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Phase transitions of a feedback amplifier
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Abstract. The phase transition behaviour of an amplifier with positive feedback is
experimentally studied. The results are interpreted using catastrophe theory language. Zero (in
Gilmore’s classification), first and second-order transitions are demonstrated by driving the
system along appropriate trajectories in control parameter space and the cusp and the

" spinodal are mapped. The fluctuations of the order parameter are investigated and their
relationship to system response time established. Quench experiments analogous to those
familiar in condensed matter have also been performed and with similar results.

Keywords. Nonequilibrium phase transitions; catastrophe theory; order parameter kinetics;
feedback amplifier.

1. Introduction

It is now widely recognised that a system driven far from equilibrium can exhibit
phenomena akin to the familiar equilibrium phase transitions (Glansdorf and
Prigogine 1971; Haken 1978). Christened nonequilibrium phase transitions, such
phenomena are seen in diverse fields—hydrodynamics (Swinney and Gollub 1981),
electronics (Landauer 1962), optics (Haken 1978; Arecchi 1979), chemistry (Nicolis
1980; Pacault and Vidal 1979) and biology (Nicolis and Prigogine 1977), to name a few.
It is even conjectured that nonequilibrium phase transition concepts might be relevant
in the context of the origin of life (Eigen 1971; Prigogine and Nicolis 1971;
Venkataraman and Balakrishnan 1978).

Theanalogy to equilibrium phase transitions is not confined to the manifestation ofa
new state alone. Indeed concepts like the order parameter, order-parameter fluctu-
ations, symmetry breaking etc have also been carried over successfully (Haken 1978).
Our own interest is in examples pertaining to metallurgy (Venkataraman 1979), and
while performing some simulation experiments (Neelakantan and Venkataraman
1982) we noted that the feedback amplifier offered a convenient vehicle for exploring
various concepts pertaining to nonequilibrium phase transitions. In this paper we
report the results of our subsequent investigations regarding the phase transition
aspects of such an amplifier. Electronics provides many examples, starting with the oft-
quoted one of a public address system going into a howl. Theoretical and experimental
results pertaining tc certain specific aspects like the existence of the transition and the
growth of fluctuations are available for many systems. Examples include the tunnel
diode (Landauer 1962), Josephson junction (Shenoy and Agarwal 1981), the Gunn
diode (Haken 1978; Keizer 1981), Wien-bridge oscillator (Kawakubo and Kabashima
1974: Horn et al 1976), parametric amplifier (Kabashima et al 1979) etc. As compared to
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the papers cited above, our interest was to investigate various aspects by close analogy
to condensed matter physics. It is also worth stressing that the experiments we report
are of pedagogic value too and could easily form a part of the practicals in a Master’s
-course, enabling students to study with ease various aspects of phase transitions. Indeed

several extensions to our work are also possible as we will indicate towards the end.

The organization of this paper is as follows: In §2 we gather together some of the
basic concepts (such as we need) relating to phase transitions. The language of
catastrophe theory is extensively used, that being particularly convenient in the present
case. The system investigated is described in §3 while the experiments performed and

the results obtained are presented in §4. Concluding remarks are made at the end as
usual.

2. Some relevant facts—A review

Let us suppose we start with a system initially not coupled to the outside and which is in
a state of equilibrium. We now couple it to the external world suitably so that it can
exchange energy and/or matter. A laser, for example, exchanges energy with the outside
while a biosystem exchanges both energy and matter, Via the coupling introduced, we
imagine a stationary external force to be applied to the system, the magnitude of the
force being at our disposal. When the force is small, the response will be linear and, after
the transients have died down, the system will settle down into a steady state. The
succession of steady states that develop when the force is gradually increased from zero
is often referred to as the thermodynamic branch. It frequently happens that when the
system is driven farther and farther away from equilibrium, the steady state
corresponding to the thermodynamic branch becomes unstable. At this stage, one or
more totally new options become available to the system, some of which may be
unstable while others may be stable. The system then crosses over from the
thermodynamic branch to one of the newly available stable branches. This phenom-
enon is called bifurcation, a simple example of which is illustrated in figure 1.

Now the traditional approach to equilibrium phase transitions is pig the Landau
theory (Landau and Lifshitz 1959) where one starts with the free energy expansion

F =Fq+(4/2)y? + (B/4)y*. (1)

Here q/J is t}le order parameter, and 4 and B are coefficients of which B is positive, while
A varies with temperature as %(I'—T,). For T > T, the minimum of F occurs for yy = 0
whereas fOI: T<T, F has a double well structure leading to a nonzero value of v

external field is applied, then a term Hyr must be added to the right side of (1), H being
the field (conjugate to v).

In nonequilibrium transitions, one does not alway:
b.ut_fortunately, for.the feedback amplifier there does exist a potential V" which plays a
similar role, Accordingly, we follow Gilmore (1981)and consider a potential of the form

Vix;a,b) = (a/2)x* + (x*/4) + bx. @)

Here X is the order parameter, while a and b are the contro] parameters. The term bx
describes the effects of the field. The space of (a, b)is the control parameter space. In the
language of catastrophe theory (Gilmore 1981), (2) is the cusp catastrophe A +3.-Aswe
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Figure 1. Schematic illustration of bifurcation. For explanation see text.

shall see later, the potential function for the feedback amplifier can be cast in the
form (2).

Our interest is in the minima of ¥ since they govern the steady state, ahd for this
reason we focus attention on the critical manifold defined by (dV/dx) = 0. This
manifold (figure 2), has a S-shaped fold. The projection of the fold lines on the a-b plane
is given by (Gilmore 1981)

(a/3)° + (b/2)* =G, (3)

and is a cusp. When the system is maintained at conditions corresponding to any given
point in control parameter space, it seeks that value of x for which ¥ is a minimum. As
the control parameters are varied i.e. when one traces a trajectory in the a-b plane, x
evolves through a succession of appropriate minima and when multiple options are
available it switches over to a new, more stable state. It is in the discussion of such a
switch-over that the critical manifold is particularly useful. Presently we shall consider
the system behaviour relating to a few important and representative trajectories.
Incidentally, in contrast to equilibrium phase transitions where the usual control is the
variation of T (equivalent of a in (2)), in the system we have studied, we have the facility
to vary both a and b quite easily.

Consider first the trajectory marked @ in figure 3. Here b =0 whence it
corresponds to a field-free situation. On the right of figure 3 are sketched the forms of V
appropriate to various points on the trajectory. As one can easily see, a bifurcation
develops as the parameter a crosses from positive to negative values; the related
transition is of second order. Vis-a-vis the critical manifold, the trajectory pierces it and
rides on the central sheet of the S-shaped fold. However, this central sheet represents
instability as it corresponds to a maximum of V;asa result, the system switches to either
the top or the bottom fold (both of which represent stable states) and rides it thereafter.
This behavioural pattern is better discussed using a ‘surgered manifold’ as we shall do
later.

Next we consider trajectories Q) and @ in figure 3. Since b # 0, they do not pierce
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the critical manifold (see also figure 2) and the system smoothly crosses over to one of
the two folds representing a stable ordered state. Turning next to the trajectory @ of
figure 4 (see also figure 2), we note that it is orthogonal to those considered earlier. The
changes in ¥ as one moves along the trajectory are sketched and we observe that the
system has two limiting behaviours in finding the appropriate minima. In one of these
referred to as the delay convention (Gilmore 1981), the system remains in a stable or
metastable state until that state disappears. The other case is referred to as Maxwell
convention and is one where the system always hunts for the global minimum. If the
system responds according to the delay convention, then there are overshoots as b is
increased or decreased as a result of which a hysteresis occurs. In the Maxwell
convention however, there is no hysteresis. In both cases the order parameter changes
discontinuously at the transition.

The two conventions represent extremes in a continuum of possibilities, and which
" one is favoured depends essentially on the ratio of the noise N to the barrier height AE.
If (N/AE) < 1, the delay convention is respected whereas if (N/AE) =~ 1 then noise
promotes barrier jumps and helps the system to find the global minimum; in other
words, the Maxwell convention is obeyed. The field-induced transition is usually

o, /T
S N

S
Mo SRS

b

S SRS

"

Figure 4. Iilustration of system behaviour for the trajectory @ When the system is driven
back and forth along this trajectory, two scenarios are possible. In one, the system stays in the
stable or metastable state till that state disappears. A hysteresis then appears as illustrated in
the middle. This is the delay convention. However, if the system always chooses the global
minimum, then there is no hysteresis as shown at the bottom. This is the Maxwell convention.
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labelled as first order (see table 1) but Gilmore (1981) refers to the transition associated
with the delay convention as being of zeroth order.

This concludes our survey, and we are now ready to examine the phase-transition
behaviour of the amplifier.

3. Feedback amplifier

Consider the amplifier with positive feedback shown in figure 5a. Its effective gain is
given by

A = |vo/v:| = 4/(1 - 4), 4
Table 1. In the Ehrenfest classification scheme (Landau and

Lifshitz 1959; Gilmore 1981), a phase transition is of order m at Xo
if (@ V/éx"),:0 is discontinuous for i > m and continuous for i

<m,
Order of the
transition Continuous functions Discontinuous functions
0 — (Mxys (OV/0x)y,, etc
1 (M, (OV/0x),y, (8*V/0x?),, ete
2 Mg OV/8x)c,  (0*V/0x)sy, (83V/0%%),,, etc
Vi - A —Y

= Y

(b)

+ Veo

= Q102 : 2N2964
~Vee 0y :- ICH 80O7A

M @ BB4213
- Figure 5. aandbare schematics of the feedback am

¢ plifier, with b showing explicitly the load
capacitance C and load resistor R; ¢ shows the circ

uit used by us.
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where A is the gain without feedback, and (> 0) is the feedback factor. In figure 6 is
sketched the transfer function (output vs input) for various f values. For experimental
convenience, we have considered an amplifier whose output has a sign opposite to that
of the input. If we set v; = 0 and start from the condition = 0, we see that the output
voltage v, is also zero. As f is gradually increased, v, continues to remain zero until
AP > 1. At this stage, the transfer function acquires the form sketched in figure 6c.
Clearly two nonzero values for v, become possible even though v; = 0, and the system
randomly chooses one of these. Thus the appearance of a nonzero, steady output
voltage even without an input is the equivalent of establishment of order (recall the
spontaneous polarization in a ferromagnet below the Curie temperature), and clearly v,
is the order parameter. As f increases further making Af > 1, v, also increases till it
eventually saturates. The variation of v, with f is sketched in figure 6d and one sees a
characteristic bifurcation pattern. Thus, even from a mere inspection of the transfer
function characteristics, one is able to infer the existence of a transition akin to a
second-order phase transition of equilibrium statistical mechanics. In passing, the
similarity of the transfer function curves to the magnetization curves for an Ising
magnet and the density vs chemical potential curves for a lattice gas is worth noting
(Thomas 1968; Patashinskii and Pokrovski 1979).

We now probe the phase transition aspects in slightly greater depth for which
purpose it is first necessary to consult figure 5b. Shown here is a more realistic
representation of the amplifier in which is included the output impedance R and the
load capacitance C. The actual output v(f) is not accessible being internal to the circuit
and we can measure only the apparent output v, (t). On account of nonlinearities, the

(a)

(c)

\f
o N
N

___4
N—

(d) ’ /_— B
-

Figure 6. a-c schematically depict the transfer characteristics for various values of f. The
resulting curve for output voltage v, vs B has the form in d. Compare with figure 1.
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gain of the amplifier is in general a function of the net input voltage vj(r) (v} = v, — fv,),
and for that reason may be written as A(v;). The actual circuit used by us is shown in
figure Scand will be explained shortly. For the present we merely note that the feedback

B is derived from a resistive potential divider, and can be changed by varying the control
voltage v,.

Let us now compute the energy W involved in raising the output voltage to the value
Vo, starting from an initial value of zero. This is the negative of the energy dissipated by
the load resistor in the build up process. Thus '

W= -Rj 2(0)dt = —cj"(v-u;,)dvg
0 0

1 2 %0 v

0

Remembering v = — A(v))v] and further that v; = v;— Pvg, the above result can be
recast as

W=3Cvj+C J i (v; — Bup)A(y; — Pop)dug. (5)
0
For the circuit used,
AWy & Ao[1 —a(v})?], (6)
where 4, and a are constants. From (5) and (6) we obtain
W = CL03/2(1 ~ 4B) + A{vo (v, ~ %0?) + 2aBr? v3
~of*v03 +3af v} ], (7)

which, for v; = 0, reduces to
C
W = 5 (= 4B)od + (CAap?/4)3, ®)

having the familiar Landau form. It is not surprising therefore that the system exhibitsa

second-order phase transition with v;=0 and f as the control variable. We also note
that the change of variable

x = (Bvy —v)) k ' ©)
leads to

Wi(x; a,b) = (a/2)x* + (x*/4) + bx (10)
with , ‘

a=(1-4p)/(Aap), b= Uz’/ (AoB). (11)

We thus expect our amplifier to exhibit not only a second-
all the features related to the cusp catastrophe.

We turn again to figure 5c which gives the details of
T, are a matched pair of junction field-effect tr
differential amplifier with gain as given by (6) (Grey
amplifier O, is used as a unity gain differential
feedback system consists of an analog multiplier fol]
The use ofa multiplier allows for a continuous chan

order transition but indeed

the circuit used by us. Here 7, 1and
ansistors (JFeTs) connected as a
and Meyer 1977). The operational
to a single-ended converter. The
owed by a voltage divider network.
ge in f by simply varying v,. It may

d

B
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be added that for a given device, o is a fixed quantity. Thus, although it does contribute
to the nonlinearity of the amplifier gain, « does not enjoy the status of a control
parameter in our experiments; the phase transitions we observe are dictated only by v,
and B. '

4. Experiments and results

We are now ready to discuss the experiments and the results obtained. Our first
experiment was directed towards the verification of the bifurcation pattern of figure 6d.
The experiment was performed by holding v; at zero and sweeping f by connecting a
ramp voltage to v,. The resulting output voltage can be seen in figure 7a and the
bifurcation is evident. In figure 7b are shown the output voltage fluctuations which, not
surprisingly, are maximum at the transition (critical fluctuations). The bottom figure
gives a combined presentation of the order parameter variation and the rms value of the
fluctuations. The divergence seen is the analog of the susceptibility divergence of
condensed matter physics.

The above experiment was then repeated with v; # 0 and given progressively larger
values. The traces obtained are shown in figure 8a and are similar to the curves obtained
for the temperature dependence of magnetization in the presence of an external
magnetic field (Thomas 1968; Patashinskii and Pokrovski 1979). As one knows, there is

Figure 7. ashows the bifurcation observed with
v;=0 and B varied. The accompanying noise
fluctuations are shown in b. In ¢ the order
parameter variations can be seen along with the
rMs value of the fluctuations.
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Although there is no phase transition, we find that if the output voltage fluctuations
are observed they show a peaking. Visual inspection suggests (see figure 8b) that the
peak in the rms value of the fluctuations occurs close to the point of inflection in the
order parameter versus control parameter curve. In figure 8c we present a summary of
the results on the peak positions. It is interesting in passing to note that such
‘anomalous’ fluctuations have been observed in several other experiments. For instance,
Kabashima et al (1975) report a similar peak for the variance of the fluctuations
accompanying the evolution of mean voltage during a transient in an electrical
oscillator. Arecchi (1979) has drawn attention to similar phenomena in lasers. Suzuki
(1979) has addressed himself to the theoretical aspects of this question but we have not
probed that angle vis-a-vis our observations as that would require a separate and
detailed set of experiments. We hope to carry out such investigations later.

We consider next experiments related to trajectory @ of figure 4. As previously
noted, whether or not hysteresis is observed depends on the convention obeyed.
Figure 9a shows two traces obtained with f fixed and v varied. The conditions of the
experiment were tailored for the delay convention to be operative and therefore a
hysteresis is seen. However, the width of the loop was found to be dependent on v;. This
dependence has been measured and is as in figure 9b.

Earlier we have discussed the role of noise in influencing the convention obeyed. To
check this, we connected a noise source to the system and drove the system along the
trajectory @ with different noise inputs but ¢; and p always remained the same. The
results obtained are displayed in figure 10. With low noise a hysteresis is observed but
when the noise level is increased it disappears as expected.

Figure 11 highlights in a comprehensive manner via three-dimensional plots, the
various aspects currently under discussion. In figure 11a we have a computer plot
of the critical manifold associated with the potential (2) while in 11b are presented the
projections on the three orthogonal planes. Similar plots are given in figures 11c and
11d but with some difference. The manifold in 11cis a modification of that in 11a in that
surgery has been done to the latter to remove the portions representing meta- and
unstable regions. This ‘surgered’ manifold is the relevant one if Maxwell convention is
followed. On the a-b plane this projects as line (instead of as a cusp), and transitions
occur (without hysteresis) when this line is crossed. The projection on the a-x plane is
the bifurcation curve and is the analog of the familiar coexistence curve of condensed
matter physics. On the other hand, the critical manifold of figure 11a pro jectsonthea-x *
plane as the spinodal. For comparison, we present in figures 11eand 11f, the (surgered)
surface for a fluid and a ferromagnet (1rr Bulletin 1974). ' ’

We have already discussed the experimental study of the coexistence curve (see
figure 8). To map the cusp and the spinodal, we observed the hysteresis loops for various
B values. In obtaining these loops, the sweep rate was adjusted so that in terms of figure
9d we were close to the y-axis, thus minimizing the dependence of the results on the
sweep rates. The cusp and the spinodal could be readily constructed from the width and
the height of the hysteresis loops, and are shown in figures 12 and 13. Note that we have
used the (vy; B, v;) representation instead of the (x; a, b) representation but the results
are equivalent, and the expected forms do appear without too much distortion. In fact,
the spinodal is given by v, = (ve/ +/3). This is the so-called ‘root-three rule’ well-known
to metallurgists (de Fontaine 1979). | ~

We have also investigated the noise aspects of zero and first-order transitions. This
was done by varying the system time constant 7, and studying the system response when
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Figure .10. Role of noise in influencing the convention obeyed. If noise is low, the delay
convention is obeyed and a hysteresis is seen (left). If the noise is large, Maxwell convention is
obeyed and no hysteresis is seen (right),

of th'e system time constant, the voltage that one actually observes namely v,, has a
n_nodlﬁed character. Until (v, > builds up to a sufficient value and is able to feedback a
significant voltage to O,, the fluctuations in v; have a controlling say. The time
evolution of v, in the region of cross-over may thus be understood by considering the
equation '
dv '
RCTq + vy = f(t) J (12)
t

where f(t) is the random telegraph output having the value (say)+ v, at t =0, and
switching (randomly) at time ¢,, ¢, . . . etc. From (12) we have

vo(ty) = 204 [1 —exp(—ﬁ/RC)] ~ Ugat
o (ty) = vo(ty) — [vo(ty) + v J[1 —exp{(t; —t,)/RC}] . .. (13)

If (At,>/RC < 1, v, will quickly saturate and fluctuations in v, will not be seen. The
opposite will be true if (At; >/RC > 1. Remembering that RCis related to 7,and noting
further that < At, is related to 7., the correlation time of the output noise (Jakeman
1970), we find that fluctuations occur if 7, > 7, and not otherwise: Similar results were
obtained for the case when Maxwell convention was obeyed. " ’

In condensed matter physics, quench experiments are quite common. For example,
one often supercools or superheats a system and observes the subsequent evolution
towards equilibrium. As far as temperature quenches are concerned, it is well-known
that the region of the phase diagram within the coexistence curve can be divided into a
region of instability and a region of metastability. The former is the region between the
spinodal and the coexistence curve. In a computer simulation of the kinetics of the Ising
ferromagnet, Lebowitz et al (1982) have observed wide variation in the relaxation times
even though the system was quenched to the same temperature. This variation was
related to the location of the terminal point, in particular on whether it was in the
unstable or metastable region (see the points 1-5 in figure 1 of Lebowitzet al (1982)and
also the corresponding relaxation curves given in their figure 4).

P_—".3s
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Figure 11. ashowsa computer plot of the critical manifold associated with potential (2). :
The manifold is enclosed in a box with planes parallel to the x-a, a-b and x-b planes; b shows the
projections of the critical manifold on the three planes. On the x-a planeitisa spinodal, on the
a-b plane a cusp and on the x-b plane a S: ¢ and d are corresponding figures for the surfaced :
manifold while e and f (after 1rr Bulletin) are representative examples from condensed matter. q
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We have carried out similar quench experiments by suitably controlling the
parameter B. The results may be summarized as follows: Considering figure 13, a S-
quench drives the System along a vertica] line, and our interest is in the situation when
the terminal point is in the shaded region. This being an unstable domain, the system
relaxes to a stable State, for which th.

€re are two possibilities defined by the intersection

—
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Figure 12. Observed and calculated cusp lines.
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Figure 13. Observed and computed bifurcation and spinodal lines. The shaded region
represents instability, while the region between the spinodal and the bifurcation line represents
metastability. The crosses denote terminal points of the f quench experiments.

of the coexistence curve with the horizontal corresponding to the final § value. If v; = 0,
there is equal probability of the two stable states being realized. However, if v; # 0, then

the vertical quench line is on one side of the line v, = 0, and the closer of the two stable
states get preferred. The voltage step associated with the relaxation corresponds to the
difference |v, (initial) —v, (final)|.
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Figure 14. Noise in zero-order transitions. If t,< 1., critical fluctuations are barely in
evidence (left). For 1, > 1., they are prominent (right).

Figure 15, Results of f-quench experiments analogous to the temperature quench experi-
ments of Lebowitz et al (1982). The terminal points of the quench are shown in figure 13. A

quench into the metastable region produces a slow relaxation while a quench into the unstable
. region produces a fast relaxation.

Typical quench results are shown in figure 15, with the corresponding terminal
points being as indicated in figure 13. Like Lebowitz et al (1982), we too observe a ‘
marked variation in the relaxation times. In general, the relaxation time becomes longer 3
as the terminal point gets closer the ‘stable’ point (on the coexistence curve).

'Besides temperature quenches, (isothermal) field quenches are also known, and ¥
B1110t§t and Binder (1979) for example, discuss them (see their figure 1). In such
experiments, the system to start with is in one of the two possible ordered states; also the
field is zero. In terms of the critical manifold (figure 2), this implies that x lies on one of
‘fhe stable sheets, the top one say. Since the field is zero, x will actually lie on the line of
intersection of the top fold with the plane b = 0. Suppose we now apply a field Ab witha
sign such that it tips the system towards the edge of the fold and facilitates its ‘rolling’
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Figure 16. Resultsofthe field-quench experiments analogous to those discussed by Billotet
and Binder (1979). Deep quenches produce rapid relaxation but if the quench is shallow, the
system is trapped for a while in a metastable state.

over. The relaxation time associated with such a phase change depends on the depth of
the quench ie. on the magnitude of Ab. Billotet and Binder (1979) have studied such
relaxation within the framework of the Ginzburg-Landau theory and have shown that
if Ab is large, then the system rapidly relaxes. However, if Ab is small, then the system
becomes trapped in a metastable state for a while before finally crossing over. This
trapping leads to a plateau in the relaxation curve. Our experiments (B fixed and v;
quenched from zero to Av;) reveal similar trends as may be seen from figure 16. In fact
the similarity of our results to figure 1 of Billotet and Binder is quite striking.

We thus see that the analogy in the behavioural pattern of the feedback amplifier to
phase transitions of condensed matter applies not only to the ordering aspects but
extends also to kinetics. '

5. Summary and conclusions

In this paper we have presented detailed experimental results on the (nonequilibrium)
phase transition aspects of the feedback amplifier. By recognizing that the relevant
potential has the Landau form, it has been possible to map the behaviour to that
expected for the cusp catastrophe. Various features related to the critical manifold have
been explored by driving the system along suitable trajectories in control parameter
space, and we have demonstrated second, first and zero-order transitions. By a detailed
study of the hysteresis patterns, the cusp and the spinodal have been mapped. In
addition, the gradual ‘cross-over’ (i.e. without a phase transition) in the presence of an
external “field’ has also been studied. Incidentally, since p and v; can both be varied
independently and simultaneously, it is possible to explore various trajectories other
than those studied by us like, for example, the curved trajectories considered by
Gilmore (1981) in his figure 15.9. ' : .
Besides studies related to the mean value of the order parameter, we have also
observed the order parameter fluctuations and shown that they become large near the
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second-order phase transition. In field-induced transitions, we find that the magnitude y
of the critical fluctuations depends on the ratio of the system response time 7, to the
correlation time 7, for the noise. We have also observed that while for some patterns of
control parameter variation (i.e. along trajectories 2 and 3) no phase transition occurs,
the fluctuations do become large at some point during the variation of the control
parameter. In addition, quench experiments analogous to those familiar in condensed
matter physics have been performed, and with similar results.

We have not measured exponents but, based on our other observations, we do not
expect anything other than mean-field values. For pedagogic completeness we have
drawn attention wherever necessary, to appropriate analogies from condensed matter
physics. We also remark that since the experiments reported are quite easy to perform,
they could well form a useful tutorial aid to students wanting to become familiar with
various concepts relating to phase transitions. Lastly we observe that extensions are
also possible to our system to study the analogues of the interesting problems which
occur in quantum optics (Arrechi 1979; Bonifacio and Lugiato 1979).

Acknowledgements

One of the authors (6v) thanks V Balakrishnan for discussions and S R Shenoy for
correspondence regarding spinodals. They are also grateful to K Anantharaman for
help with computer graphics, and to the referees for their comments.

References

Arecchi F T 1979 in Partern
Springer Verlag) p 28

Billotet C and Binder K 1979 Z. Phys. B32 195

Bonifacio R and Lugiato L A 1979 in Pattern formation by dynamic systems and pattern recognition
tEd) H Haken (Berlin: Springer Verlag) p 16 ' ‘ '

Davenport W B and Root W L 1958 4n introduction to the theory of random signals and noise (New York: r
McGraw Hilly s

de Fontaine D 1979 Solid State Phys. 34 73

Eigen M 1971 Nawrwissenschafien 33a 465

Gilmore R 1981 € atastrophe theory for scientists and

(}Ka;:»dmf Pand Prigogine 1 1971 Thermodynamic theo
ey

Jormation by dynamic systems and pattern recognition (Ed) H Haken (Berlin:

engineers (New York: John Wiley)
ry of structure, stability and Suctuations (New York:

Iakmr: E 1970 J. Phys. A3 201

iigzgx g ﬁi‘;’ﬁi h;, anatu:g T and Nagashima T 1975 J. Phys. Soc. Jpn, 39 1183 ]

o o o oBure S, Kawakubo T and Okade T 1979 J. Appl. Phys. 50 6296

:a;%zma 8. Yamazaki H and Kawakubo T 1976 J. Phys. Soc. Jpn. :0 921 g
W ubq T and Kabashima § 1974 7, Phys. Soc. Jpn. 37 1199

Kewer J 1981 1. Chem, Phys, 74 1350

Landau L D apg Lifshitz E

M 1959 Staristical phys; : '
Landauer R 1962 1. apgl phys, 33 7209 P2 (Oxford: Pergamon Press)

Lebowns ] Marro J and Kalos M
‘1 , H 1982 Acrg Merall. 30 297
Neclakantan K and Venkataramay G 1982 Aciqg Metall. 31 77

_



Phase transitions of a feedback amplifier ‘ 405

Nicolis G 1980 in Systems far from equilibrium (Ed) L Garrido (Berlin: Springer Verlag) p 91

Nicolis G and Prigogine I 1977 Self organization in nonequilibrium systems (New York: Wiley)

Pacault A and Vidal C (Eds) 1979 Synergetics (Berlin: Springer Verlag)

Patashinskii A Z and Pokrovski V 11979 Fluctuation theory of phase transitions (Oxford: Pergamon Press)

Prigogine I and Nicolis G 1971 Q. Rev. Biophys. 4 107

Shenoy S R and Agarwal G S 1981 Phys. Rev. B23 1977

Suzuki M 1979 in Synergetics (Eds) A Pacault and C Vidal (Berlin: Sprmger Verlag) p 94

Swinney H L and Gollub J P 1981 Hydrodynamic instabilities and the transition to turbulence (Berlin: Springer
Verlag)

Venkataraman G 1979 Trans. Indian Inst. Metals 32 435

Venkataraman G and Balakrishnan V 1978 Phys. News 2 1

Thomas H 1968 in Theory of condensed matter (Vienna: IAEA) p 357



