 a, b) of I, whereupon it will be seen that
-the nonvanishing portion of 8L is larger in dimension, to the extent of 37 dimen.
sions to be more precise. Observe that the matrices I, 81, 81, etc., are reduced
portions of the corresponding matrices 3L, 8L, §L", etc., occurring in eq. (3.16).
The dimensions of the reduced matrices are easily deduced remembering that
there are 3r vibrational, 3 rotational and (3 + 3p) translational coordinates
in the “defect space”. Let us now partition L and U as

LVV | 7 UV 1'\
|
S d v\ o4
L= 1 ; U= U \
_____ SDTA I B g
' t
A a1 : APY (Did) U, (D_l_d)
Y

Here A is the reduced portion of the matrix A. Equation (3.15) then becomes

LY ‘] [k
l r
er | U
|
A VA U’
________ + = -
Aoy : A 22 U,
(0) SLY sI™ : UY
LY O 17 | U
= 1 O
SIW Sltr 3[& [ ) Ult
———————————— +-- t
0 | 0 Ug

From these we obtain after some straight-forward simplification,
U =X"U (3.17 a)
U =Y*'U,, (3.17b)
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Ut =gt 1t U, (3.17 ¢)
U, = Gy 31" U (3.17 d)
In the above,
Xt = (LW — 8L G SL7)-1 (5L G 81" + 81%) (3.18 @)
vyt = (GT SLY X" 4+ GT 81t (3.18 D)
and
1t = (81" 4 81V X* 4 81" Y™). (3.18¢)

Equations (3.178, ¢, d) and eq. (3.18 ¢) are to be compared with eqs (3.14, 15)
and eq. (3.17) of I. The additions arising out of molecular deformations will
then become apparent (& minor point to be borne in mind is that here the solutions
for the displacements have been written down after the application of the matrix
partitioning technique).

To complete the formalism, it is only mnecessary to give the secular equations
for the local and the resonance modes. These are respectively :

A(e?)=I1—g 8| =0,
Re A (w? —i0) = Re || 1 —g" (w? —i0) ST (w2 —i0) || = 0.

4. Discussion

The problem we have tackled can be approached in several ways, and it is use-
ful to compare our approach with a few others to obtain a better perspective.

Let us consider first the ¢ non-molecular” or the straight-forward Born-von
Karman approach, an example of which is given in the appendix. In this, an
atom of the host lattice is supposed to be replaced by r new atoms and a dyna-
mical matrix written for the entire system. The analysis of the problem can be
effected by using methods employed to discuss the interstitial problem, since as
in that case, we are cffectively adding extra degrees of freedom to the crystal.
The dynamical matrix will be of dimension 3 (nN + r — 1); there will be no redun-
dant coordinates, and so Dirac brackets will not be required. In terms of compu-
tational complexity, there will in fact be a slight advantage over the method
proposed by us since the dimensionality of the dynamical matrix is smaller than
that we have. The principal disadvantage as compared to our method is that
the displacements of the defect system are not easily visualized in terms of the
familiar centre of mass motions, librations and internal vibrations. An additional
advatn{afgie1 sf our nqethqd is that we are also able to project out conveniently the
crystal field approximation with focu ibrati i
o el tﬁ}; oximaton Wit 2 s on the vibrations alone or the rotations
~ Next we shall review briefly Wagner’s model. He considers a molecule of
(s -+~ 1) atoms to be introduced in a lattice which to start with has 3N degrees of
freedom. We thus have a following correspondence regarding the degrees of

freedom of our system and his system. r —(s 4+ 1
i ’ ;3 . .
— 3 (N +5). His dynamical equation reads ); 3nN —=3N; 3(nN +r —1)
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L + A(w?) — w2l B ) Z\ 73N
( BT a + w?l (C $3S:
< 3N > <« 35 —

Here Z refers to the Cartesian lattice coordinates, and includes the components
of the displacements of the centre of mass of the defect as well as of the unsubsti-
tuted host atoms. { is a set of 3s ““ molecular coordinates (centre of mass excluded
and mass reduced) . L is the ideal lattice matrix and A (w?) the deviation from
it. B gives the interaction between the molecular and the lattice coordinatcs, and
a is the molecular matrix. Formally Wagner’s work is complete but the lacuna
1s that he does not specify how exactly the molecular coordinates { are to be intro-
duced. Nor does he discuss invariance conditions on the force constants.

The dynamics of a crystal containing an impurity molecule is also considered
by Liapzev and Kiselev (1974) in two papers. * The molecule is assumed to
show almost free rotations about one axis which can librate. The Born-Oppen-
heimer method is applied to solve the Schrodinger equation transformed from
Cartesian coordinates to coordinates defined by the Eckart conditions and those
describing the vibrations and rotations . Although these authors appear to be
aiming at a solution of the same problem as us, their work seems (at least to us)
to be far too formal for practical applications.

To sum up, in this paper we have extended the results of I to accommodate the
effects of molecular deformation. The molecular part of the problem is handled
by methods well known to spectroscopists. Cartesian coordinates are employed
throughout. It is well known that the vibrations of a free molecule can be handled

in this way. If one sets up the vibration problem with 3r coordinates ug (x), and
further imposes constraints as in eqs (2.7, 2.8), one will obtain (3r-6) nonvanish-
ing frequencies and 6 vanishing frequencies (for a non-linear molecule). Observe
that in this case there are no redundant coordinates. What we do is to describe
the internal vibrations of the defect by essentially the same method. In addi-
tion we wish also to describe the librations and the centre of mass oscillations
for which we introduce separate coordinates, and this results in coordinates re-
dundancy, bringing in its wake the need for Dirac brackets. Though slightly
complex in formulation, contact with the existing framewor.k of molecular spectro-
scopy on the one hand, and lattice dynamics on the other is possible. .The results
of I as well as those of the crystal field approximation are also readily deduced
as special cases.

Appendix

In this appendix we draw the attention of the reader to thc? Dira.c bracket and its
utility in the present problem. Though discussec.i.extm‘]swely‘ in formal papers
and treatises, it is likely that the reader is unfamlhar.wnh tl‘us concept, and for
this reason it seems desirable to give a brief introduction to. 1.t here. o
Many years ago, Dirac considered the problem of g'enerul.lzmg the Hax_mltom.an
formulation of classical mechanics as a prelgde t‘o dealing w1?h problems mvolvmg
complex interacting fields. The usual Hamiltonian formulatxgn rests on the equi-
valence of the Lagrangian and Hamiltonian equations of.motzon ; In other w.’ords,
one can pass from the Lagrangian variables of generalized position coordinates
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and velocities, i.e., ¢ and g to the Hamiltonian variables of generalized pos.ition
coordinates and momenta, i.e., g and p. Sucha transition is possible only if the
velocities can be expressed in terms of the positions and momenta. Equivalently,
the definition of the momenta should not lead to interrelations among the posi-
tions and momenta alone. If, on the other hand, the physical system under
consideration displayed such a behaviour, then a generalization of the usual Hamil-
tonian formulation becomes necessary. The starting point of such a generalization
is the specification of the interrelations or constraints ”’ alluded to above. The
set of all constraints associated with a given system can be characterized in terms
of two classes I and 1I, which are distinguished as follows:

Let 6 (p, g) be a typical function whose vanishing expresses a constraint. We
next form a matrix B with elements B,, = {¢°, 6°} where {, } denotes the Poisson
bracket defined as

1-+oN - \ S
{(f(pqg), g (pg) } = Z (Dﬁg ;ﬁ -Siaf

for any two functions f (p, g) and g (p, ¢) defined in a phase space with variables
Gi ... Gxi Dis --- » Px  The constraints belong to class 1 if the matrix B is a null
matrix, and belong to class II if the matrix B is non-singular. For our problem,
the constraints belong to class II. Define now the matrix C which is the inverse
of B, i.e.,
Cab '(Lt}ba 9(:} = Bac'

The existence of the matrix C can be taken as an alternative criterion for class II
constraints. Now the modification to the wusual Hamiltonian formulation lies

in replacing the Poisson bracket by a new algebraic structure, known as the
Dirac bracket. The Dirac bracket of f with g, i.e., {f, g}* is defined by

{fy g}’ﬁ = {f’ g} —{f; 9&} Cuh {Gba g}

(summation convention assumed).

We next direct attention to a simple example to illustrate how the Dirac bracket
proves useful in problems involving the dynamics of a molecular impurity.

Consider the triatomic system shown in figure Ala. This will be regarded as
the analogue of the host crystal. Next we consider a replacement of the central
atom by a diatomic molecule as shown in figure Alb, giving us the analogue of
a crystal containing a molecular impurity. We shall analyze the latter system
using first the Born-von Karman approach, assuming -for simplicity that dis-
placements are possible only along the chain. This will lead to four vibrational
frequencies as it must. We shall then consider the problem by assigning to the
molecule, coordinates appropriate for describing its centre of mass motion and
its internal vibration (i.e., stretching). This will result in an artificial enhancement
of the number of degrees of freedom to five (—there will, however, be a constraint
to effectively restrict the number to four). It will turn out that an analysis of
the latter problem will require an appeal to Dirac brackets, and when fully solved,
will yield the same results as the Born-von Karman approach but with the advantage
of being interpretable in terms of molecular motions. We shall also demonstrate

how. by imposing appropriate clamping of the atoms one can recover various
versions of the crystal field approximation.

Tl s’
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Figure Al (g) Schematic drawing of a triatomic chain, representative of a host

crystal. ‘The integers label the sites. Also shown are the force constants and the
masses. (b)) Analogue of a crystal with a molecular defect. Here the atom a
the site O is replaced with a diatomic molecule. (c) Representation of the situation
corresponding to the crystal field approximation. Here the host atoms are clamped.

In a Born-von Karman type analysis of the system in figure Ald, the potential

energy is given by

V=3 (U, Y u b u(l'©)

where the site index / takes on the values T, 0, I; the atom index « takes the
values 1, 2 for site /=0 and is suppressed elsewhere. In the nearest neighbour
b

approximation, the force constant matrix ¢ can be writfen as:

N g
N e

Ik \ 01 02

]

01 i F+f —F —f

g = 0211 —F  F4f 0 —f
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The upper left block, #, labelled by the rows and columns numbered 01 and 02
corresponds to the force constant matrix for the perturted molecule. The
corresponding matrix for the isolated molecule is

\\ ,
K
K\, 1 2
N
1 F —F
JAC)
P D _F F

Note the difference between &, and . The diagonal terms in ¢, differ from

the corresponding terms in 49 since in the former they are calculated by using
the sum rule of eq. (3.6). The kinetic energy of the system is

1
T = Z-M_(Ifc—)p (le) p (Ix).
The mass matrix is
AN
\ 'k’

KN | 01 02 T 1
N

01 m e

02 m

1 M,

The dynamics can be described by Hamilton’s equations
p (1) = {p (1), H} | (A1)
where H= T+ V. From eq. (Al) one obtains by standard procedures,
(w*M—4) U =0,

or more explicitly,

[met—f—F  F 1 0 T rvon]

£ mwt—f—F 0 f U (02)

f 0 Mow?—f 0 U = 0.
0 f 0 M —f| | U |

(A2)

. Wi g
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The gssociated determinantal condition then leads to the following polynomial
equation
A (0?) = w? [m* My? b —2mM, (mf + Mof + MF) o*
+(m + Mo)* 2 - 2M o (M, + 2m) fF) w?
—2(m+M)f?F]l=?P(«?) =0, (A3)

where P (w?) is the polynomial defined by the square paranthesis. Observe that
one of the roots is zero. This is a peculiarity of the model, and corresponds to
a uniform translation of the system.

In the above discussion, the displacements of the atoms in the molecule at the
site 1 == 0 were described without explicit reference to the type of motions the
molecule is known to be capable of. However, we know from independent consi-
derations that these atomic displacements must be a composite of the centre of
mass motion of molecule, and the displacements associated with the vibrations.
Accordingly, we may rearrange the problem by introducing the coordinates

u (01) = u* (0) + u* (1)
u(02) = u* (0) 4 " (2)
u(l) =ut(Q)
u(l) =ut (1)

in the notation adopted earlier in the paper. The constraints appearing are:
m (u¥ (1) + W @) =0 (A4 a)
) +p"(2)=0 (A4 b)

Equation (A 4 ) defines the centre of mass while eq. (A4 ) which follows imme-
diately from the preceding one, states that there is no momentum associated
with the motion of the molecule when viewed from the centre of mass. It is seen
from above that there are interrelations amongst some of the coordinates and
momenta relevant to the problem. To proceed further, we rewrite eqs (A 4 a, b) as

m(w (1) +u' Q)=10
pv (1) +pv (2) — 0[1

and note (as remarked earlier) that the vanishing of the s leads to the constraints.
The matrix of the Poisson brackets of the constraints is

B {91’ 91} {61, gu})
= {6”, 01} {9”, gu}

()
=P\ 1 0

where p = 2m is the molecular mass. The inverse of B is

B

b
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it is clear that the constraints are of class Il (since the matrix C exists). The
equations of motion are:

) = (77 () HY* = {0 (), H} —{p" (), 0%} Cu {0° H} (A5)
for k= 1,2. Here a, b==11I
Noting that

{p(). €3=0
for all ¢ and for 1 =0, I, T, we also have

P =0 H (A6)
for 1=0,1, 1.
The force constants are obtained by using eqs (3.5a,b,d, e, f) giving:

k=1 k=2 [I=0 I=1 I=I

k=1 ‘ F+f —F f —f 0 ¢|

k=2 | —F F4+f f 0 —f T

b= I=0| f f o —f  —f %
=1 | —f 0 —F O f o |

I+1 ] 0  —f —f o0 Fo

\’

Simplification of eq. (AS5) then yields
m(R) & (&) = R (x, «") {py’ ("), H}

= (bue =) 7 (), 1)

W

= — 3" (&, &) u (&) — " (i, 1) u* (D),

where eqs (3.9, 10, 11, 12) have been made use of. The * effective ** force constants
(i.e., d's) are given by

k=1 F+fl2  —F—fp 0 —f2 f2
k=2 | —F—=f2  F+f]2 0 fz2 —=f2

e Y
Il

Finally, simplifying eq. (A 6) and separating out the time part we obtain the statio-
nary equations of motion: ‘
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— i : —
2 fF . i
ma (2f+F) L F 0 A
| 1
"Ef—'—F mw2—-('2~f+F) 0 —~§ -g—
—f —f 2 (mw? —f) f f
f 0 f Myw?* —f 0
g 0 f 1 0 Muw?—f
U’ (1)
U' (2)
) Ul (0) = O (A7)
Ut ()
LUt (1)

which, in contrast to ¢q. (A 2), permits a description of the dynamics of the per-
turbed system in terms of the host atom displacements and molecular motions.
The secular equation associated to eq. (A7) is:

mw! P (w?) = 0,

where P (w?) is defined in eq. (A 3). This is seen to be identical with eq. (A 3)
apart from an extra zero frequency root associated with the spurious degree of
freedom in the present analysis. We thus see that description of the dynamics
in terms of familiar molecular motions is possible, and the difficulties caused by
introducing redundant coordinates can be handled by the use of Dirac bracket. For
the price of this minor extra complication, we have the advantage of describing the
molecular motions in terms of its external and internal modes.

To recover the crystal field approximation, we need only to suppress the motions
of the host atoms. For our system, this implies  imposing clamps as illustrated
in figure Al c. The determinantal condition for this case is readily derived from
eq. (A7) and is found to be

‘ mot —@f+F)  3f+F 0 |
‘ If+F wim—Gf+F) 0 _0
| —f —f 2 (maw? —f)

The roots are:
w2 =0, wy?=(flm) and wg?=:(f+ 2F)[m.

In passing, it is worth drawing attention to the fact that Wilson et a/ (1955)
have discussed this problem via the Born-von Karman approach in their book.
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They obtain two solutions, namely our w,® and w32.‘ We obtain an extra zero
on account of a redundancy in the coordinates. It is easily seen that wgz correspf)nds
to the centre of mass motion of the molecule while wg? represents the internal vibra-
tions of the embedded molecule (for a free molecule, we would have w® = (2F/m)).
An even more primitive version of the crystal field approximation is possible in
which the centre of mass motion is also suppressed.
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