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Exact expression for the projected energy
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Abstract. The angle integrated exact expression for the projected energy is derived
from two different expansions of the rotation operator. In one, the spin matiix
polynomial expansion method is used while in the other the disentangling theorem

for angular moimentum operator is used.
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1. Introduction

The eigenvalue problem of a nuclear Hamiltonian with realistic interactions is
a difficult one. 1In such a manybody problem one often aims at finding a good
approximation to the exact solution. The straightforward method would be
the diagonalization of the Hamiltonian (/H) matrix in a given manybody basis
states. The calculation of the H-matrix for anti-symmetric basis states of given
angular momentum is not easy. Moreover, a prohibitively large basis set is required
to study the low lying spectrum of H. This is because such a calculation amounts
to the introduction of linear variational parameters in the trial wavefunction.
It is well known that such variational wavefunction is not as effective as the one
in which the dependence of the variational parameters is nonlinear. The projected
Hartree-Fock (HF) or Hartree-Fock-Bogoliubov (HFB) trial wavefunction can
have such variational parameters describing the nuclear shape. This powerful
method is used in almost all the microscopic calculations of nuclear energy levels
and their properties. Besides the numerical calculations there has been no attempt
to find the exact angular momentum (J) dependence of the energy expression
obtained from this method. Based on the observation of numerical results, Warke
and Gunye (1967), and Warke and Khadkikar (1968) had derived the approximate
form of the projected energy E (J) as a function of J. This work was criticized
by McDonald (1970). In a recent paper by Warke (1974) the exact expression
of E (J) was derived. There we developed a method of angular momentum pro-
jection operator based on the Lanczos algorithm, In the present paper we derive
the functional form of E (J) starting from the usual well-known projection
operator used in numerical calculations.

2. Derivation

In this paper we follow the spin matrix polynomial expansion method of an arbi-
trary function of the spin matrix J,. Such an expansion was developed by Williams



34 Chindhu S Warke

et al (1966) for fixed value J of the spin. However, this expansion. is valid even
if the spin takes a set of values say (0,2, ... Ju) From the eigen-values of
J,, a complete set of polynomials Wysy (J,) and J,W,syy (J,) are constructed

as follows
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The coefficients of expansion of a function can be calculated by evaluatiqg the
function at the successive zeros of the polynomials Wygyy(x). From this we
obtain the expansion

cos BJ, = Z (-:—(—2%1-'—2: (1 —cos )" J,,Wz(,‘f_”_)1 . (1)

In a manybody variational calculation one uses a trial. wave function é (B, Aw
A, @;), where the deformation parameter B, the neutron and proton pairing
gaps A, and A, and a; are the variational parameters. Such a wavefunction in
general is not an eigenfunction of the total angular momentum of all the nucleons.

The required trial wave function ¥7 can easily be constructed from ¢ by using
the projection operator
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With the axial symmetry restrictions on the nuclear shape variations, the angular
momentum component on the nuclear symmetry axis is a constant of motion. We
restrict our discussion to the case of even-even nuclei in which case the corres-

ponding quantum number K = 0. The nuclear energy expression to be minimized
is then given by

EJ (}9, /_\_Pa An: ai) - (WJ I HI WJ)/<TJ I WJ)
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and 7 is an identity operator. In deriving the above expression for E , the axial
symmetry of ¢ and the-rotational and time invariance of H are used. For even-
even nuclei with axial symmetry it was proved by Warke and Gunye (1967) that
¢ has components corresponding to the even values of J =0, 2, ... Jm- This
allows one to replace e~y by cos 6J, in the integrant of eq. (4). As seen from
the expansion of cos BJ, in eq. (1), the general integral to be evaluated is

where

| ddo (8) (1 —cos 8)*sin 0d6
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The function ,F, is the generalized hypergeometric series. It is to be noted that
aFy of the above arguments is a Saalschutsian series. Therefore, from Saalschutz’s
theorem (Bateman 1953)

. : oy m—J+ 1,01, J)
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The appel symbol (a, n) is defined as follows,
(@0 =1and (g n)=a(@a-+1) ... (a+nrn—1). (8)

Using this result, it is easy to prove that
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We also used the result that J is an even integer. As expected this integral vanishes
for n < J. Substituting this result in the expression for /, and p;, we obtain the
exact angle integrated expression for E,
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The upper limit J,, for the series is derived from the observation that W,,; (J,)
vanishes for n > J,, (The maximum value of J contained in ¢) in the infinite series
expansion of cos 6J,. The lower limit J on the series follows from the fact that
(n +1—J,J) vanishes for n < J.

~Let us now use the disentangling theorem (Arecchi ef al 1972) for the operator
e'%%y in eq. (4), instead of the expansion of cos 6J, in eq. ().
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where
= — tan (9/2).

In order to carry out the integration in eq. (4), the following general expectation
value is to be calculated first (the operator O = H or I).

(|0 g8y | )= (4|0 e+ gl® ), gt |8 )
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0
In obtaining the last step, we used that the operator O is invariant under rotations;
the state vector ¢ has the projection quantum number zero and has the compo-
nents up to a maximum angular momentum J,,. From eq. (12) and the integration
result in eq. (9), we obtain the second expression for E; in eqs (3) and (4).
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3. Conclusion

The angle integrated exact expression for the projected energy is derived using
two different expansions of the rotation operator. In one, the spin matrix poly-
nomial expansion method is used, while in the other the disentangling theorem for
angular momentum operator is used. Neither of the two expressions of E; so
obtained have the same J dependence as that derived in the earlier work. All
the expressions for £, have different forms. This suggests that the construction
of projection operator is not unique. This gives rise to the non-unigueness in
the J dependence of £,. The simplest projection operator, which would also work
for the K # 0 intrinsic state ¢y, can be taken as the polynomial in J* of degree
N. It is assumed that there are N components of J=K, K +1, ... K+ N—1
in ¢, The N unknown coefficients in this polynomial are to be found from the
conditions that this polynomial projects out the component corresponding to the
angular momentam J. It is expected that the E; so obtained would be similar
to that derived from the Lanczos algorithm.
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